Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2014/15

Data Stream Processing

Topics

 Model Issues
* System Issues

System Issues

* Architecture and Run-time operation

e Resource limitations
— CPU
— Memory
— Bandwidth (distributed case)

* Performance goals
— Low latency
— High throughput
— Maximum QoS utility
— Minimum error

General Concerns

* |n principle, same architecture choices as in
databases

e Different tradeoffs:
— Latency bounds more important than throughput
— Processing driven by data arrival, not query
optimization
e Architecture changes:
— Push-based execution more popular (why?)
— Decoupling using queues
— Adaptive processing

System Issues

* Two systems as case studies:

— Aurora [Brandeis-Brown-MIT]
— STREAM [Stanford]

System Issues in Aurora

I

Input data
streams

W

Aurora System Model

Continuous & ad hoc
queries

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

W

Output to
applications

W

Aurora Quality of Service (QoS)
* Latency QoS

utility |
1.0
» latency
0 e}
e Loss-tolerance QoS Value-based QoS
utility | utility |
1.0 1.0 : T
0.7
0.4 —_—
»% delivery i » values
100 50 0 0 80 120 200

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 9

Aurora Architecture

lml t outputs

Storage

Manager Router

R S S e S S e a3

| Q—or=e | | B

{| Q=11+ | | r

: : ; Scheduler =
e —rr=r | =

Buffer manager 5

: [5 Box Processors
= (=

R tosa |

‘ : ; Shedder Monitor
| \Qy T

Uni Freiburg, WS2014/15

Systems Infrastructure for Data Science

10

Operator Scheduling

Goal: To allocate the CPU among multiple queries with
multiple operators so as to optimize a metric, such as:

— minimize total average latency

— maximize total average latency QoS utility
— maximize total average throughput

— minimize total memory consumption

Deciding which operator should run next, for how long
or with how much input.

Must be low overhead.

Why should the DSMS worry about scheduling?
Thread-based vs. State-based Execution

30

Thread -|::|ErI-I::s+t:1r;v:I —0—
Aurora ——

25 -

20

15

Average Latency (seconds)

0 r— | | | | | |
100 200 300 400 500 600 700 800 9001000

Number of Boxes

Batching

* Exploit inter-box and intra-box non-linearities
in execution overhead

* Train scheduling
— batching and executing multiple tuples together

e Superbox scheduling
— batching and executing multiple boxes together

Batching reduces execution costs

@ execution costs @ scheduling overhead

250 4 ===~

-

Time (ms)

Tuple at atime Trains Superboxes

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

14

Distribution of Execution Overhead

Total running ime: 410 secs 15 secs 8.5 secs
100% -

90% -
80% -
70% -
60% -
20% A
40% -
30% -
20% -
10% -

0% - .
Tuple-at-a-Time Tuple Train Superbox

O Worker Thread

m Storage Manager

@ Scheduler

Relative Overhead

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 15

The Overload Problem

* |f Load > Capacity during the spikes, then
gueues form and latency proliferates.

* Given a query network N, a set of input
streams |, and a CPU with processing capacity
C, when Load(N(l)) > C, transform N into N’
such that:

— Load(N'(I)) < C, and
— Utility(N(1)) — Utility(N (1)) is minimized.

Load Shedding in Aurora

Aurora Query Network

m Key questions:
m when to shed load?

m where to shed load?
m how much load to shed?
m which tuples to drop?

* Solution: Insert drop operators into the query plan.
e Result: Deliver “approximate answers” with low latency.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 17

The Drop Operator

is an abstraction for load reduction

can be added, removed, updated, moved
reduces load by a factor

produces a “subset” of its input

picks its victims

— probabilistically
— semantically (i.e., based on tuple content)

When to Shed Load?

Load coefficients

R, cost, cost, .
sel, sel,

n J-1
L = Z[H sel, j X COS’[j (CPU cycles per tuple)
j=1 _k=1

Total load

m
Z L. xR (CPU cycles per time unit)
i=1

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

19

Aurora Load Shedding
Three Basic Principles

1. Minimize run-time overhead.
2. Minimize loss in query answer accuracy.
3. Deliver subset results.

Principle 1: Plan in advance.

Excess Load| Drop Insertion Plan QoS Cursors

p-

10% shed less!
= N

L]

nd S|
20% -l». E}v}%’ shed morel

~

Ty

0w |

300%

Principle 2: Minimize error.

utility

{1
p) |
5 » % delivery

utility

RN
3 5 » % delivery

* Early drops save more processing cycles.
+ Drops before sharing points can cause more accuracy loss.
« We rank possible drop locations by their loss/qgain ratios.

-

1

Principle 3: Keep sliding windows intact.

 Two parameters: size and slide
e Example: Trades (time, symbol, price, volume)

size = 10 min

slide by 5 min

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 23

Windowed Aggregation

* Apply an aggregate function on the window
— Average, Sum, Count, Min, Max
— User-defined

e Can be nested
 Example:

—* Aggregate Filter Aggregate Filter

symbol=“IBM” 5 min diff > 5 ® = 60 min count > 0
o 5 min O = 60 min
diff high-low count

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 24

Dropping from an Aggregation Query
Tuple-based Approach

A

30153020 10 30 [AVE G
> w — 3 » smm:
5=3

* Drop before : non-subset result of nearly the same size

A

.30 153020 10 30 Avefage . 1515
> U.) - » mum:

.30 15 3020 10 30 [y
TELE

0=3

* Drop after : subset result of smaller size

.30 153020 10 30 [AVE LRI . 2520
> V= 3 . > num:
5=3

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 25

Dropping from an Aggregation Query
Window-based Approach

* Drop before : subset result of smaller size

. 301530201030 RMUALLARILe]y
4 W= 3, 0=3

f—H
..30153020 1030 P AVEERERY | 25 20
> = 3 > auns
0=3

* Window-aware load shedding
— works with any aggregate function
— delivers correct results
— keeps error propagation under control
— can handle nesting
— can drop load early

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 26

System Issues in STREAM

STREAM Query Plans

 Queryin CQL -> Physical query plan tree

SELECT *
FROM S1 [ROWS 1000], S2 [RANGE 2 MINUTES]
WHERE S1.A = S2.A AND S1.A > 10

queues
for buffering tuples

Qs <
opera’rorst ;
for processing
Qs
synopsis| _ _ |synopsis .SYNOPSCS
’ 4 for storing operator state
s
synopsis seq seq synopsis
1 [~ "\ window window [~ | 2

q, q;

5,
Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 28

STREAM Operators

Name Operator Type Description

select relation-to-relation Filters elements based on predicate(s)
project relation-to-relation Duplicate-preserving projection
binary-join relation-to-relation Joins two input relations

mjoin relation-to-relation Multiway join from [22]

union relation-to-relation Bag union

axcept relation-to-relation Bag difference

intersect relation-to-relation Bag intersection

antisemijoin relation-to-relation Antisemijoin of two input relations
aggregate relation-to-relation Performs grouping and aggregation

duplicate-eliminate

relation-to-relation

Performs duplicate elimination

seq-window

stream-to-relation

Implements time-based, tuple-based,
and partitioned windows

i-stream
d-stream
r-stream

relation-to-stream
relation-to-stream
relation-to-stream

[mplements Tsiream semantics
[mplements Dstream semantics
Implements Rstream semantics

Uni Freiburg, WS2014/15

Systems Infrastructure for Data Science 29

STREAM Queues

* Queues encapsulate the typical producer-
consumer relationship between the operators.

* They act as in-memory buffers.

* They enforce that tuple timestamps are non-
decreasing.

»Why is this necessary?
— Heartbeat mechanism for time management

STREAM Heartbeats in a Nutshell

Answers
o mmmmmmmmmmmeoeeos fooomo- dooooe- pooooooooeeee
DSMS| Query I | | Query
Pmceaam Phna
(;1 C':L. LCJ
Tuples
= T
Heartbeat < Input | Buffered
Manager tuples =t

5’[1 eam ' arrival

L, Network L,

L P F °
I, - ' . - o
=, Tl,_ .E I - S - E ik B Ty
. F, =i "|;|_ T -
.

< V.T e) / . L V.T =
/ 5»1 Sn _

| Streamm emission |

Source| . | Source

¢’l ’ . ¢n

* Problem: Out of order data arrival

— Unsynchronized application clocks at
the sources

— Different network latencies from
different sources to the DSMS

— Data transmission over a non-order-
preserving channel
* Solution: Order tuples at the
input manager by generating
heartbeats based on application-
specified parameters

— Heartbeat value T at a given time
instant means that all tuples after
that instant will have a timestamp
greater than T.

STREAM Synopses

* A synopsis stores the internal state of an operator
needed for its evaluation.

— Example: A windowed join maintains a hash table for each of
its inputs as a synopsis.

» Do we need synopses for all types of operators?
* Like queues, synopses are also kept in memory.

* Synopses can also be used in more advanced ways:
— shared among multiple operators (for space optimization)
— store summary of stream tuples (for approximate processing)

STREAM Performance Issues
Synopsis Sharing for Eliminating Data Redundancy

* Replace identical synopses with “stubs” and store the
actual tuples in a single store.

SELECT *

e Also for multiple query plans. . FROM S1 [ROWS 1000],

S2 [RANGE 2 MINUTES]
WHERE S1.A = S2.A AND S1.A > 10
SELECT A, MAX(B)

FROM S1 [ROWS 200] q;
GROUP By A

o —

i . | — "'-.,__h store
' 2
[
: «
' #J
o e : (o)L
1

qQ, d,

STREAM Performance Issues
Exploiting Constraints for Reducing Synopsis Sizes

* Constraints on data and arrival patterns to reduce, bound,
eliminate memory state

* Schema-level constraints
— Clustering (e.g., contiguous duplicates)
— Ordering (e.g., slack parameter in SQuAI)
— Referential integrity (e.g., timestamp synchronization)
— In relaxed form: k-constraints (k: adherence parameter)

* Simple example:
— Orders (orderlID, customer, cost)
— Fulfillments (orderlID, portion, clerk)

— If Fulfillments is k-clustered on orderlID, can infer when to discard
Orders.

STREAM Performance Issues
Exploiting Constraints for Reducing Synopsis Sizes

e Data-level constraints: “Punctuations”

* Punctuations are special annotations embedded in
data streams to specify the end of a subset of data.

— No more tuples will follow that match the punctuation.

* A punctuation is represented as an ordered set of
patterns, where each pattern corresponds to an
attribute of a tuple.

— Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, @
— Example: < item_id, buyer _id, bid >
<{10, 20}, *, * > => all bids on items 10 and 20.

STREAM Performance Issues
Operator Scheduling for Reducing Intermediate State

* A global scheduler decides on the order of
operator execution.

* Changing the execution order of the operators
does not affect their semantic correctness, but
may affect system’s total memory utilization.

STREAM Performance Issues
Operator Scheduling for Reducing Intermediate State

 Example Query Plan: * Input Arrival Pattern:
0.2n tt t ottt t t
_> _> I s
0123456 13 time
cost=1 cost=1

selectivity = 0.2 selectivity =0

* Total Queue Sizes for two alternative scheduling policies:

Time | Greedy scheduling | FIFO scheduling | e Greedy always prioritizes OP1.
; L z * FIFO schedules OP1-OP2 in
Vi .
2] 4 20 sequence.
3 1.6 2.2 » Greedy has smaller max.
! = > queue size.
6 3.7 70 * (Chain Scheduling Algorithm)

