
Systems Infrastructure for Data
Science

Web Science Group

Uni Freiburg

WS 2014/15

Web Databases and NoSQL

Topics

• Web Databases: General Ideas

• Distributed Facilities in MySQL

• Cassandra

• Google BigTable/Hbase

• H-Store (VoltDB): OLTP

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Web Applications and Databases

• (Social) Web Application:

– End user facing

• Users hate high response time

• Non-professional users do simple operations (like/poke, comment,
share, subscribe)

– Interactive and in real-time

– It is about information sharing => quite simple operations (no complex
analytics) but very database-intensive

– The number of users can be potentially high and can grow unexpectedly
=> easy to scale infinitely

• Traditional Enterprise Applications and Map-Reduce

– Almost all the above points in reverse

• Real systems, different tradeoffs than research!

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Web Applications and Databases:
Requirements

• Support for simple operations

• Low response time

• 24/7 availability

• Easy to scale - Can you do it “at Facebook
scale”?

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

MySQL
Distributed Facilities

• Represents most common “classical”
distributed DB

• Used in many web data setups if relational
features are needed

• Two relevant approaches:

– MySQL Replication

– MySQL Cluster

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

MySQL Replication

• One-way, asynchronous replication with single master and
multiple slaves:
– All updates are performed on the master
– Updates are propagated from the master to slaves via log shipping

(periodically in the background)
– Queries can be performed on the master or slaves
– Asynchronous => Stale data reads

• This approach is also called Hot Standby
• Benefits:

– Scale query-intensive workload
– Increase availability (switch from the master to a slave in case of the

master failure)
– Database backups using a slave server without disturbing the master

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

MySQL Cluster

• Shared-nothing high-available extension for
MySQL

• Implemented by providing a new storage
engine Networked Data Base (NDB) in
addition to MyISAM and InnoDB

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

MySQL Cluster

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

MySQL Cluster

• Partitioning:

– Data within NDB is automatically partitioned
across the data nodes

– Via hashing based on the primary key on the table

– In the 5.1 release, users can define their own
partitioning strategies

• Replication:

– synchronous replication via two-phase commit

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

MySQL Cluster

• Query execution: distributed facilities are localized in
the storage engine =>
– Low-level operations are distribution-aware (e.g primary

key lookup - contact a single node by hashing, index/table
scan - sent in parallel to all the nodes)
http://bit.ly/bezpxC

– No distributed join supported: http://bit.ly/cxV9ZZ

• Hybrid Storage:
– All indexed columns are stored in memory (distributed)
– Non indexed columns can also be maintained in memory

(distributed) or can be maintained on disk with an in-
memory page cache

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

http://bit.ly/bezpxC
http://bit.ly/cxV9ZZ

Cassandra

• Origins

• Implementation
– Data distribution: partition and replication

– CAP and consistency levels

– Eventual consistency mechanisms: read repair and AE

– Scaling

– Load balancing

– Gossip (mechanism to build peer-to-peer to achieve
high availability avoiding masters)

• Data Model

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Cassandra:
Origins

• Amazon Dynamo was introduced in 2007

– Scalable and high available shopping cards

• Facebook implemented Cassandra

– Inbox search

• Release open-source in 2008

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Cassandra Data Model:
Quick Introduction

• It is a key-value store distributed across nodes
by key

– Not a relational table with many columns,
many access possibilities

– Instead a key->value mapping like in a hash table

• A value can have a complex structure as it is
inside the node - in Cassandra it is columns
and super columns (explained later)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Partitioning: Consistent Hashing

• Problem with hashing: arrival or departure of a node requires
global rehashing

• Idea: Hash keys and node IDs onto the same circled key space
• Advantage: Key redistribution happens only within the neighbor

of the crashed node

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Replication
• Why:

- To achieve high availability data are replicated at N nodes

- Improved performance by spreading workload across multiple replicas

• How:

– Storing replicas on subsequent N nodes in the ring

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Consistency Levels: Motivation

• Brewer’s CAP Theorem - pick 2 out of 3:
– Consistency (C) - You always read your previous writes
– Availability (A)
– Network partition tolerance (P)

• Options:
– CA - Corruption possible if live nodes cannot communicate (network

partition)
– CP - Completely inaccessible if any nodes are dead
– AP - Always available but may not always read most recent writes

• Let us make it tunable!
– Cassandra prefers AP but makes “C versus A” configurable by allowing

the user to specify a consistency level for each operation

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Consistency Levels

• Parameters:
– N - replication factor
– W - number of replica nodes that must acknowledge the write
– R - number of replica nodes that must respond to the read request

• Options:
– W=1 => Block until first node written successfully
– W=N => Block until all nodes written successfully
– W=0 => Async write (cross fingers)
– R=1 => Block until first node returns an answer
– R=N => Block until all nodes return answers
– R=0 => Does not make sense

• Note that it always reads/writes all replica nodes but waits for different numbers of
responses.

• How to switch consistency on when you need it:
– Quorum: W + R > N => Fully consistent database (i.e. you read your own previous writes)

otherwise it might happen that you cannot see your previous write.
– For example: R = N / 2 +1, W = N / 2 + 1 => Quorum achieved

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Eventual consistency

• When W < N (not all replicas are updated) the update is
propagated in background

• It is called Eventual Consistency
• Versions resolution:

– Each value in a database has a timestamp => key, value,
timestemp

– The timestamp is the timestamp of the latest update of the value
(the client must provide a timestamp with each update)

– When an update is propagated, the latest timestamp wins
(Could there be problems?)

• There are two mechanisms to propagate updates:
– Read repair
– Anti-Entropy (AE)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Eventual consistency:
Read repair

• On client’s read:

– do reconciliation and write back if replicas are out
of sync

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Eventual consistency:
Anti-Entropy

• AE is used to repair cold keys - keys that have not been read, since
they were last written

• AE works as follows:
– It generates Merkle Trees for tables periodically
– These trees are then exchanged with remote nodes as a part of the

Gossip conversation (explained later)
– When ranges in the trees disagree, the corresponding data are

transferred between replicas to repair those ranges

• Merkle Tree is a compact representation of data for comparison:
– A Merkle tree is a hash tree where leaves are hashes of individual

values. Parent nodes higher in the tree are hashes of their respective
children. The principal advantage of Merkle tree is that each branch of
the tree can be checked independently without requiring nodes to
download the entire data set.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Update Idempotency

• If client observes an update failure it is still possible that this
update has been executed
– Because Cassandra does not support transactional rollback

• Examples:
– N=3, W=2 but only one node is updated successfully => the client gets

error => but this update is not rolled back from the node and will be
propagated to the other replicas by read repair or AE

– The whole update can be successfully executed but the return message
is lost

• The client usually retries the failed update until it is successful =>
the same update can be executed several times!

• All updates should be idempotent (i.e. repeated update
applications have the same effect as one)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Transaction Support

• There is no rollback support but Cassandra does
support transactional atomicity, just eventually.
– For a single operation: eventually update is

propagated to all the replicas
– For a set of operations: atomic batches (added in v1.2)

Around 30% overhead for updates

• Instead of rollback (and possible block with 2PC),
the client and async triggers retry until successful

• In terms of ACID:
– Atomicity (eventual), Consistency (eventual), Isolation

(none), Durability

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Scaling

• Scaling is easy because of consistent hashing

• How to identify overloaded nodes:

– Cassandra monitors the size of data stored at each
node - a simple and good enough criteria to
identify overloaded nodes

– When a new node is added to the ring, Cassandra
can choose the position for the new node
automatically to unload the most overloaded
node

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Load Balancing

• The client can connect to any node in the ring,
the node becomes the read/write coordinator

• It read/write the replicas according to the
specified consistency level for this operation and
replies to the client - one hop to access the data

• The client can query Cassandra for data
distribution and cache it so that the client can
connect to one of the replicas (it becomes the
update coordinator) to avoid the hop

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Gossip Protocol

• Cassandra is a peer-to-peer system
– All nodes are equal and can process any client or

maintenance operation

– No masters

– Helps to handle network partitions

• Every node has to know important information
about every other node’s state including which
nodes are unreachable/down

• Gossip is a protocol to disseminate such
information between nodes

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Gossip Protocol: How it works

• Every second each node randomly chooses
one live and one dead node and starts a state
exchange round with them.

• It is proven that state is disseminated in O(log
N) rounds where N is the number of nodes in
the cluster.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Cassandra Data Model:
Motivation

• Cassandra is a key-value database where data
are distributed across nodes by key.

• Main idea: a value is stored on a single node,
it can have a complex structure - dealing with
the structure of a value does not involve
expensive inter-node communications =>
operations are still single-node

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Model (1)

• Data model is based on key-value model

– A database consists of column families

– Column family is a set of key-value pairs

– An analogy with relational model:

• Column family ~ Table

• Key-value pair ~ Record

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Model (2)

• The basic key-value model is extended with two levels
of nesting:
– First level: the value of a record is in turn a sequence of

key-value pairs:
• The key-value pairs are called columns. The Key is called column

name. The Value is called column value

• You can say: a record in a column family has a key and consists of
columns

– Second level (arbitrary): the value of the nested key-value
pairs can be a sequence of key-value pairs as well:
• When the second level of nesting, outer key-value pairs are called

super columns with key being the name of the super column and
inner key-value pairs are called columns

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Model (3)
• The names of both columns and super columns can be

used in two ways:
– Names can play the role of attribute name

(e.g. Email, Address, etc)
– Names can be values. For example, Blog column family contains

records where the record key is the blog identifier, column
names are post identifiers, column values are the texts.
• No restrictions on the number of columns/supercolumns - they should

only fit a single node
• Names are byte arrays so you can encode any value in it.

• Columns and super columns are stored ordered by names
– Sorting behavior is specified by treating column names as Byte

Type, ASCII Type, UTF8 Type, Lexical/Time UUID Type

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Column Family Example:
Columns are attributes

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Column Family Example:
Column names are values

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Super Column Family Example

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable (HBase)

• Distributed key-value store developed by
Google (published in 2006)

• Open source counterpart - HBase
hbase.apache.org

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable Data Model

• Cassandra borrowed the BigTable data model
• Cassandra versus BigTable data models

– Cassandra supports Super Columns (additional level of nesting)
• BigTable does not

– BigTable stores versions of column values automatically that can be
queried by timestamp ranges
• In Cassandra you have to use TimeUUID for keys or column names explicitly to

query by time (timestamps are used only for version reconciliations)

– Cassandra supports various partition strategies (e.g. random or range)
• In BigTable rows are ordered by key - range partitioning

• Summary: To an application, a table appears to be a list of tuples
sorted by row key ascending, column name ascending and
timestamp descending

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable Data Distribution

• Physically, tables are partitioned into row
ranges called tablets (regions in HBase)

– Tables are assigned and split/merged (for load
balancing and space management) via a B+-tree-
like structure

• Data replication is provided by GFS

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable Architecture

• Single master, multiple tablet servers
– The master: assigning tablets to tablet servers, detecting the addition/removal

of tablet servers, and handling database schema changes
– Tablet server: managing a set of tablets, handling reads and writes to the

tablets, and splitting tablets that have grown too large

• Master and tablet servers share state and synchronize via a distributed
lock and metadata storage service called Google Chubby
– Bigtable uses Chubby for: ensuring there is one active master at any time,

storing the location of data, discovering tablet servers, storing database schema,
etc.

• Still single point of failure
– Master failure does not cause BigTable unavailability. It can be restarted and

recovers from Chubby. Tablet servers can still process user requests
– If Chubby becomes unavailable, Bigtable becomes unavailable

• As in GFS, clients do not move through the master: clients cache tablet
locations and communicate with tablet servers directly for reads/writes

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable Storage

• “Log-structured” storage based on Google File System
• How it works:

– Collect insert (replace) and delete operations in buffer (aka memtable)
– As the memtable is full, it is frozen, a new one is created, the frozen one is written to disk

as SSTable (aka minor compaction)
– SSTables are merged periodically in the background (aka major compaction)
– Read operation has to merge SSTables and memtable during its execution
– SSTable and memtable are sorted => the merge (during compaction or read) can be done

efficiently

• Pros and cons:
– Fast writes but slow reads
– Can be easily implemented onto a file system without random writes (BigTable on GFS,

HBase on Hadoop FS)

• memtable/SSTable storage is used in Cassandra but implemented from scratch (no
GFS)

• BigTable/HBase provides good integration with MapReduce as data are stored in GFS

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable Storage

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

HBase

• Distributed column-oriented database built on top of
HDFS
– modeled after Google’s BigTable
– not relational, no support for SQL
– real-time read/write random access to very large data sets

• Main design goal: Scale linearly by adding nodes
– sparsely-populated tables
– billions of rows
– millions of columns
– automatic horizontal partitioning/replication across a

cluster

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Model

• Tables consist of rows and column families.
• Rows are sorted by key.
• Rows are horizontally partitioned, which form

the basic unit of data distribution and load
balancing.

• Columns are grouped into families, which form
the basic unit of access control.

• Columns that belong to a given column family
can be added on the fly.

• Cells are versioned by timestamp.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Data Model

• Multi-dimensional sorted map

• Indexed by a row key, column key, and a
timestamp

• Each value in the map is an uninterpreted
array of bytes.

• (row: string, column: string, time:int64) ->
string

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

BigTable - Webtable Example

• A large collection of web pages
– reverse URLs as row keys

– other info about web pages as column names

– web page contents in “contents” column family, versioned
with the timestamps when they were fetched

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Rows

• Arbitrary strings as row keys
• Lexicographic order by row key
• Atomic reads and writes to each row (single-row

transactions)
• Row ranges are dynamically partitioned into

“tablets” (“regions” in HBase), which form the
unit of distribution and load balancing.

• Row keys affect locality of data access.
– Example: Reversed URL’s in the Webtable example

help group pages of the same domain together into
contiguous rows.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Column Families

• Column families define units of access control.
– Different sets of columns may have different

properties and access patterns.
– Column families are stored separately on disk.
– Tables are configurable by family (e.g., version

retention policy, compression, cache priority).

• Unbounded number of columns, smaller number
of rarely changing column families.

• Column keys named as: family:qualifier
– In the Webtable example:
– anchor:<name of referring site>

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Timestamps

• Each cell in a table can contain multiple versions of
the same data, which are indexed by timestamp.

• Timestamps can be assigned by the system or by
client apps.

• Versions are stored in decreasing timestamp order.

• Garbage collection:
– Keep last n versions of a cell.

– Keep last n days’ versions of a cell.

• In the Webtable example: Keep only the most recent 3
versions of every page’s content.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

H-Store (VoltDB)

• Designed and Prototyped in MIT by Michael
Stonebraker and others as part of “one size
does not fit all”

• Productized as VoltDB (www.voltdb.com)
– Available for download

• Applies some of the design ideas studied so
far to OLTP (= transactional workloads)

• Breaks several assumptions how do DB design
with updates

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

http://www.voltdb.com

OLTP Design Considerations

• Main memory database
– The overwhelming majority of OLTP databases are less than 1 Tbyte in

size and growing in size quite slowly
– Now machines with 100 Gbytes are becoming common

• Single-threaded execution model
– Multiple-threads-per-CPU model helps to keep CPU busy while waiting

for disk I/O or user input (aka disk and user stalls)
– Multi-threaded model is also required in presence of long-running

transactions not to block the system
– But:

• No disk I/O because main memory
• No ad-hoc queries
• OLTP transactions are lightweight (e.g. the heaviest transaction in TPC-C reads

about 400 records - less than one millisecond for in-memory database)

– Use single-thread-per-CPU:
• To avoid threads synchronization overhead

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

OLTP Considerations (Cont.)

• Cost-effective High Availability

– Currently, many systems implement a hot standby
via log shipping:

– Peer-to-peer (all replicas can do any operation) is
more cost-effective

• No knobs - easy to design and maintain

– Personnel now costs more than
hardware/software

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

H-Store Implementation

• Shared-nothing architecture: data are partitioned and
replicated across a cluster of nodes

• Main memory storage for tables and B-tree indexes on
each node

• Each physical node is decomposed into a number of
local sites, one for each available core:
– each site is like independent physical site with its own

indexes, table storage, etc
– in particular main memory on the node is partitioned

among local nodes - no shared memory
– each site has a dedicated CPU, is single threaded and

performs transaction sequentially (!)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

H-Store Implementation (cont.)

• Supports distributed transactions but prefers single-
sited transactions

• Client can only call stored procedures:
execute trans_name (parameter_list)
– To avoid costly communication rounds over network - no

JDBC/ODBC

• All transactions are known in advance - not designed
for ad-hoc transactions
– Data are partitioned/replicated to promote single-sited

transactions wherever possible
– From docs: “In fact, for 20 years or more OLTP application

designers have used these design principles to get the
most out of commercial database products”

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Example: Flight Reservation Database

• The goal: the most frequent transactions should be single-sited
• For example, let us assume you are designing a flight reservation

system with the following schema

• Flight (FlightID, DepartTime, Origin, Destination, NumberOfSeats,

PRIMARY KEY(FlightID));

Reservation (ReserveID, FlightID, CustomerID, Seat, Confirmed,

PRIMARY KEY(ReserveID));

Customer (CustomerID, FirstName, LastName, PRIMARY

KEY(CustomerID));

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Example: Flight Reservation Database

• Flights: 2,000

• Reservations:
200,000

• Customers:
1,000,000

Use case Frequency

Look up a flight (by origin

and destination)
10,000/sec

See if a flight is available

(has sufficient space)
5,000/sec

Make a reservation 1,000/sec

Cancel a reservation 200/sec

Look up a reservation (by

reservation ID)
200/sec

Look up a reservation (by

customer ID)
100/sec

Update flight info 1/sec

Take off (close

reservations)
1/sec

• In addition to schema, consider: expected volume and

estimated workload

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Example: Flight Reservation Database

• Reservation table:
– Partition by Reservation ID is not good because there are only two transactions

keyed by Res. ID that are infrequent:
• Looking up a reservation by ID (200/sec)
• Canceling a reservation (200/sec)

– Partition by Flight ID
• See if a flight is available (5,000/sec)

• Customer table:
– Partition by Customer ID as it is usually accessed by ID

• Flight table:
– Has the most frequent access (10k/sec)
– However, these transactions may involve any combination of three columns: the

point of origin, the destination, and the departure time => not easy to choose a
column for partitioning

– On the other hand: it is very small and read-only (except add flights and take off)
– Replicate to all sites => 10k/sec transactions can be distributed across all sites

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

VoltDB versus Cassandra

• Benchmark by VoltDB: http://voltdb.com/blog/key-value-
benchmarking

• A column family with records: 50 byte key + 50 columns (index
as name + integer value)

• Load 500,000 records

• Do:

– Randomly select 1 key K and 2 columns A and B

– Read the value from the record K and column A

– If the value is odd, write a new random value to the record K and the
column B

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

VoltDB versus Cassandra:

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Configuration VoltDB Cassandra
Throughput

Increase

1 node 111,000 24,200 4.6x

3 nodes w/o

Replication
293,000 38,900 7.5x

3 nodes w/

Replication
176,000 24,700 7.1x

Summary

• Web Databases also aim for massive
scalability

• Make different tradeoffs:

– Achieve very fast response time

– Avoid blocking for updates

– Only provide minimal operations

– Compromise on consistency

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

