Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2014/15

Data Stream Processing

Topics

* Model Issues
* System Issues

Data Streams

* Continuous sequences of data elements that are
typically:
— Push-based (data flow controlled by sources)
— Ordered (e.g., by arrival time, or by explicit timestamps)
— Rapid (e.g., ~ 100K messages/second in market data)
— Potentially unbounded (may have no end)
— Time-sensitive (usually representing real-time events)
— Time-varying (in content and speed)
— Unpredictable (autonomous data sources)

Example Applications

* Financial Services

Example:
" Trades(time, symbol,
price, volume)

Typical Applications:

= Algorithmic Trading

" Foreigh Exchange

" Fraud Detection

= Compliance Checking

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Financial Services: Skyrocketing Data Rates

OPRA Message Traffic Projections
1.000.000

800.000
600.000
400.000
200.000

Messages per Second (mps)

Date
[Source: Options Price Reporting Authority, http://www.opradata.com]

Some more up-to-date rates from http://www.marketdatapeaks.com/:

* 4 M mps on January 25, 2013
* 6.65 M mps on October 7, 2011

Low response time critical (think high frequency trading)!

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 6

http://www.marketdatapeaks.com/

Example Applications

e System and Network Monitoring

Example:
= Connections(time, srclP, destlP,
destPort, status)

40 1B A 01 010
NI ;l ' RITRI!

|

Typical Applications:
= Server load monitoring
» Network traffic monitoring
= Detecting security attacks
" Denial of Service
" |ntrusion

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 7

Network Monitoring: Bursty Data Rates

W
|

@ —— PKT (std = 0.16)

g el —— TCP (std = 0.48)

> = -~ - HTTP (std = 0.59) |

I Iiil *: !

— 2h|'| ¥ I: "JII ¢l
S /| [i ' B I."I 1
= 1 i N fﬁf * L BHIA

1.5 v i}

% f I|I | " ‘ 'll
E |I I"I | \, I' 1 . L, " |
o J b, / IR K A0 WV
@ R L T YA N N Ly

~ i I_I |/ ! ™, ' ; kl\: . | ; { | \o IJJJ 1
ﬁ 0.5 '|I 'l._'lh :.I I\VII/II-\'JII |I. ‘ .I Iﬁl I Il"-,l / IIlIl.“‘III . IIJ 1
E |J } kll I-'- |; Il |.. 3!

O L by e

E ﬂl ' 1]

0 600 1200 1800 2400 3000 3600

time (seconds)

[Source: Internet Traffic Archive, http://ita.ee.lbl.gov/]

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 8

Example Applications

* Sensor-based Monitoring

™ s Example:

"N <y = CarPositions(time, id, speed,
position)

_ Typical Applications:

ﬁ " Monitoring congested roads

= Route planning

= Rule violations

" Tolling

(Sudleéf i
l Springs-;: -

(i}

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Historical Background

1990s: Various extensions to traditional database systems
— Triggers in Active DB'’s, Sequence DB'’s, Continuous Queries, Pub/Sub, etc.

Early 2000s: Data Stream Management Systems
— Aurora [Brandeis-Brown-MIT]

— STREAM [Stanford]

— TelegraphCQ [UC Berkeley]

— Many others (NiagaraCQ, Gigascope, Nile, PIPES, ...)
2003: Start-ups

— Aurora -> StreamBase, Inc.

-> Borealis (= distributed Aurora)
— STREAM -> Coral$§, Inc.

2005: More Start-ups
— TelegraphCQ -> Truviso, Inc.

Today: Growing industry interest, open source platforms and
standardization efforts

A Paradigm Shift in Data Processing Model

Query —

Data
Base

— Answer

—)

Traditional Data Management

Data —

DSMS

N

\ 4
Query
Base

—» Answer

Data Stream Management

DBMS

Persistent relations
Read-intensive
One-time queries

Random access

Access plan determined
by query processor and
physical DB design

VS.

DSMS

Transient streams
Update-intensive

Continuous queries (a.k.a.,
long-running, standing, or
persistent queries)

Sequential access

Unpredictable data
characteristics and arrival
patterns

Model Issues

 Data models
— Relational-based vs. XML-based vs Object-based
— Time, Order and Unboundedness

* Query models
— Declarative vs. Procedural
— Window-based Processing

Example Models

« STREAM / CQL [Stanford]

— Relational-based data model
— Declarative query language (SQL extensions)

* Aurora / SQuAI [Brandeis-Brown-MIT]

— Relational-based data model

— Procedural query language (Relational algebra
extensions)

 MXQuery [ETH Zurich]
— XML-based data model
— Declarative query language (XQuery extensions)

Window-based Processing

Windows are finite excerpts of a potentially
unbounded stream.

Most streaming applications are interested in
the readings of the recent past.

Windows help us unblock operators such as
aggregates.

Windows help us bound the memory usage
for operators such as joins.

Window Example

 Two basic parameters: size and slide
* Example: Trades (time, symbol, price, volume)

size = 10 min

slide by 5 min

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

16

Windows: Unblocking Aggregate Operation
 Problem:
> No results can be produced

..... 30 15 30 20 10 30-
until the stream ends.

@ »Average is "blocked".

..... 30 15 30 20 10 30 2500 °Solution:
‘ ~ Average can be computed
on sliding windows.

»Average is "unblocked".

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 17

Windows: Bounding Join State

...2010 30 * Problem:

Join must buffer its inputs

until both streams end.

. 101530 »>Join state is "unbounded”.

...201030 e Solution:

Join must only buffer the

latest window on its inpufts.
»Join state is "bounded”.

..1015 360

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 18

STREAM CQL: Continuous Query Language

e SQL for Relation-to-Relation operations

* Additionally:
— “Stream” as a new data type (in addition to “Relation”)
— Continuous instead of one-time query semantics
— Stream-to-Relation operations:

* Window specifications derived from SQL-99

— Relation-to-Stream operations:

* Three special operators: Istream, Dstream, Rstream

— Simple sampling operations on streams

CQL: Streams vs. Relations

e T:discrete, ordered time domain

 Astream Sis a possibly infinite bag of elements <s,
t>, where s is a tuple with the schema of Sand te Tis
the timestamp of the element.

— Note: Timestamp is not part of the tuple schemal!

* Arelation Ris a mapping from each time instantin T
to a finite but unbounded bag of tuples with the
schema of R.

CQL: Continuous Query Semantics

 Time “advances” from t-1 to t, when all inputs up to
t-1 have been processed.
* For a query producing a stream:

— AttimeteT, all inputs up to t are processed and the

continuous query emits any new stream result elements
with timestamp t.

* For a query producing a relation:

— AttimeteT, all inputs up to t are processed and the
continuous query updates the output relation to state R(t).

CQL: Mappings between Streams and Relations

Stream-to-Relation

TN

~
@ Relations
'\

Relation-to-Relation

7

Relation-to-Stream

» Stream-to-Stream = Stream-to-Relation + Relation-to-Stream

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 22

CQL: Stream-to-Relation Operators

Time-based sliding windows
— FROM S[RANGE T]

Tuple-based sliding windows

— FROM S[ROWS N]

Partitioned windows

— FROM S[PARTITION BY A,, ..., A, RANGE T]
— FROM S[PARTITION BY A,, ..., A, ROWS N]

Windows with a “slide” parameter

FROM S
FROM S
FROM S
FROM S

[RANGE T SLIDE L]
[ROWS N SLIDE L]
PARTITION BY A,, ..., A, RANGE T SLIDE L]

[PARTITION BY A, ..., A, ROWS N SLIDE L]

CQL: Relation-to-Stream Operators

* |nsert stream

Istream(R) =|_J((R(t) - R(t —1)) x{t})

t>0

e Delete stream

Dstream(R) =|_J((R(t —1) - R(t)) x{t})

t>0

 Relation stream

Rstream(R) =(_J(R(t) x{t})

t>0

e SELECT Istream(..), SELECT Dstream(..), SELECT Rstream(..)

CQL: Example Queries

Trades (time, symbol, price, volume)
NYSE Trades (time, symbol, price, volume)
SWX_Trades (time, symbol, price, volume)

= Streaming Filter = Streaming Aggregation

SELECT Istream(*) SELECT Istream(Count(*))

FROM Trades[RANGE Unbounded] @ FROM Trades[PARTITION BY symbol
WHERE price > 20 RANGE 10 Minutes

SLIDE 1 Minute]

= Sliding-window Join

SELECT Istream(*)

FROM NYSE_Trades[RANGE 10 Minutes], SWX_Trades[RANGE 10 Minutes]
WHERE NYSE_Trades.symbol = SWX_Trades.symbol

CQL: Example Query Execution

= Stream: S(A)

= Query:

SELECT Istream(*)
FROM S[ROWS 1]
WHERE <Filter>

= Operations:
LastRow: S-to-R
Filter: R-to-R
Istream: R-to-S

= Assumption:

(20), (ay), (a4)

satisfy the filter.

Uni Freiburg, WS2014/15

Time S LastRow Filter Istream

0 ((ao),0) (ao) (ao) {(@0).0)
((a0),0)

| {(a1),1) (1) ¢ (a0),0)
((a0),0)

2 [l@n) | @ | @ | @
{(a2),2) v
gmujhﬂg (}
(ar),] . (ap),0

P (@2).2) (a3) ¢ {(@2),2)
((a3),3)

((a0),0)
((@1).1) {(a0),0)

4 | ((@2),2) (as) (as) {@2),2)
{(a3),3) {(a4),4)

{(a4),4)

Systems Infrastructure for Data Science

26

Aurora SQuAI: Stream Query Algebra

A stream is an append-only sequence of tuples with
a uniform schema.

The system stamps each tuple with its time of arrival.
Disorder is allowed.

Queries are represented with data-flow diagrams
consisting of operators.

Order-agnostic operators:
— Filter, Map, Union

Order-sensitive operators:
— BSort, Aggregate, Join, Resample

SQuAl: Operators

Filter applies a predicate on each stream tuple.

Map applies a function on each stream tuple. (* extensibility)
— e.g., projection

Union merges two or more streams into one.

— “order-preserving” version also exists.

BSort is a buffer-based approximate sort.

— equivalent to n-pass bubble sort
Aggregate applies window functions to sliding windows over
its input. (* extensibility)

Join applies a predicate to pairs of tuples from two input
streams that are within a certain window distance from each
other.

Resample applies an interpolation function on a stream to
align it with another stream.

SQuAIl: Example Query

i -

symbol="“IBM” size =5 min diff > 5 size =60 min count>0
slide = 5 min slide = 60 min
diff = high-low count

!

User-Defined Function (UDF)
(provides extensibility)

= Boxes and arrows data-flow diagram instead of a declarative specification.
= Same query can also be written in STREAM CQL as a nested query.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 29

SQuAI: Slack & Timeout Parameters

* Slack is a stream parameter to specify the
degree of disorder in that stream.

— Out of order tuples beyond the slack parameter
are simply discarded.

* Timeout is a parameter for sliding window
operators to specify the maximum time period
that a window is allowed to remain open.

— Delayed tuples beyond the timeout parameter are
simply discarded.

Streaming XQuery

Extend existing turing-complete processing language

Benefit: Data Model already sequence-based, no
mapping needed

Extend for infinite sequences, define formal semantics
for existing operators

Define predicate-based window operator to produce
finite sequences, can be fully nested

Time not part of data model, operate on item values
No implicit constraints
Limitation: FLWOR semantics difficult for join

Common Window Types

* Sliding window

— A window that slides (i.e., both of its end-points
move) as new stream tuples arrive.

e Tumbling window

— A sliding window for which window size = window
slide (i.e., consecutive windows do not overlap).

e Landmark window

— A window which is moving only on one of its end-
points (usually the forward end-point).

Common Window Types

e Time-based window

— A window whose size and content is determined by tuples that arrived
within a “time period”.
— Note: The actual size of such a window may depend on the stream
arrival rate.
* Tuple-based window (a.k.a., count-based window)

— A window whose size and content is determined by the number of
tuples arrived.

— Note: The actual size is always fixed.
 Semantic window (a.k.a., predicate-based window)

— A window whose size and content is determined by the tuple contents.

— Note: Time-based window is a very simple form of semantic window
when the time field carried in the tuple is used for windowing.

A Final Note on Window Execution Semantics

* Currently, there is no standard model for defining
and executing stream windows.

— Example: Even “time-based window” works differently in
different systems, producing different query results.

* Example differentiators:

— What triggers window state change? (e.g., time in
STREAM vs. tuple arrival in Aurora)

— When is a window result reported? (e.g., at window
close in Aurora vs. at each window state change in
Coral8)

Time in DSMS

A window of 30 seconds, starting every 5 seconds”
* What is the precise meaning of these time values?

 Two main approaches to handle time:
— System Time: take 30 seconds of execution time
— Application Time: 30 seconds of data time fields

e System Time leads to non-determistic results

* Application Time might cause system-time delays

=> Heartbeats to synchronize

e Application Time desirable, in practice often system time

* Other time aspects:
— Point in Time or Time Period
— Start, End, ...

Stream Constraints

Metadata about streams that can be used for their optimized
processing, in particular:

— to reduce, bound, eliminate memory state
— could be an alternative to windowing

Metadata can be affect to static and dynamic parts of stream
processing
Schema-level constraints

— Clustering (e.g., contiguous duplicates)

— Ordering (e.g., slack parameter in SQuAI)

— Referential integrity (e.g., timestamp synchronization)

— In relaxed form: k-constraints (k: adherence parameter)
Data-level constraints

— Punctuations

— Partitions

— Pattern

Punctuations

* Punctuations are special annotations embedded in
data streams to specify the end of a subset of data.

» No more tuples will follow that match the punctuation.

* A punctuation is represented as an ordered set of
patterns, where each pattern corresponds to an
attribute of a tuple.

» Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, @
» Example: < item_id, buyer _id, bid >
<{10, 20}, *, * > =>all bids on items 10 and 20.

