
Systems Infrastructure for Data
Science

Web Science Group

Uni Freiburg

WS 2014/15

Data Stream Processing

Topics

• Model Issues

• System Issues

Uni Freiburg, WS2014/15 3Systems Infrastructure for Data Science

Data Streams

• Continuous sequences of data elements that are
typically:
– Push-based (data flow controlled by sources)

– Ordered (e.g., by arrival time, or by explicit timestamps)

– Rapid (e.g., ~ 100K messages/second in market data)

– Potentially unbounded (may have no end)

– Time-sensitive (usually representing real-time events)

– Time-varying (in content and speed)

– Unpredictable (autonomous data sources)

Uni Freiburg, WS2014/15 4Systems Infrastructure for Data Science

Example Applications

• Financial Services

Typical Applications:
 Algorithmic Trading
 Foreign Exchange
 Fraud Detection
 Compliance Checking

Example:
 Trades(time, symbol,

price, volume)

Uni Freiburg, WS2014/15 5Systems Infrastructure for Data Science

Financial Services: Skyrocketing Data Rates

[Source: Options Price Reporting Authority, http://www.opradata.com]

75.000

88.000

110.000

122.000

149.000

190.000
359.000

456.000

573.000
701.000

907.000

0

200.000

400.000

600.000

800.000

1.000.000
M

e
ss

ag
e

s
p

e
r

Se
co

n
d

 (
m

p
s)

Date

OPRA Message Traffic Projections

Uni Freiburg, WS2014/15 6Systems Infrastructure for Data Science

Some more up-to-date rates from http://www.marketdatapeaks.com/:
• 4 M mps on January 25, 2013
• 6.65 M mps on October 7, 2011

Low response time critical (think high frequency trading)!

http://www.marketdatapeaks.com/

Example Applications

• System and Network Monitoring

Typical Applications:
 Server load monitoring
 Network traffic monitoring
 Detecting security attacks

 Denial of Service
 Intrusion

Example:
 Connections(time, srcIP, destIP,

destPort, status)

Uni Freiburg, WS2014/15 7Systems Infrastructure for Data Science

Network Monitoring: Bursty Data Rates

[Source: Internet Traffic Archive, http://ita.ee.lbl.gov/]
Uni Freiburg, WS2014/15 8Systems Infrastructure for Data Science

Example Applications

• Sensor-based Monitoring

Example:
 CarPositions(time, id, speed,

position)

Typical Applications:
 Monitoring congested roads
 Route planning
 Rule violations
 Tolling

Uni Freiburg, WS2014/15 9Systems Infrastructure for Data Science

Historical Background

• 1990s: Various extensions to traditional database systems
– Triggers in Active DB’s, Sequence DB’s, Continuous Queries, Pub/Sub, etc.

• Early 2000s: Data Stream Management Systems
– Aurora [Brandeis-Brown-MIT]
– STREAM [Stanford]
– TelegraphCQ [UC Berkeley]
– Many others (NiagaraCQ, Gigascope, Nile, PIPES, …)

• 2003: Start-ups
– Aurora -> StreamBase, Inc.

-> Borealis (= distributed Aurora)
– STREAM -> Coral8, Inc.

• 2005: More Start-ups
– TelegraphCQ -> Truviso, Inc.

• Today: Growing industry interest, open source platforms and
standardization efforts

Uni Freiburg, WS2014/15 10Systems Infrastructure for Data Science

A Paradigm Shift in Data Processing Model

Data

Base

DBMSQuery Answer

Traditional Data Management

Query

Base

DSMSData Answer

Data Stream Management

Uni Freiburg, WS2014/15 11Systems Infrastructure for Data Science

DBMS vs. DSMS

• Persistent relations

• Read-intensive

• One-time queries

• Random access

• Access plan determined
by query processor and
physical DB design

• Transient streams

• Update-intensive

• Continuous queries (a.k.a.,

long-running, standing, or

persistent queries)

• Sequential access

• Unpredictable data
characteristics and arrival
patterns

Uni Freiburg, WS2014/15 12Systems Infrastructure for Data Science

Model Issues

• Data models

– Relational-based vs. XML-based vs Object-based

– Time, Order and Unboundedness

• Query models

– Declarative vs. Procedural

– Window-based Processing

Uni Freiburg, WS2014/15 13Systems Infrastructure for Data Science

Example Models

• STREAM / CQL [Stanford]
– Relational-based data model

– Declarative query language (SQL extensions)

• Aurora / SQuAl [Brandeis-Brown-MIT]
– Relational-based data model

– Procedural query language (Relational algebra
extensions)

• MXQuery [ETH Zurich]
– XML-based data model

– Declarative query language (XQuery extensions)

Uni Freiburg, WS2014/15 14Systems Infrastructure for Data Science

Window-based Processing

• Windows are finite excerpts of a potentially
unbounded stream.

• Most streaming applications are interested in
the readings of the recent past.

• Windows help us unblock operators such as
aggregates.

• Windows help us bound the memory usage
for operators such as joins.

Uni Freiburg, WS2014/15 15Systems Infrastructure for Data Science

(10:00, “IBM”, 20, 100)

(10:00, “INTC”, 15, 200)

(10:00, “MSFT”, 22, 100)

(10:05, “IBM”, 18, 300)

(10:05, “MSFT”, 21, 100)

(10:10, “IBM”, 18, 200)

(10:10, “MSFT”, 20, 100)

(10:15, “IBM”, 20, 100)

(10:15, “INTC”, 20, 200)

(10:15, “MSFT”, 20, 200)

.

.

• Two basic parameters: size and slide

• Example: Trades(time, symbol, price, volume)

Window Example

size = 10 min

slide by 5 min

Uni Freiburg, WS2014/15 16Systems Infrastructure for Data Science

Windows: Unblocking Aggregate Operation

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 17

Average
….. 30 15 30 20 10 30

Average

size = 3

slide = 3

.. 25 20..... 30 15 30 20 10 30

• Problem:
No results can be produced
until the stream ends.
Average is “blocked”.

• Solution:
Average can be computed
on sliding windows.
Average is “unblocked”.

Windows: Bounding Join State

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 18

Join

….. 20 10 30

….. 10 15 30

….. (10, 10) (30, 30)
• Problem:
Join must buffer its inputs
until both streams end.
Join state is “unbounded”.

Join

size = 2

….. 20 10 30

….. 10 15 30

….. (10, 10) (30, 30)
• Solution:
Join must only buffer the
latest window on its inputs.
Join state is “bounded”.

STREAM CQL: Continuous Query Language

• SQL for Relation-to-Relation operations

• Additionally:

– “Stream” as a new data type (in addition to “Relation”)

– Continuous instead of one-time query semantics

– Stream-to-Relation operations:

• Window specifications derived from SQL-99

– Relation-to-Stream operations:

• Three special operators: Istream, Dstream, Rstream

– Simple sampling operations on streams

Uni Freiburg, WS2014/15 19Systems Infrastructure for Data Science

CQL: Streams vs. Relations

• T: discrete, ordered time domain

• A stream S is a possibly infinite bag of elements <s,
t>, where s is a tuple with the schema of S and t є T is
the timestamp of the element.
– Note: Timestamp is not part of the tuple schema!

• A relation R is a mapping from each time instant in T
to a finite but unbounded bag of tuples with the
schema of R.

Uni Freiburg, WS2014/15 20Systems Infrastructure for Data Science

CQL: Continuous Query Semantics

• Time “advances” from t-1 to t, when all inputs up to
t-1 have been processed.

• For a query producing a stream:

– At time t є T, all inputs up to t are processed and the
continuous query emits any new stream result elements
with timestamp t.

• For a query producing a relation:

– At time t є T, all inputs up to t are processed and the
continuous query updates the output relation to state R(t).

Uni Freiburg, WS2014/15 21Systems Infrastructure for Data Science

CQL: Mappings between Streams and Relations

Streams Relations

Stream-to-Relation

Relation-to-Stream

R
el

at
io

n
-t

o
-R

el
at

io
n

 Stream-to-Stream = Stream-to-Relation + Relation-to-Stream

Uni Freiburg, WS2014/15 22Systems Infrastructure for Data Science

CQL: Stream-to-Relation Operators

• Time-based sliding windows
– FROM S[RANGE T]

• Tuple-based sliding windows
– FROM S[ROWS N]

• Partitioned windows
– FROM S[PARTITION BY A1, …, Ak RANGE T]

– FROM S[PARTITION BY A1, …, Ak ROWS N]

• Windows with a “slide” parameter
– FROM S[RANGE T SLIDE L]

– FROM S[ROWS N SLIDE L]

– FROM S[PARTITION BY A1, …, Ak RANGE T SLIDE L]

– FROM S[PARTITION BY A1, …, Ak ROWS N SLIDE L]

Uni Freiburg, WS2014/15 23Systems Infrastructure for Data Science

CQL: Relation-to-Stream Operators

• Insert stream

• Delete stream

• Relation stream

• SELECT Istream(..), SELECT Dstream(..), SELECT Rstream(..)

0

() ((() (1)) { })
t

Istream R R t R t t

0

() (((1) ()) { })
t

Dstream R R t R t t

0

() (() { })
t

Rstream R R t t

Uni Freiburg, WS2014/15 24Systems Infrastructure for Data Science

CQL: Example Queries

 Streaming Filter
SELECT Istream(*)
FROM Trades[RANGE Unbounded]
WHERE price > 20

 Sliding-window Join
SELECT Istream(*)
FROM NYSE_Trades[RANGE 10 Minutes], SWX_Trades[RANGE 10 Minutes]
WHERE NYSE_Trades.symbol = SWX_Trades.symbol

 Streaming Aggregation
SELECT Istream(Count(*))
FROM Trades[PARTITION BY symbol

RANGE 10 Minutes
SLIDE 1 Minute]

Uni Freiburg, WS2014/15 25Systems Infrastructure for Data Science

Trades (time, symbol, price, volume)
NYSE_Trades (time, symbol, price, volume)
SWX_Trades (time, symbol, price, volume)

CQL: Example Query Execution
 Stream: S(A)

 Query:
SELECT Istream(*)
FROM S[ROWS 1]
WHERE <Filter>

 Operations:
LastRow: S-to-R

Filter: R-to-R
Istream: R-to-S

 Assumption:
(a0), (a2), (a4)

satisfy the filter.

Uni Freiburg, WS2014/15 26Systems Infrastructure for Data Science

Aurora SQuAl: Stream Query Algebra

• A stream is an append-only sequence of tuples with
a uniform schema.

• The system stamps each tuple with its time of arrival.

• Disorder is allowed.

• Queries are represented with data-flow diagrams
consisting of operators.

• Order-agnostic operators:
– Filter, Map, Union

• Order-sensitive operators:
– BSort, Aggregate, Join, Resample

Uni Freiburg, WS2014/15 27Systems Infrastructure for Data Science

SQuAl: Operators
• Filter applies a predicate on each stream tuple.
• Map applies a function on each stream tuple. (* extensibility)

– e.g., projection

• Union merges two or more streams into one.
– “order-preserving” version also exists.

• BSort is a buffer-based approximate sort.
– equivalent to n-pass bubble sort

• Aggregate applies window functions to sliding windows over
its input. (* extensibility)

• Join applies a predicate to pairs of tuples from two input
streams that are within a certain window distance from each
other.

• Resample applies an interpolation function on a stream to
align it with another stream.

Uni Freiburg, WS2014/15 28Systems Infrastructure for Data Science

SQuAl: Example Query

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 29

Filter Aggregate

symbol=“IBM”

Filter

diff > 5size = 5 min

slide = 5 min

diff = high-low

size = 60 min

slide = 60 min

count

Filter

count > 0

Aggregate

User-Defined Function (UDF)
(provides extensibility)

 Boxes and arrows data-flow diagram instead of a declarative specification.
 Same query can also be written in STREAM CQL as a nested query.

SQuAl: Slack & Timeout Parameters

• Slack is a stream parameter to specify the
degree of disorder in that stream.

– Out of order tuples beyond the slack parameter
are simply discarded.

• Timeout is a parameter for sliding window
operators to specify the maximum time period
that a window is allowed to remain open.

– Delayed tuples beyond the timeout parameter are
simply discarded.

Uni Freiburg, WS2014/15 30Systems Infrastructure for Data Science

Streaming XQuery

• Extend existing turing-complete processing language

• Benefit: Data Model already sequence-based, no
mapping needed

• Extend for infinite sequences, define formal semantics
for existing operators

• Define predicate-based window operator to produce
finite sequences, can be fully nested

• Time not part of data model, operate on item values

• No implicit constraints

• Limitation: FLWOR semantics difficult for join

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 31

Common Window Types

• Sliding window

– A window that slides (i.e., both of its end-points
move) as new stream tuples arrive.

• Tumbling window

– A sliding window for which window size = window
slide (i.e., consecutive windows do not overlap).

• Landmark window

– A window which is moving only on one of its end-
points (usually the forward end-point).

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 32

Common Window Types
• Time-based window

– A window whose size and content is determined by tuples that arrived
within a “time period”.

– Note: The actual size of such a window may depend on the stream
arrival rate.

• Tuple-based window (a.k.a., count-based window)

– A window whose size and content is determined by the number of
tuples arrived.

– Note: The actual size is always fixed.

• Semantic window (a.k.a., predicate-based window)

– A window whose size and content is determined by the tuple contents.

– Note: Time-based window is a very simple form of semantic window
when the time field carried in the tuple is used for windowing.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 33

A Final Note on Window Execution Semantics

• Currently, there is no standard model for defining
and executing stream windows.
– Example: Even “time-based window” works differently in

different systems, producing different query results.

• Example differentiators:
– What triggers window state change? (e.g., time in

STREAM vs. tuple arrival in Aurora)

– When is a window result reported? (e.g., at window
close in Aurora vs. at each window state change in
Coral8)

– …

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 34

Time in DSMS

• „A window of 30 seconds, starting every 5 seconds“
• What is the precise meaning of these time values?
• Two main approaches to handle time:

– System Time: take 30 seconds of execution time
– Application Time: 30 seconds of data time fields

• System Time leads to non-determistic results
• Application Time might cause system-time delays
=> Heartbeats to synchronize
• Application Time desirable, in practice often system time
• Other time aspects:

– Point in Time or Time Period
– Start, End, ...

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 35

Stream Constraints
• Metadata about streams that can be used for their optimized

processing, in particular:
– to reduce, bound, eliminate memory state
– could be an alternative to windowing

• Metadata can be affect to static and dynamic parts of stream
processing

• Schema-level constraints
– Clustering (e.g., contiguous duplicates)
– Ordering (e.g., slack parameter in SQuAl)
– Referential integrity (e.g., timestamp synchronization)
– In relaxed form: k-constraints (k: adherence parameter)

• Data-level constraints
– Punctuations
– Partitions
– Pattern

Uni Freiburg, WS2014/15 36Systems Infrastructure for Data Science

Punctuations

• Punctuations are special annotations embedded in
data streams to specify the end of a subset of data.

No more tuples will follow that match the punctuation.

• A punctuation is represented as an ordered set of
patterns, where each pattern corresponds to an
attribute of a tuple.

Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø

Example: < item_id, buyer_id, bid >

< {10, 20}, *, * > => all bids on items 10 and 20.

Uni Freiburg, WS2014/15 37Systems Infrastructure for Data Science

