
Systems Infrastructure for Data
Science

Web Science Group

Uni Freiburg

WS 2013/14

Lecture XI:
MapReduce & Hadoop

The new world of Big Data
(programming model)

Big Data

• Buzzword for challenges occurring in current
data management and analysis

• No longer just storage and retrieval, but also
complex computations

• Often expressed as the 4 -7 (depending on
source) V‘s

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

1st V: Volume

• Scale of Data
– Scientific applications

(CERN: 70MPixel*40M/s,
15PB/year)

– Genomics:
(single genome > 1.5TB)

– Web Data
– …

90% of all data was created
in the last two years!

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

2nd V: Velocity

Speed of data and expected reactions

• Stock exchanges (NASDAQ: >35K msg/s, 1ms for common
operations)

• Social Media (>150K msg/s peak on Twitter)

• Environmental Sensors (>100 sensors on a car, ms response
time)

• Web indexing (reindex within minutes,
queries with less than 0.5 seconds)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

3rd V: Variety

Form(at) of data not uniform

• Structured vs non-structured (or hidden structure):
relations,
graph,
text,
audio/voice, video, …

• Broad range of sources:
customers, transactions,
logs, sensors, …

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

4th V: Veracity

Uncertainty of Data

• Data Quality and Completeness

– Sensor readings inconsistent (faults, calibration, …)

– Social media messages contain slang, abbrevations,
colloqualism, …

– User Profiles faked, duplicated, …

• Interpretation

– Underlying Model unknown

– Wrong choice of parameters

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

http://blog.potterzot.com/2007/09/25/garbage-in-
garbage-out-and-the-desire-to-cover-our-own-ass-is-
ruining-the-world/

Additional/Disputed V‘s

• Value:
does the analysis yield results that can be used/has
applications (customer analysis, trading,
business/personal/technology/… improvement)

• Variability:
properties of data change over time

• Visualization:
complex data cannot be understood without appropriate
presentation

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Are databases the right tool for these
challenges?

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

While databases have many benefits, they
only serve specific niches

http://dilbert.com/strips/comic/1996-02-27/

http://dilbert.com/strips/comic/1996-02-27/

Conceptual Limitations
of Relational DBMS

• Well-defined but strict data model
(unordered relations)

• Well-optimizable but limited expression set
(queries+updates)

• Single, strong transaction model
(ACID, Serializability)

• Single interaction model
(store, then query)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Practical Limitations
of Traditional Relational DBMS

• Limited Scalability (dozens of nodes)

• Parallel operations low-level or as part of
extremely expensive licensing

• Little extensibility (Imperative SQL)

• Labour-intensive to maintain and tune

• Disk-based operations

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Computational Setting for Big Data
• Computations that need the power of many computers

– large datasets

– use of thousands of CPUs in parallel

• Big data management, storage, and analytics

– cluster as a computer

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

What is Hadoop?

• Hadoop is an ecosystem of tools for processing
“Big Data”.

• Hadoop is an open source project.

• Picks up and advances many design ideas and
architectures by big data research

• Starting Point: Google Map/Reduce

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Google Cluster Architecture: Key Ideas

• Single-thread performance doesn’t matter
– For large problems, total throughput/$ is more important than peak

performance.

• Stuff breaks
– If you have 1 server, it may stay up three years (1,000 days).
– If you have 10,000 servers, expect to lose 10 per day.

• “Ultra-reliable” hardware doesn’t really help
– At large scales, the most reliable hardware still fails, albeit less often

• Software still needs to be fault-tolerant
• Commodity machines without fancy hardware give better performance/$

 Have a reliable computing infrastructure from clusters of unreliable
commodity PCs.

 Replicate services across many machines to increase request throughput
and availability.

 Favor price/performance over peak performance.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Hadoop: Architectural Design Principles

• Linear scalability

– More nodes can do more work within the same time

– Linear on data size, linear on compute resources

• Move computation to data

– Minimize expensive data transfers

– Data is large, programs are small

• Reliability and Availability: Failures are common

• Simple computational model (MapReduce)

– Hides complexity in efficient execution framework

• Streaming data access (avoid random reads)

– More efficient than seek-based data access
Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

The Hadoop Family
MapReduce Distributed computation framework (data processing model

and execution environment)

HDFS Distributed file system

YARN Cluster Resource Management

HBase Distributed, column-oriented database

Hive Distributed data warehouse

Pig Higher-level data flow language and parallel execution
framework

Mahout Machine learning and data mining library

ZooKeeper Distributed coordination service

Avro Data serialization system (RPC and persistent data storage)

Chukwa System for collecting management data

BigTop Packaging and testing

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

A Typical Hadoop Cluster Setup

cluster
switch

rack
switch

…

~ 30-40 servers per rack

1 GB

1-10 GB

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Google File System (GFS) Architecture

• Files divided into fixed-sized chunks (64 MB)
– Each chunk gets a chunk handle from the master

– Stored as Linux files

• One master
– Maintains all file system metadata

– Talks to each chunkserver periodically

• Multiple chunkservers
– Store chunks on local disks

– No caching of chunks (not worth it)

• Multiple clients
– Clients talk to the master for metadata operations

– Metadata can be cached at the clients

– Read / write data from chunkservers

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

• Single master, multiple chunkservers

• To overcome single-point of failure & scalability bottleneck:

– Use shadow masters

– Minimize master involvement (large chunks; use only for metadata)

GFS Architecture

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Hadoop Distributed File System (HDFS)

• Hadoop has a general-purpose file system abstraction
(i.e., it can use local files, HDFS, Amazon S3, etc.)

• HDFS is Hadoop’s file system, implements GFS ideas

• Streaming data access
– write-once, read-many-times pattern

– time to read the whole dataset is more important

• HDFS is not a good fit for
– low-latency data access

– lots of small files

– multiple writers, arbitrary file modifications

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Blocks

• HDFS files are broken into block-sized chunks
(64 MB by default)

• With the (large) block abstraction:

– a file can be larger than any single disk in the
network

– storage subsystem is simplified (e.g., metadata
bookkeeping)

– replication for fault-tolerance and availability is
facilitated

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Hadoop Main Cluster Components

• HDFS daemons

– NameNode: namespace and block management (~ master in GFS)

– DataNodes: block replica container (~ chunkserver in GFS)

• MapReduce daemons

– JobTracker: client communication, job scheduling, resource
management, lifecycle coordination (~ master in Google MR)

– TaskTrackers: task execution module (~ worker in Google MR)

NameNode JobTracker

TaskTracker TaskTracker TaskTracker

DataNodeDataNodeDataNode
Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Reading from HDFS

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Writing to HDFS

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Network Distance in Hadoop

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Replica Placement

• Issues to consider: reliability,
write bandwidth, read
bandwidth, block distribution.

• Hadoop’s default strategy:
– First replica: on the client

node (or randomly chosen if
client is outside the cluster)

– Second replica: random, off-
rack.

– Third replica: same rack as
second, different node.

– More replicas: randomly
chosen.

Example Replica Pipeline:

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Coherency Model
• Coherency model describes the data visibility of

reads and writes for a file.
• In HDFS:

– The metadata for a newly created file is visible in the file
system namespace.

– The current data block being written is not guaranteed
to be visible to other readers.

• To force all buffers to be synchronized to all relevant
datanodes, you can use the sync() method.

• Without sync(), you may lose up to a block of
(newly written) data in the event of client or system
failure.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

HDFS Federation & High-Availability

• In latest releases of Hadoop:

– HDFS Federation allows multiple Namenodes, each
of which manages a portion of the file system
namespace; the goal is to enhance the scalability of
the Namenode on very large clusters with many
files and blocks.

– HDFS High-Availability provides faster recovery
from Namenode failures using a pair of namenodes
in an active standby configuration.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce

• a software framework first introduced by
Google in 2004 to support parallel and fault-
tolerant computations over large data sets on
clusters of computers

• based on the map/reduce functions commonly
used in the functional programming world

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce in a Nutshell

• Given:

– a very large dataset

– a well-defined computation task to be performed on elements of
this dataset (preferably, in a parallel fashion on a large cluster)

• MapReduce framework:

– Just express what you want to compute (map() & reduce()).

– Don’t worry about parallelization, fault tolerance, data
distribution, load balancing (MapReduce takes care of these).

– What changes from one application to another is the actual
computation; the programming structure stays similar.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce in a Nutshell

• Here is the framework in simple terms:

– Read lots of data.

– Map: extract something that you care about from each record.

– Shuffle and sort.

– Reduce: aggregate, summarize, filter, or transform.

– Write the results.

• One can use as many Maps and Reduces as needed to
model a given problem.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce vs. Traditional RDBMS

MapReduce Traditional RDBMS

Datasize Petabytes Gigabytes

Access Batch Interactive and batch

Updates Write once, read many

times

Read and write many

times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear Non-linear (general SQL)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Functional Programming Foundations

• map in MapReduce map in FP

• reduce in MapReduce fold in FP

• Note: There is no precise 1-1 correspondence,
but the general idea is similar.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

map() in Haskell
• Create a new list by applying f to each element of the input list.

• Definition of map:
map :: (a  b)  [a]  [b] -- type of map

map f [] = [] -- the empty list case

map f (x:xs) = f x : map f xs -- the non-empty list case

• Example: Double all numbers in a list.
Haskell-prompt > map ((*) 2) [1, 2, 3]

[2, 4, 6]
f f f f f f

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Implicit Parallelism in map()

• In a purely functional setting, an element of a list being
computed by map cannot see the effects of the
computations on other elements.

• If the order of application of a function f to elements in
a list is commutative, then we can reorder or parallelize
execution.

• This is the “secret” that MapReduce exploits.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

fold() in Haskell
• Move across a list, applying a function f to each

element plus an accumulator. f returns the next
accumulator value, which is combined with the next
element of the list.

• Two versions: fold left & fold right

f f f f f returned

initial

accumulators

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

fold() in Haskell
• Definition of fold left:

foldl :: (b  a  b)  b  [a]  b -- type of foldl

foldl f y [] = y -- the empty list case

foldl f y (x:xs) = foldl f (f y x) xs -- the non-empty list case

• Definition of fold right:

foldr :: (a  b  b)  b  [a]  b -- type of foldr

foldr f y [] = y -- the empty list case

foldr f y (x:xs) = f x (foldr f y xs) -- the non-empty list case

• Example: Compute the sum of all numbers in a list.

Haskell-prompt > foldl (+) 0 [1, 2, 3] foldl (+) 0 [1, 2, 3]

6  (((0 + 1) + 2) + 3)

 6

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

reduce() in Haskell

• reduce is a type-specialized version of fold.

• Definition of reduce:

reduce :: (a  a  a)  a  [a]  a -- type of reduce

reduce = foldl -- definition of reduce

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Basic Programming Model

• Transform a set of input key-value pairs to a
set of output values:

– Map: (k1, v1)  list(k2, v2)

– MapReduce library groups all intermediate pairs
with same key together.

– Reduce: (k2, list(v2))  list(v2)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Canonical Example
“Count word occurrences in a set of documents.”

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

map(k1, v1)  list(k2, v2) reduce(k2, list(v2)) list(v2)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Parallelization

• Multiple map() functions run in parallel, creating
different intermediate values from different input
data sets.

• Multiple reduce() functions also run in parallel, each
working on a different output key.

• All values are processed independently.

• Bottleneck: The reduce phase can’t start until the
map phase is completely finished.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Parallel Processing Model

Data store 1 Data store n
map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

Input key*value

pairs

Input key*value

pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,

intermediate

values

key 2,

intermediate

values

key 3,

intermediate

values

final key 1

values

final key 2

values

final key 3

values

...

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Hadoop Main Cluster Components

• HDFS daemons

– NameNode: namespace and block management (~ master in GFS)

– DataNodes: block replica container (~ chunkserver in GFS)

• MapReduce daemons

– JobTracker: client communication, job scheduling, resource
management, lifecycle coordination (~ master in Google MR)

– TaskTrackers: task execution module (~ worker in Google MR)

NameNode JobTracker

TaskTracker TaskTracker TaskTracker

DataNodeDataNodeDataNode
Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Shuffle & Sort Overview

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Moving Data from Mappers to Reducers

• “Shuffle & Sort” phase

– synchronization barrier between map and reduce phase

– one of the most expensive parts of a MapReduce
execution

• Mappers need to separate output intended for
different reducers

• Reducers need to collect their data from all
mappers and group it by key

– keys at each reducer are processed in order

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Data Locality

• Goal: To conserve network bandwidth.

• In GFS, data files are divided into 64 MB blocks and 3
copies of each are stored on different machines.

• Master program schedules map() tasks based on the
location of these replicas:

– Put map() tasks physically on the same machine as one of
the input replicas (or, at least on the same rack / network
switch).

• This way, thousands of machines can read input at
local disk speed. Otherwise, rack switches would
limit read rate.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Scheduling

• One master, many workers
– Input data split into M map tasks (typically 64 MB (~ chunk size in GFS))
– Reduce phase partitioned into R reduce tasks (hash(k) mod R)
– Tasks are assigned to workers dynamically

• Master assigns each map task to a free worker
– Considers locality of data to worker when assigning a task
– Worker reads task input (often from local disk)
– Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker
– Worker reads intermediate k/v pairs from map workers
– Worker sorts & applies user’s reduce operation to produce the output

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Choosing M and R

• M = number of map tasks, R = number of reduce tasks
• Larger M, R: creates smaller tasks, enabling easier load

balancing and faster recovery (many small tasks from
failed machine)

• Limitation: O(M+R) scheduling decisions and O(M*R)
in-memory state at master
– Very small tasks not worth the startup cost

• Recommendation:
– Choose M so that split size is approximately 64 MB
– Choose R a small multiple of the number of workers;

alternatively choose R a little smaller than #workers to
finish reduce phase in one “wave”

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Fault Tolerance (I)
On worker/ JobTracker failure:

• Master/TaskTracker detects failure via periodic heartbeats.

• Both completed and in-progress map tasks on that worker
should be re-executed (→ output stored on local disk).

• Only in-progress reduce tasks on that worker should be re-
executed (→ output stored in global file system).

• All reduce workers will be notified about any map re-
executions.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Fault Tolerance (II)

• On master/JobTracker failure:
– Google:

State is check-pointed to GFS: new master recovers &
continues.

– Hadoop cannot deal with JobTracker failure
– Could use Google’s proposed JobTracker take-over

idea, using ZooKeeper to make sure there is at most
one JobTracker

– Improvements in progress in newer releases…

• Robustness:
– Example: Lost 1600 of 1800 machines once, but finished fine.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Stragglers & Backup Tasks

• Problem: “Stragglers” (i.e., slow workers) significantly
lengthen the completion time.

• Solution: Close to completion, spawn backup copies of
the remaining in-progress tasks.

– Whichever one finishes first, “wins”.

• Additional cost: a few percent more resource usage.

• Example: A sort program without backup = 44% longer.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Job Execution in Hadoop

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Basic MapReduce Program Design

• Tasks that can be performed independently on a data
object, large number of them: Map

• Tasks that require combining of multiple data
objects: Reduce

• Sometimes it is easier to start program design with
Map, sometimes with Reduce

• Select keys and values such that the right objects end
up together in the same Reduce invocation

• Might have to partition a complex task into multiple
MapReduce sub-tasks

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

MapReduce Development Steps

• Write Map and Reduce functions
– Create unit tests

• Write driver program to run a job
– Can run from IDE with small data subset for testing
– If test fails, use IDE for debugging
– Update unit tests and Map/Reduce if necessary

• Once program works on small test set, run it on
full data set
– If there are problems, update tests and code

accordingly

• Fine-tune code, do some profiling

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Other Practical Extensions

• User-specified combiner functions for partial combination
within a map task can save network bandwidth (~ mini-reduce)
– Example: Word Count?

• User-specified partitioning functions for mapping intermediate
key values to reduce workers (by default: hash(key) mod R)
– Example: hash(Hostname(urlkey)) mod R

• Ordering guarantees: Processing intermediate k/v pairs in
increasing order
– Example: reduce of Word Count outputs ordered results.

• Custom input and output format handlers

• Single-machine execution option for testing & debugging

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Combiner Functions

• Pre-reduces mapper output before transfer to
reducers (to minimize data transferred)

• Does not change program semantics

• Usually same as reduce function, but has to
have same output type as Map

• Works only for certain types of reduce
functions (commutative and associative (a.k.a.
distributive))
– E.g.: max(5, 4, 1, 2) = max(max(5, 1), max(4, 2))

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Partitioner Functions

• Partitioner determines which keys are assigned
to which reduce task

• Default HashPartitioner essentially assigns keys
randomly

• Create custom partitioner by implementing your
own getPartition() method of Partitioner in
org.apache.hadoop.mapreduce

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Local (Standalone) Mode

• Runs same MapReduce user program as cluster
version, but does it sequentially on a single
machine

• Does not use any of the Hadoop daemons

• Works directly with local file system

– No HDFS, hence no need to copy data to/from HDFS

• Great for development, testing, initial debugging

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Pseudo-Distributed Mode

• Still runs on a single machine, but simulating a real
Hadoop cluster

– Simulates multiple nodes

– Runs all daemons

– Uses HDFS

• For more advanced testing and debugging

• You can also set this up on your laptop

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Programming Language Support

• Java API (native)

• Hadoop Streaming API

– allows writing map and reduce functions in any
programming language that can read from standard
input and write to standard output

– Examples: Ruby, Python

• Hadoop Pipes API

– allows map and reduce functions written in C++ using
sockets to communicate with Hadoop’s TaskTrackers

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

References

• “Web Search for a Planet: The Google Cluster Architecture”, L. Barroso, J.
Dean, U. Hoelzle, IEEE Micro 23(2), 2003.

• “The Google File System”, S. Ghemawat, H. Gobioff, S. Leung, SOSP 2003.

• “MapReduce: Simplified Data Processing on Large Clusters”, J. Dean, S.
Ghemawat, OSDI 2004 (follow-up papers: CACM 2008, CACM 2010).

• “The Hadoop Distributed File System”, K. Shvachko et al, MSST 2010.

• “Hadoop: The Definitive Guide”, T. White, O’Reilly, 3rd edition, 2012.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science

