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Topics

• Model Issues

• System Issues
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Data Streams

• Continuous sequences of data elements that are 
typically:
– Push-based (data flow controlled by sources)

– Ordered (e.g., by arrival time, or by explicit timestamps)

– Rapid (e.g., ~ 100K messages/second in market data)

– Potentially unbounded (may have no end)

– Time-sensitive (usually representing real-time events)

– Time-varying (in content and speed)

– Unpredictable (autonomous data sources)
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Example Applications

• Financial Services

Typical Applications:
 Algorithmic Trading
 Foreign Exchange
 Fraud Detection
 Compliance Checking

Example:
 Trades(time, symbol,

price, volume)

Uni Freiburg, WS2014/15 5Systems Infrastructure for Data Science



Financial Services: Skyrocketing Data Rates

[ Source: Options Price Reporting Authority, http://www.opradata.com ]
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Some more up-to-date rates from http://www.marketdatapeaks.com/:
• 4 M mps on January 25, 2013
• 6.65 M mps on October 7, 2011

Low response time critical (think high frequency trading)!

http://www.marketdatapeaks.com/


Example Applications

• System and Network Monitoring

Typical Applications:
 Server load monitoring 
 Network traffic monitoring
 Detecting security attacks

 Denial of Service
 Intrusion

Example:
 Connections(time, srcIP, destIP,

destPort, status)
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Network Monitoring: Bursty Data Rates

[ Source: Internet Traffic Archive, http://ita.ee.lbl.gov/ ]
Uni Freiburg, WS2014/15 8Systems Infrastructure for Data Science



Example Applications

• Sensor-based Monitoring

Example:
 CarPositions(time, id, speed,

position)

Typical Applications:
 Monitoring congested roads
 Route planning
 Rule violations
 Tolling

Uni Freiburg, WS2014/15 9Systems Infrastructure for Data Science



Historical Background

• 1990s: Various extensions to traditional database systems
– Triggers in Active DB’s, Sequence DB’s, Continuous Queries, Pub/Sub, etc. 

• Early 2000s: Data Stream Management Systems
– Aurora [Brandeis-Brown-MIT]
– STREAM [Stanford]
– TelegraphCQ [UC Berkeley]
– Many others (NiagaraCQ, Gigascope, Nile, PIPES, …)

• 2003: Start-ups
– Aurora -> StreamBase, Inc.

-> Borealis (= distributed Aurora)
– STREAM -> Coral8, Inc.

• 2005: More Start-ups
– TelegraphCQ -> Truviso, Inc.

• Today: Growing industry interest, open source platforms and 
standardization efforts
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A Paradigm Shift in Data Processing Model

Data

Base

DBMSQuery Answer

Traditional Data Management

Query

Base

DSMSData Answer

Data Stream Management
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DBMS          vs.          DSMS

• Persistent relations

• Read-intensive

• One-time queries

• Random access

• Access plan determined 
by query processor and 
physical DB design

• Transient streams

• Update-intensive

• Continuous queries (a.k.a., 

long-running, standing, or 

persistent queries)

• Sequential access

• Unpredictable data 
characteristics and arrival 
patterns
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Model Issues

• Data models

– Relational-based vs. XML-based vs Object-based

– Time, Order and Unboundedness

• Query models

– Declarative vs. Procedural

– Window-based Processing
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Example Models

• STREAM / CQL [Stanford]
– Relational-based data model

– Declarative query language (SQL extensions)

• Aurora / SQuAl [Brandeis-Brown-MIT]
– Relational-based data model

– Procedural query language (Relational algebra 
extensions)

• MXQuery [ETH Zurich]
– XML-based data model

– Declarative query language (XQuery extensions)
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Window-based Processing

• Windows are finite excerpts of a potentially 
unbounded stream.

• Most streaming applications are interested in 
the readings of the recent past.

• Windows help us unblock operators such as 
aggregates.

• Windows help us bound the memory usage
for operators such as joins.
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(10:00, “IBM”,  20, 100)

(10:00, “INTC”, 15, 200)

(10:00, “MSFT”, 22, 100)

(10:05, “IBM”,  18, 300)

(10:05, “MSFT”, 21, 100)

(10:10, “IBM”,  18, 200)

(10:10, “MSFT”, 20, 100)

(10:15, “IBM”,  20, 100)

(10:15, “INTC”, 20, 200)

(10:15, “MSFT”, 20, 200)

.

. 

• Two basic parameters: size and slide

• Example: Trades(time, symbol, price, volume)

Window Example

size = 10 min

slide by 5 min
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Windows: Unblocking Aggregate Operation
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Average
….. 30 15 30 20 10 30

Average

size = 3

slide = 3

.. 25 20..... 30 15 30 20 10 30

• Problem:
No results can be produced
until the stream ends.
Average is “blocked”.

• Solution:
Average can be computed
on sliding windows.
Average is “unblocked”.



Windows: Bounding Join State 
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Join

….. 20 10 30

….. 10 15 30

….. (10, 10) (30, 30)
• Problem:
Join must buffer its inputs
until both streams end.
Join state is “unbounded”.

Join

size = 2

….. 20 10 30

….. 10 15 30

….. (10, 10) (30, 30)
• Solution:
Join must only buffer the
latest window on its inputs.
Join state is “bounded”.



STREAM CQL: Continuous Query Language

• SQL for Relation-to-Relation operations

• Additionally:

– “Stream” as a new data type (in addition to “Relation”)

– Continuous instead of one-time query semantics

– Stream-to-Relation operations:

• Window specifications derived from SQL-99

– Relation-to-Stream operations:

• Three special operators: Istream, Dstream, Rstream

– Simple sampling operations on streams
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CQL: Streams vs. Relations

• T: discrete, ordered time domain

• A stream S is a possibly infinite bag of elements <s, 
t>, where s is a tuple with the schema of S and t є T is 
the timestamp of the element.
– Note: Timestamp is not part of the tuple schema!

• A relation R is a mapping from each time instant in T 
to a finite but unbounded bag of tuples with the 
schema of R.
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CQL: Continuous Query Semantics

• Time “advances” from t-1 to t, when all inputs up to 
t-1 have been processed.

• For a query producing a stream:

– At time t є T, all inputs up to t are processed and the 
continuous query emits any new stream result elements 
with timestamp t.

• For a query producing a relation:

– At time t є T, all inputs up to t are processed and the 
continuous query updates the output relation to state R(t).

Uni Freiburg, WS2014/15 21Systems Infrastructure for Data Science



CQL: Mappings between Streams and Relations

Streams Relations

Stream-to-Relation

Relation-to-Stream
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 Stream-to-Stream = Stream-to-Relation + Relation-to-Stream
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CQL: Stream-to-Relation Operators

• Time-based sliding windows
– FROM S[RANGE T]

• Tuple-based sliding windows
– FROM S[ROWS N]

• Partitioned windows
– FROM S[PARTITION BY A1, …, Ak RANGE T]

– FROM S[PARTITION BY A1, …, Ak ROWS N]

• Windows with a “slide” parameter
– FROM S[RANGE T SLIDE L]

– FROM S[ROWS N SLIDE L]

– FROM S[PARTITION BY A1, …, Ak RANGE T SLIDE L]

– FROM S[PARTITION BY A1, …, Ak ROWS N SLIDE L]
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CQL: Relation-to-Stream Operators

• Insert stream

• Delete stream

• Relation stream

• SELECT Istream(..), SELECT Dstream(..), SELECT Rstream(..)

0

( ) (( ( ) ( 1)) { })
t

Istream R R t R t t


   

0

( ) (( ( 1) ( )) { })
t

Dstream R R t R t t


   

0

( ) ( ( ) { })
t

Rstream R R t t
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CQL: Example Queries

 Streaming Filter
SELECT Istream(*)
FROM Trades[RANGE Unbounded]
WHERE price > 20

 Sliding-window Join
SELECT Istream(*)
FROM NYSE_Trades[RANGE 10 Minutes], SWX_Trades[RANGE 10 Minutes]
WHERE NYSE_Trades.symbol = SWX_Trades.symbol

 Streaming Aggregation
SELECT Istream(Count(*))
FROM Trades[PARTITION BY symbol

RANGE 10 Minutes
SLIDE 1 Minute]
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Trades (time, symbol, price, volume)
NYSE_Trades (time, symbol, price, volume)
SWX_Trades (time, symbol, price, volume)



CQL: Example Query Execution
 Stream: S(A)

 Query:
SELECT Istream(*)
FROM S[ROWS 1]
WHERE <Filter>

 Operations:
LastRow: S-to-R

Filter: R-to-R
Istream: R-to-S

 Assumption:
(a0), (a2), (a4)

satisfy the filter.
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Aurora SQuAl: Stream Query Algebra

• A stream is an append-only sequence of tuples with 
a uniform schema.

• The system stamps each tuple with its time of arrival.

• Disorder is allowed.

• Queries are represented with data-flow diagrams 
consisting of operators.

• Order-agnostic operators:
– Filter, Map, Union

• Order-sensitive operators:
– BSort, Aggregate, Join, Resample
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SQuAl: Operators 
• Filter applies a predicate on each stream tuple.
• Map applies a function on each stream tuple. (* extensibility)

– e.g., projection

• Union merges two or more streams into one.
– “order-preserving” version also exists.

• BSort is a buffer-based approximate sort.
– equivalent to n-pass bubble sort

• Aggregate applies window functions to sliding windows over 
its input. (* extensibility)

• Join applies a predicate to pairs of tuples from two input 
streams that are within a certain window distance from each 
other.

• Resample applies an interpolation function on a stream to 
align it with another stream.
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SQuAl: Example Query
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Filter Aggregate

symbol=“IBM”

Filter

diff > 5size = 5 min

slide = 5 min

diff = high-low

size = 60 min

slide = 60 min

count

Filter

count > 0

Aggregate

User-Defined Function (UDF)
(provides extensibility)

 Boxes and arrows data-flow diagram instead of a declarative specification.
 Same query can also be written in STREAM CQL as a nested query.



SQuAl: Slack & Timeout Parameters

• Slack is a stream parameter to specify the 
degree of disorder in that stream.

– Out of order tuples beyond the slack parameter 
are simply discarded.

• Timeout is a parameter for sliding window 
operators to specify the maximum time period 
that a window is allowed to remain open.

– Delayed tuples beyond the timeout parameter are 
simply discarded.
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Streaming XQuery

• Extend existing turing-complete processing language

• Benefit: Data Model already sequence-based, no 
mapping needed

• Extend for infinite sequences, define formal semantics 
for existing operators

• Define predicate-based window operator to produce 
finite sequences, can be fully nested

• Time not part of data model, operate on item values

• No implicit constraints

• Limitation: FLWOR semantics difficult for join
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Common Window Types

• Sliding window

– A window that slides (i.e., both of its end-points 
move) as new stream tuples arrive.

• Tumbling window

– A sliding window for which window size = window 
slide (i.e., consecutive windows do not overlap).

• Landmark window

– A window which is moving only on one of its end-
points (usually the forward end-point).
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Common Window Types
• Time-based window

– A window whose size and content is determined by tuples that arrived 
within a “time period”.

– Note: The actual size of such a window may depend on the stream 
arrival rate.

• Tuple-based window (a.k.a., count-based window)

– A window whose size and content is determined by the number of 
tuples arrived.

– Note: The actual size is always fixed.

• Semantic window (a.k.a., predicate-based window)

– A window whose size and content is determined by the tuple contents.

– Note: Time-based window is a very simple form of semantic window 
when the time field carried in the tuple is used for windowing.
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A Final Note on Window Execution Semantics

• Currently, there is no standard model for defining 
and executing stream windows.
– Example: Even “time-based window” works differently in 

different systems, producing different query results.

• Example differentiators:
– What triggers window state change? (e.g., time in 

STREAM vs. tuple arrival in Aurora)

– When is a window result reported? (e.g., at window 
close in Aurora vs. at each window state change in 
Coral8)

– …
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Time in DSMS

• „A window of 30 seconds, starting every 5 seconds“
• What is the precise meaning of these time values?
• Two main approaches to handle time:

– System Time: take 30 seconds of execution time
– Application Time: 30 seconds of data time fields

• System Time leads to non-determistic results
• Application Time might cause system-time delays
=> Heartbeats to synchronize
• Application Time desirable, in practice often system time
• Other time aspects:

– Point in Time or Time Period
– Start, End, ...
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Stream Constraints
• Metadata about streams that can be used for their optimized 

processing, in particular:
– to reduce, bound, eliminate memory state
– could be an alternative to windowing

• Metadata can be affect to static and dynamic parts of stream 
processing

• Schema-level constraints
– Clustering (e.g., contiguous duplicates)
– Ordering (e.g., slack parameter in SQuAl)
– Referential integrity (e.g., timestamp synchronization)
– In relaxed form: k-constraints (k: adherence parameter)

• Data-level constraints
– Punctuations
– Partitions
– Pattern
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Punctuations

• Punctuations are special annotations embedded in 
data streams to specify the end of a subset of data.

No more tuples will follow that match the punctuation.

• A punctuation is represented as an ordered set of 
patterns, where each pattern corresponds to an 
attribute of a tuple.

Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø

Example: < item_id, buyer_id, bid >

< {10, 20}, *, * >    => all bids on items 10 and 20.
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