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Web Applications and Databases

• (Social) Web Application:

– End user facing

• Users hate high response time

• Non-professional users do simple operations (like/poke, comment, 
share, subscribe)

– Interactive and in real-time

– It is about information sharing => quite simple operations (no complex 
analytics) but very database-intensive

– The number of users can be potentially high and can grow unexpectedly 
=> easy to scale infinitely

• Traditional Enterprise Applications and Map-Reduce

– Almost all the above points in reverse

• Real systems, different tradeoffs than research!
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Web Applications and Databases:
Requirements

• Support for simple operations

• Low response time

• 24/7 availability

• Easy to scale - Can you do it “at Facebook 
scale”?
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MySQL 
Distributed Facilities

• Represents most common “classical” 
distributed DB

• Used in many web data setups if relational 
features are needed

• Two relevant approaches:

– MySQL Replication

– MySQL Cluster
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MySQL Replication

• One-way, asynchronous replication with single master and 
multiple slaves:
– All updates are performed on the master
– Updates are propagated from the master to slaves via log shipping 

(periodically in the background)
– Queries can be performed on the master or slaves
– Asynchronous => Stale data reads

• This approach is also called Hot Standby
• Benefits:

– Scale query-intensive workload
– Increase availability (switch from the master to a slave in case of the 

master failure)
– Database backups using a slave server without disturbing the master 
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MySQL Cluster

• Shared-nothing high-available extension for 
MySQL 

• Implemented by providing a new storage 
engine Networked Data Base (NDB) in 
addition to MyISAM and InnoDB
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MySQL Cluster
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MySQL Cluster

• Partitioning:

– Data within NDB is automatically partitioned 
across the data nodes

– Via hashing based on the primary key on the table

– In the 5.1 release, users can define their own 
partitioning strategies

• Replication: 

– synchronous replication via two-phase commit  
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MySQL Cluster

• Query execution: distributed facilities are localized in 
the storage engine =>
– Low-level operations are distribution-aware (e.g primary 

key lookup - contact a single node by hashing, index/table 
scan - sent in parallel to all the nodes) 
http://bit.ly/bezpxC

– No distributed join supported: http://bit.ly/cxV9ZZ

• Hybrid Storage: 
– All indexed columns are stored in memory (distributed)
– Non indexed columns can also be maintained in memory 

(distributed) or can be maintained on disk with an in-
memory page cache
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Cassandra

• Origins

• Implementation
– Data distribution: partition and replication

– CAP and consistency levels

– Eventual consistency mechanisms: read repair and AE

– Scaling

– Load balancing

– Gossip (mechanism to build peer-to-peer to achieve 
high availability avoiding masters)

• Data Model
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Cassandra:
Origins

• Amazon Dynamo was introduced in 2007

– Scalable and high available shopping cards

• Facebook implemented Cassandra

– Inbox search

• Release open-source in 2008
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Cassandra Data Model:
Quick Introduction

• It is a key-value store distributed across nodes 
by key 

– Not a relational table with many columns, 
many access possibilities

– Instead a key->value mapping like in a hash table

• A value can have a complex structure as it is 
inside the node - in Cassandra it is columns 
and super columns (explained later)
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Data Partitioning: Consistent Hashing

• Problem with hashing:  arrival or departure of a node requires 
global rehashing

• Idea: Hash keys and node IDs onto the same circled key space 
• Advantage: Key redistribution happens only within the neighbor 

of the crashed node
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Data Replication
• Why:

- To achieve high availability data are replicated at N nodes

- Improved performance by spreading workload across multiple replicas

• How:

– Storing replicas on subsequent N nodes in the ring
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Consistency Levels: Motivation

• Brewer’s CAP Theorem - pick 2 out of 3:
– Consistency (C) - You always read your previous writes
– Availability (A)
– Network partition tolerance (P)

• Options:
– CA - Corruption possible if live nodes cannot communicate (network 

partition)
– CP - Completely inaccessible if any nodes are dead
– AP - Always available but may not always read most recent writes

• Let us make it tunable!
– Cassandra prefers AP but makes “C versus  A” configurable by allowing 

the user to specify a consistency level for each operation
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Consistency Levels

• Parameters:
– N - replication factor
– W - number of replica nodes that must acknowledge the write
– R - number of replica nodes that must respond to the read request

• Options:
– W=1 => Block until first node written successfully
– W=N => Block until all nodes written successfully
– W=0 => Async write (cross fingers)
– R=1 => Block until first node returns an answer
– R=N => Block until all nodes return answers
– R=0 => Does not make sense

• Note that it always reads/writes all replica nodes but waits for different numbers of 
responses.

• How to switch consistency on when you need it:
– Quorum:  W + R > N => Fully consistent database (i.e. you read your own previous writes) 

otherwise it might happen that you cannot see your previous write.
– For example:  R = N / 2 +1, W = N / 2 + 1 => Quorum achieved

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science



Eventual consistency

• When W < N (not all replicas are updated) the update is 
propagated in background

• It is called Eventual Consistency
• Versions resolution:

– Each value in a database has a timestamp => key, value, 
timestemp

– The timestamp is the timestamp of the latest update of the value 
(the client must provide a timestamp with each update)

– When an update is propagated, the latest timestamp wins
(Could there be problems?)

• There are two mechanisms to propagate updates:
– Read repair 
– Anti-Entropy (AE)
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Eventual consistency:
Read repair

• On client’s read: 

– do reconciliation and write back if replicas are out 
of sync 
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Eventual consistency:
Anti-Entropy

• AE is used to repair cold keys - keys that have not been read, since 
they were last written

• AE works as follows:
– It generates Merkle Trees for tables periodically 
– These trees are then exchanged with remote nodes as a part of the 

Gossip conversation (explained later)
– When ranges in the trees disagree, the corresponding data are 

transferred between replicas to repair those ranges

• Merkle Tree is a compact representation of data for comparison:
– A Merkle tree is a hash tree where leaves are hashes of individual 

values. Parent nodes higher in the tree are hashes of their respective 
children. The principal advantage of Merkle tree is that each branch of 
the tree can be checked independently without requiring nodes to 
download the entire data set.
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Update Idempotency

• If client observes an update failure it is still possible that this 
update has been executed 
– Because Cassandra does not support transactional rollback

• Examples:
– N=3, W=2 but only one node is updated successfully => the client gets 

error => but this update is not rolled back from the node and will be 
propagated to the other replicas by read repair or AE

– The whole update can be successfully executed but the return message 
is lost

• The client usually retries the failed update until it is successful =>   
the same update can be executed several times!

• All updates should be idempotent  (i.e. repeated update 
applications have the same effect as one)
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Transaction Support

• There is no rollback support but Cassandra does 
support transactional atomicity, just eventually.
– For a single operation: eventually update is 

propagated to all the replicas
– For a set of operations: atomic batches (added in v1.2)

Around 30% overhead for updates

• Instead of rollback (and possible block with 2PC), 
the client and async triggers retry until successful

• In terms of ACID:
– Atomicity (eventual), Consistency (eventual), Isolation 

(none), Durability

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science



Scaling

• Scaling is easy because of consistent hashing

• How to identify overloaded nodes:

– Cassandra monitors the size of data stored at each 
node - a simple and good enough criteria to 
identify overloaded nodes

– When a new node is added to the ring, Cassandra 
can choose the position for the new node 
automatically to unload the most overloaded 
node
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Load Balancing

• The client can connect to any node in the ring, 
the node becomes the read/write coordinator

• It read/write the replicas according to the 
specified consistency level for this operation and 
replies to the client - one hop to access the data

• The client can query Cassandra for data 
distribution and cache it so that the client can 
connect to one of the replicas (it becomes the 
update coordinator) to avoid the hop
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Gossip Protocol

• Cassandra is a peer-to-peer system
– All nodes are equal and can process any client or 

maintenance operation 

– No masters

– Helps to handle network partitions

• Every node has to know important information 
about every other node’s state including which 
nodes are unreachable/down

• Gossip is a protocol to disseminate such 
information between nodes 
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Gossip Protocol: How it works

• Every second each node randomly chooses 
one live and one dead node and starts a state 
exchange round with them.

• It is proven that state is disseminated in O(log 
N) rounds where N is the number of nodes in 
the cluster.
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Cassandra Data Model:
Motivation

• Cassandra is a key-value database where data 
are distributed across nodes by key.

• Main idea: a value is stored on a single node,  
it can have a complex structure - dealing with 
the structure of a value does not involve 
expensive inter-node communications => 
operations are still single-node

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science



Data Model (1)

• Data model is based on key-value model

– A database consists of column families

– Column family is a set of key-value pairs

– An analogy with relational model:

• Column family ~ Table

• Key-value pair ~ Record
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Data Model (2)

• The basic key-value model is extended with two levels 
of nesting:
– First level: the value of a record is in turn a sequence of 

key-value pairs:
• The key-value pairs are called columns. The Key is called column 

name.  The Value is called column value

• You can say:  a record in a column family has a key and consists of 
columns

– Second level (arbitrary):  the value of the nested key-value 
pairs can be a sequence of key-value pairs as well:
• When the second level of nesting, outer key-value pairs are called 

super columns with key being the name of the super column and 
inner key-value pairs are called columns
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Data Model (3)
• The names of both columns and super columns can be 

used in two ways: 
– Names can play the role of attribute name 

(e.g. Email,  Address, etc)
– Names can be values. For example, Blog column family contains 

records where the record key is the blog identifier,  column 
names are post identifiers, column values are the texts.
• No restrictions on the number of columns/supercolumns - they should 

only fit a single node
• Names are byte arrays so you can encode any value in it.

• Columns and super columns are stored ordered by names 
– Sorting behavior is specified by treating column names as Byte 

Type, ASCII Type, UTF8 Type, Lexical/Time UUID Type
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Column Family Example:
Columns are attributes
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Column Family Example:
Column names are values

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science



Super Column Family Example
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BigTable (HBase)

• Distributed key-value store developed by 
Google (published in 2006)

• Open source counterpart - HBase 
hbase.apache.org 
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BigTable Data Model

• Cassandra borrowed the BigTable data model
• Cassandra versus BigTable data models

– Cassandra supports Super Columns (additional level of nesting)
• BigTable does not

– BigTable stores versions of column values automatically that can be 
queried by timestamp ranges
• In Cassandra you have to use TimeUUID for keys or column names explicitly to 

query by time (timestamps are used only for version reconciliations)

– Cassandra supports various partition strategies (e.g. random or range)
• In BigTable rows are ordered by key - range partitioning

• Summary:  To an application, a table appears to be a list of tuples 
sorted by row key ascending, column name ascending and 
timestamp descending
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BigTable Data Distribution

• Physically, tables are partitioned into row 
ranges called tablets (regions in HBase)

– Tables are assigned and split/merged (for load 
balancing and space management) via a B+-tree-
like structure

• Data replication is provided by GFS
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BigTable Architecture

• Single master, multiple tablet servers
– The master: assigning tablets to tablet servers, detecting the addition/removal 

of tablet servers, and handling database schema changes
– Tablet server: managing a set of tablets, handling reads and writes to the 

tablets, and splitting tablets that have grown too large

• Master and tablet servers share state and synchronize via a distributed 
lock  and metadata storage service called Google Chubby
– Bigtable uses Chubby for:  ensuring there is one active master at any time, 

storing the location of data, discovering tablet servers, storing database schema, 
etc.

• Still single point of failure
– Master failure does not cause BigTable unavailability.  It can be restarted and 

recovers from Chubby.  Tablet servers can still process user requests
– If Chubby becomes unavailable, Bigtable becomes unavailable

• As in GFS, clients do not move through the master: clients cache tablet 
locations and communicate with tablet servers directly for reads/writes
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BigTable Storage

• “Log-structured” storage based on Google File System 
• How it works:

– Collect insert (replace) and delete operations in buffer (aka memtable)
– As the memtable is full, it is frozen, a new one is created, the frozen one is written to disk 

as SSTable (aka minor compaction)
– SSTables are merged periodically in the background (aka major compaction)
– Read operation has to merge SSTables and memtable during its execution
– SSTable and memtable are sorted => the merge (during compaction or read) can be done 

efficiently 

• Pros and cons: 
– Fast writes but slow reads
– Can be easily implemented onto a file system without random writes (BigTable on GFS, 

HBase on Hadoop FS)

• memtable/SSTable storage is used in Cassandra but implemented from scratch (no 
GFS)

• BigTable/HBase provides good integration with MapReduce as data are stored in GFS
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BigTable Storage
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HBase

• Distributed column-oriented database built on top of 
HDFS
– modeled after Google’s BigTable
– not relational, no support for SQL
– real-time read/write random access to very large data sets

• Main design goal: Scale linearly by adding nodes
– sparsely-populated tables
– billions of rows
– millions of columns
– automatic horizontal partitioning/replication across a 

cluster
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Data Model

• Tables consist of rows and column families.
• Rows are sorted by key.
• Rows are horizontally partitioned, which form 

the basic unit of data distribution and load 
balancing.

• Columns are grouped into families, which form 
the basic unit of access control.

• Columns that belong to a given column family 
can be added on the fly.

• Cells are versioned by timestamp.
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Data Model

• Multi-dimensional sorted map

• Indexed by a row key, column key, and a 
timestamp

• Each value in the map is an uninterpreted 
array of bytes.

• (row: string, column: string, time:int64) -> 
string 
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BigTable - Webtable Example

• A large collection of web pages
– reverse URLs as row keys

– other info about web pages as column names

– web page contents in “contents” column family, versioned 
with the timestamps when they were fetched
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Rows

• Arbitrary strings as row keys
• Lexicographic order by row key
• Atomic reads and writes to each row (single-row 

transactions)
• Row ranges are dynamically partitioned into 

“tablets” (“regions” in HBase), which form the 
unit of distribution and load balancing.

• Row keys affect locality of data access.
– Example: Reversed URL’s in the Webtable example 

help group pages of the same domain together into 
contiguous rows.
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Column Families

• Column families define units of access control.
– Different sets of columns may have different 

properties and access patterns.
– Column families are stored separately on disk.
– Tables are configurable by family (e.g., version 

retention policy, compression, cache priority).

• Unbounded number of columns, smaller number 
of rarely changing column families.

• Column keys named as: family:qualifier
– In the Webtable example:
– anchor:<name of referring site>
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Timestamps

• Each cell in a table can contain multiple versions of 
the same data, which are indexed by timestamp.

• Timestamps can be assigned by the system or by 
client apps.

• Versions are stored in decreasing timestamp order.

• Garbage collection:
– Keep last n versions of a cell.

– Keep last n days’ versions of a cell.

• In the Webtable example: Keep only the most recent 3 
versions of every page’s content.
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H-Store (VoltDB)

• Designed and Prototyped in MIT by Michael 
Stonebraker and others as part of  “one size 
does not fit all”

• Productized as VoltDB (www.voltdb.com)
– Available for download

• Applies some of the design ideas studied so 
far to OLTP (= transactional workloads)

• Breaks several assumptions how do DB design 
with updates
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OLTP Design Considerations

• Main memory database
– The overwhelming majority of OLTP databases are less than 1 Tbyte in 

size and growing in size quite slowly
– Now machines with 100 Gbytes are becoming common

• Single-threaded execution model
– Multiple-threads-per-CPU model helps to keep CPU busy while waiting 

for disk I/O or user input (aka disk and user stalls)
– Multi-threaded model is also required in presence of long-running 

transactions not to block the system
– But:

• No disk I/O because main memory
• No ad-hoc queries
• OLTP transactions are lightweight (e.g. the heaviest transaction in TPC-C reads 

about 400 records  - less than one millisecond for in-memory database)

– Use single-thread-per-CPU:
• To avoid threads synchronization overhead
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OLTP Considerations (Cont.)

• Cost-effective High Availability

– Currently, many systems implement a hot standby 
via log shipping: 

– Peer-to-peer (all replicas can do any operation) is 
more cost-effective

• No knobs - easy to design and maintain

– Personnel now costs more than 
hardware/software
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H-Store Implementation

• Shared-nothing architecture: data are partitioned and 
replicated across a cluster of nodes

• Main memory storage for tables and B-tree indexes on 
each node

• Each physical node is decomposed into a number of 
local sites, one for each available core:
– each site is like independent physical site with its own 

indexes, table storage, etc
– in particular main memory on the node is partitioned 

among local nodes - no shared memory
– each site has a dedicated CPU, is single threaded and 

performs transaction sequentially (!)
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H-Store Implementation (cont.)

• Supports distributed transactions but prefers single-
sited transactions

• Client can only call stored procedures: 
execute trans_name (parameter_list)
– To avoid costly communication rounds over network - no 

JDBC/ODBC

• All transactions are known in advance - not designed 
for ad-hoc transactions
– Data are partitioned/replicated to promote single-sited 

transactions wherever possible
– From docs: “In fact, for 20 years or more OLTP application 

designers have used these design principles to get the 
most out of commercial database products”
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Example: Flight Reservation Database 

• The goal: the most frequent transactions should be single-sited
• For example, let us assume you are designing a flight reservation 

system with the following schema

• Flight (FlightID, DepartTime, Origin, Destination, NumberOfSeats, 

PRIMARY KEY(FlightID));

Reservation (ReserveID, FlightID, CustomerID, Seat, Confirmed, 

PRIMARY KEY(ReserveID));

Customer (CustomerID, FirstName, LastName, PRIMARY 

KEY(CustomerID));
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Example: Flight Reservation Database 

• Flights: 2,000

• Reservations: 
200,000

• Customers: 
1,000,000

Use case Frequency

Look up a flight (by origin 

and destination)
10,000/sec

See if a flight is available

(has sufficient space)
5,000/sec

Make a reservation 1,000/sec

Cancel a reservation 200/sec

Look up a reservation (by 

reservation ID)
200/sec

Look up a reservation (by 

customer ID)
100/sec

Update flight info 1/sec

Take off (close 

reservations)
1/sec

• In addition to schema, consider: expected volume and 

estimated workload
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Example: Flight Reservation Database 

• Reservation table:
– Partition by Reservation ID is not good because there are only two transactions 

keyed by Res. ID that are infrequent:
• Looking up a reservation by ID (200/sec)
• Canceling a reservation (200/sec)

– Partition by Flight ID
• See if a flight is available (5,000/sec)

• Customer table:
– Partition by Customer ID as it is usually accessed by ID

• Flight table:
– Has the most frequent access (10k/sec)
– However, these transactions may involve any combination of three columns: the 

point of origin, the destination, and the departure time => not easy to choose a 
column for partitioning

– On the other hand: it is very small and read-only (except add flights and take off)
– Replicate to all sites => 10k/sec transactions can be distributed across all sites
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VoltDB versus Cassandra

• Benchmark by VoltDB: http://voltdb.com/blog/key-value-
benchmarking

• A column family with records: 50 byte key + 50 columns (index 
as name + integer value)

• Load 500,000 records

• Do:

– Randomly select 1 key K and 2 columns A and B

– Read the value from the record K and column A

– If the value is odd, write a new random value to the record K and the 
column B
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VoltDB versus Cassandra: 

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

Configuration VoltDB Cassandra
Throughput

Increase

1 node 111,000 24,200 4.6x

3 nodes w/o 

Replication
293,000 38,900 7.5x

3 nodes w/ 

Replication
176,000 24,700 7.1x



Summary

• Web Databases also aim for massive 
scalability

• Make different tradeoffs:

– Achieve very fast response time

– Avoid blocking for updates 

– Only provide minimal operations

– Compromise on consistency
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