
Systems Infrastructure for Data
Science

Web Science Group

Uni Freiburg

WS 2014/15

Data Stream Processing

Topics

• Model Issues

• System Issues

Uni Freiburg, WS2014/15 3Systems Infrastructure for Data Science

System Issues

• Architecture and Run-time operation

• Resource limitations

– CPU

– Memory

– Bandwidth (distributed case)

• Performance goals

– Low latency

– High throughput

– Maximum QoS utility

– Minimum error

Uni Freiburg, WS2014/15 4Systems Infrastructure for Data Science

General Concerns

• In principle, same architecture choices as in
databases

• Different tradeoffs:
– Latency bounds more important than throughput

– Processing driven by data arrival, not query
optimization

• Architecture changes:
– Push-based execution more popular (why?)

– Decoupling using queues

– Adaptive processing

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 5

System Issues

• Two systems as case studies:

– Aurora [Brandeis-Brown-MIT]

– STREAM [Stanford]

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 6

System Issues in Aurora

Aurora System Model

Uni Freiburg, WS2014/15 8Systems Infrastructure for Data Science

Aurora Quality of Service (QoS)

• Loss-tolerance QoS

utility

% delivery
100 50 0

1.0

0.7

• Value-based QoS

utility

values
0 80 120 200

1.0

0.4

utility

latency
0 δ

1.0

• Latency QoS

Uni Freiburg, WS2014/15 9Systems Infrastructure for Data Science

Aurora Architecture

Uni Freiburg, WS2014/15 10Systems Infrastructure for Data Science

Operator Scheduling

• Goal: To allocate the CPU among multiple queries with
multiple operators so as to optimize a metric, such as:

– minimize total average latency

– maximize total average latency QoS utility

– maximize total average throughput

– minimize total memory consumption

• Deciding which operator should run next, for how long
or with how much input.

• Must be low overhead.

Uni Freiburg, WS2014/15 11Systems Infrastructure for Data Science

Why should the DSMS worry about scheduling?
Thread-based vs. State-based Execution

Uni Freiburg, WS2014/15 12Systems Infrastructure for Data Science

Batching

• Exploit inter-box and intra-box non-linearities
in execution overhead

• Train scheduling

– batching and executing multiple tuples together

• Superbox scheduling

– batching and executing multiple boxes together

Uni Freiburg, WS2014/15 13Systems Infrastructure for Data Science

Batching reduces execution costs

Uni Freiburg, WS2014/15 14Systems Infrastructure for Data Science

Distribution of Execution Overhead

Uni Freiburg, WS2014/15 15Systems Infrastructure for Data Science

The Overload Problem

• If Load > Capacity during the spikes, then
queues form and latency proliferates.

• Given a query network N, a set of input
streams I, and a CPU with processing capacity
C; when Load(N(I)) > C, transform N into N’

such that:

– Load(N’(I)) < C, and

– Utility(N(I)) – Utility(N’(I)) is minimized.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 16

Load Shedding in Aurora

Aurora Query Network

.

.

.
.
.
.

• Problem: When load > capacity, latency QoS degrades.

• Solution: Insert drop operators into the query plan.

• Result: Deliver “approximate answers” with low latency.
Uni Freiburg, WS2014/15 17Systems Infrastructure for Data Science

 Key questions:

 when to shed load?

 where to shed load?

 how much load to shed?

 which tuples to drop?

The Drop Operator

• is an abstraction for load reduction

• can be added, removed, updated, moved

• reduces load by a factor

• produces a “subset” of its input

• picks its victims

– probabilistically

– semantically (i.e., based on tuple content)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 18

When to Shed Load?

• Load coefficients

• Total load

1

1 1

jn

i k j

j k

L sel cost


 

 
  

 
 

(CPU cycles per time unit)

(CPU cycles per tuple)

1

m

i i

i

L R




cost1
sel1

Ri
cost2
sel2

costn
seln

Uni Freiburg, WS2014/15 19Systems Infrastructure for Data Science

Aurora Load Shedding
Three Basic Principles

1. Minimize run-time overhead.

2. Minimize loss in query answer accuracy.

3. Deliver subset results.

Uni Freiburg, WS2014/15 20Systems Infrastructure for Data Science

Principle 1: Plan in advance.

cursor

Excess Load Drop Insertion Plan

shed less!

QoS Cursors

10%

20%

300%

shed more!

Uni Freiburg, WS2014/15 21Systems Infrastructure for Data Science

Principle 2: Minimize error.

• Early drops save more processing cycles.

• Drops before sharing points can cause more accuracy loss.

• We rank possible drop locations by their loss/gain ratios.

1

2

3

utility

% delivery

utility

% delivery

Uni Freiburg, WS2014/15 22Systems Infrastructure for Data Science

(10:00, “IBM”, 20, 100)

(10:00, “INTC”, 15, 200)

(10:00, “MSFT”, 22, 100)

(10:05, “IBM”, 18, 300)

(10:05, “MSFT”, 21, 100)

(10:10, “IBM”, 18, 200)

(10:10, “MSFT”, 20, 100)

(10:15, “IBM”, 20, 100)

(10:15, “INTC”, 20, 200)

(10:15, “MSFT”, 20, 200)

.

.

• Two parameters: size and slide

• Example: Trades(time, symbol, price, volume)

Principle 3: Keep sliding windows intact.

size = 10 min

slide by 5 min

Uni Freiburg, WS2014/15 23Systems Infrastructure for Data Science

Windowed Aggregation

• Apply an aggregate function on the window

– Average, Sum, Count, Min, Max

– User-defined

• Can be nested

• Example:

Filter Aggregate

symbol=“IBM”

Filter

diff > 5ω = 5 min

δ = 5 min

diff = high-low

ω = 60 min

δ = 60 min

count

Filter

count > 0

Aggregate

Uni Freiburg, WS2014/15 24Systems Infrastructure for Data Science

• Drop before : non-subset result of nearly the same size

• Drop after : subset result of smaller size

Dropping from an Aggregation Query
Tuple-based Approach

Average

ω = 3

δ = 3

.. 25 20.. 30 15 30 20 10 30

Average

ω = 3

δ = 3

.. 15 15.. 30 15 30 20 10 30 Drop

p = 0.5

.. 30 15 30 20 10 30

Drop

p = 0.5

Average

ω = 3

δ = 3

.. 25 20.. 30 15 30 20 10 30 .. 25 20

Uni Freiburg, WS2014/15 25Systems Infrastructure for Data Science

Dropping from an Aggregation Query
Window-based Approach

• Drop before : subset result of smaller size

• Window-aware load shedding
– works with any aggregate function

– delivers correct results

– keeps error propagation under control

– can handle nesting

– can drop load early

Average

ω = 3

δ = 3

.. 25 20.. 30 15 30 20 10 30 Window Drop

ω = 3, δ = 3

p = 0.5

.. 30 15 30 20 10 30

Uni Freiburg, WS2014/15 26Systems Infrastructure for Data Science

System Issues in STREAM

operators
for processing

queues
for buffering tuples

synopses
for storing operator state

STREAM Query Plans
• Query in CQL -> Physical query plan tree

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 28

SELECT *

FROM S1 [ROWS 1000], S2 [RANGE 2 MINUTES]

WHERE S1.A = S2.A AND S1.A > 10

STREAM Operators

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 29

STREAM Queues

• Queues encapsulate the typical producer-
consumer relationship between the operators.

• They act as in-memory buffers.

• They enforce that tuple timestamps are non-
decreasing.

Why is this necessary?

– Heartbeat mechanism for time management

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 30

STREAM Heartbeats in a Nutshell

• Problem: Out of order data arrival
– Unsynchronized application clocks at

the sources

– Different network latencies from
different sources to the DSMS

– Data transmission over a non-order-
preserving channel

• Solution: Order tuples at the
input manager by generating
heartbeats based on application-
specified parameters
– Heartbeat value T at a given time

instant means that all tuples after
that instant will have a timestamp
greater than T.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 31

STREAM Synopses

• A synopsis stores the internal state of an operator
needed for its evaluation.

– Example: A windowed join maintains a hash table for each of
its inputs as a synopsis.

Do we need synopses for all types of operators?

• Like queues, synopses are also kept in memory.

• Synopses can also be used in more advanced ways:

– shared among multiple operators (for space optimization)

– store summary of stream tuples (for approximate processing)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 32

STREAM Performance Issues
Synopsis Sharing for Eliminating Data Redundancy

• Replace identical synopses with “stubs” and store the
actual tuples in a single store.

• Also for multiple query plans.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 33

SELECT *

FROM S1 [ROWS 1000],

S2 [RANGE 2 MINUTES]

WHERE S1.A = S2.A AND S1.A > 10

SELECT A, MAX(B)

FROM S1 [ROWS 200]

GROUP By A

STREAM Performance Issues
Exploiting Constraints for Reducing Synopsis Sizes

• Constraints on data and arrival patterns to reduce, bound,
eliminate memory state

• Schema-level constraints
– Clustering (e.g., contiguous duplicates)

– Ordering (e.g., slack parameter in SQuAl)

– Referential integrity (e.g., timestamp synchronization)

– In relaxed form: k-constraints (k: adherence parameter)

• Simple example:
– Orders (orderID, customer, cost)

– Fulfillments (orderID, portion, clerk)

– If Fulfillments is k-clustered on orderID, can infer when to discard
Orders.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 34

STREAM Performance Issues
Exploiting Constraints for Reducing Synopsis Sizes

• Data-level constraints: “Punctuations”

• Punctuations are special annotations embedded in
data streams to specify the end of a subset of data.

– No more tuples will follow that match the punctuation.

• A punctuation is represented as an ordered set of
patterns, where each pattern corresponds to an
attribute of a tuple.

– Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø

– Example: < item_id, buyer_id, bid >

< {10, 20}, *, * > => all bids on items 10 and 20.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 35

STREAM Performance Issues
Operator Scheduling for Reducing Intermediate State

• A global scheduler decides on the order of
operator execution.

• Changing the execution order of the operators
does not affect their semantic correctness, but
may affect system’s total memory utilization.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 36

• Example Query Plan:

• Total Queue Sizes for two alternative scheduling policies:

• Input Arrival Pattern:

STREAM Performance Issues
Operator Scheduling for Reducing Intermediate State

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 37

OP1 OP2

cost = 1
selectivity = 0.2

cost = 1
selectivity = 0

n 0.2 n 0

0 1 2 3 4 5 6 13 time

t t t t t t t

• Greedy always prioritizes OP1.
• FIFO schedules OP1-OP2 in
sequence.

 Greedy has smaller max.
queue size.

• (Chain Scheduling Algorithm)

t

