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Big Data

• Buzzword for challenges occurring in current
data management and analysis

• No longer just storage and retrieval, but also 
complex computations

• Often expressed as the 4 -7 (depending on 
source) V‘s
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1st V: Volume

• Scale of Data
– Scientific applications

(CERN: 70MPixel*40M/s, 
15PB/year)

– Genomics: 
(single genome > 1.5TB)

– Web Data
– …

90% of all data was created
in the last two years!
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2nd V: Velocity

Speed of data and expected reactions

• Stock exchanges (NASDAQ: >35K msg/s, 1ms for common
operations)

• Social Media (>150K msg/s peak on Twitter)

• Environmental Sensors (>100 sensors on a car, ms response
time)

• Web indexing (reindex within minutes, 
queries with less than 0.5 seconds)
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3rd V: Variety

Form(at) of data not uniform

• Structured vs non-structured (or hidden structure): 
relations, 
graph, 
text, 
audio/voice, video, …

• Broad range of sources: 
customers, transactions, 
logs, sensors, …
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4th V: Veracity

Uncertainty of Data

• Data Quality and Completeness

– Sensor readings inconsistent (faults, calibration, …)

– Social media messages contain slang, abbrevations, 
colloqualism, …

– User Profiles faked, duplicated, …

• Interpretation 

– Underlying Model unknown

– Wrong choice of parameters
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http://blog.potterzot.com/2007/09/25/garbage-in-
garbage-out-and-the-desire-to-cover-our-own-ass-is-
ruining-the-world/



Additional/Disputed V‘s

• Value: 
does the analysis yield results that can be used/has
applications (customer analysis, trading, 
business/personal/technology/… improvement)

• Variability: 
properties of data change over time

• Visualization: 
complex data cannot be understood without appropriate
presentation
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Are databases the right tool for these
challenges?
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While databases have many benefits, they
only serve specific niches

http://dilbert.com/strips/comic/1996-02-27/
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Conceptual Limitations
of Relational DBMS

• Well-defined but strict data model
(unordered relations)

• Well-optimizable but limited expression set
(queries+updates)

• Single, strong transaction model
(ACID, Serializability)

• Single interaction model
(store, then query)
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Practical Limitations
of Traditional Relational DBMS

• Limited Scalability (dozens of nodes) 

• Parallel operations low-level or as part of
extremely expensive licensing

• Little extensibility (Imperative SQL)

• Labour-intensive to maintain and tune

• Disk-based operations
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Computational Setting for Big Data
• Computations that need the power of many computers

– large datasets

– use of thousands of CPUs in parallel

• Big data management, storage, and analytics

– cluster as a computer
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What is Hadoop?

• Hadoop is an ecosystem of tools for processing 
“Big Data”.

• Hadoop is an open source project.

• Picks up and advances many design ideas and 
architectures by big data research 

• Starting Point: Google Map/Reduce
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Google Cluster Architecture: Key Ideas

• Single-thread performance doesn’t matter
– For large problems, total throughput/$ is more important than peak 

performance.

• Stuff breaks
– If you have 1 server, it may stay up three years (1,000 days).
– If you have 10,000 servers, expect to lose 10 per day.

• “Ultra-reliable” hardware doesn’t really help
– At large scales, the most reliable hardware still fails, albeit less often

• Software still needs to be fault-tolerant
• Commodity machines without fancy hardware give better performance/$

 Have a reliable computing infrastructure from clusters of unreliable 
commodity PCs.

 Replicate services across many machines to increase request throughput 
and availability.

 Favor price/performance over peak performance.
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Hadoop: Architectural Design Principles

• Linear scalability

– More nodes can do more work within the same time

– Linear on data size, linear on compute resources

• Move computation to data

– Minimize expensive data transfers 

– Data is large, programs are small 

• Reliability and Availability: Failures are common 

• Simple computational model (MapReduce)

– Hides complexity in efficient execution framework

• Streaming data access (avoid random reads)

– More efficient than seek-based data access
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Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)
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The Hadoop Family
MapReduce Distributed computation framework (data processing model

and execution environment)

HDFS Distributed file system

YARN Cluster Resource Management

HBase Distributed, column-oriented database

Hive Distributed data warehouse

Pig Higher-level data flow language and parallel execution 
framework

Mahout Machine learning and data mining library

ZooKeeper Distributed coordination service

Avro Data serialization system (RPC and persistent data storage)

Chukwa System for collecting management data

BigTop Packaging and testing
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A Typical Hadoop Cluster Setup

cluster
switch

rack
switch

…

~ 30-40 servers per rack

1 GB

1-10 GB
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Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)
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Google File System (GFS) Architecture

• Files divided into fixed-sized chunks (64 MB)
– Each chunk gets a chunk handle from the master

– Stored as Linux files

• One master
– Maintains all file system metadata

– Talks to each chunkserver periodically

• Multiple chunkservers
– Store chunks on local disks

– No caching of chunks (not worth it)

• Multiple clients
– Clients talk to the master for metadata operations

– Metadata can be cached at the clients

– Read / write data from chunkservers
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• Single master, multiple chunkservers

• To overcome single-point of failure & scalability bottleneck:

– Use shadow masters

– Minimize master involvement (large chunks; use only for metadata)

GFS Architecture
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Hadoop Distributed File System (HDFS)

• Hadoop has a general-purpose file system abstraction 
(i.e., it can use local files, HDFS, Amazon S3, etc.)

• HDFS is Hadoop’s file system, implements GFS ideas

• Streaming data access
– write-once, read-many-times pattern

– time to read the whole dataset is more important

• HDFS is not a good fit for
– low-latency data access

– lots of small files

– multiple writers, arbitrary file modifications
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Blocks

• HDFS files are broken into block-sized chunks 
(64 MB by default)

• With the (large) block abstraction:

– a file can be larger than any single disk in  the 
network

– storage subsystem is simplified (e.g., metadata 
bookkeeping)

– replication for fault-tolerance and availability is 
facilitated
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Hadoop Main Cluster Components

• HDFS daemons

– NameNode: namespace and block management (~ master in GFS) 

– DataNodes: block replica container (~ chunkserver in GFS)

• MapReduce daemons

– JobTracker: client communication, job scheduling, resource 
management, lifecycle coordination (~ master in Google MR)

– TaskTrackers: task execution module (~ worker in Google MR)

NameNode JobTracker

TaskTracker TaskTracker TaskTracker

DataNodeDataNodeDataNode
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Reading from HDFS
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Writing to HDFS
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Network Distance in Hadoop
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Replica Placement

• Issues to consider: reliability, 
write bandwidth, read 
bandwidth, block distribution.

• Hadoop’s default strategy:
– First replica: on the client 

node (or randomly chosen if 
client is outside the cluster)

– Second replica: random, off-
rack.

– Third replica: same rack as 
second, different node.

– More replicas: randomly 
chosen.

Example Replica Pipeline:
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Coherency Model
• Coherency model describes the data visibility of 

reads and writes for a file.
• In HDFS:

– The metadata for a newly created file is visible in the file 
system namespace.

– The current data block being written is not guaranteed 
to be visible to other readers.

• To force all buffers to be synchronized to all relevant 
datanodes, you can use the sync() method.

• Without sync(), you may lose up to a block of 
(newly written) data in the event of client or system 
failure.
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HDFS Federation & High-Availability

• In latest releases of Hadoop:

– HDFS Federation allows multiple Namenodes, each 
of which manages a portion of the file system 
namespace; the goal is to enhance the scalability of 
the Namenode on very large clusters with many 
files and blocks.

– HDFS High-Availability provides faster recovery 
from Namenode failures using a pair of namenodes
in an active standby configuration.
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Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)
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MapReduce

• a software framework first introduced by 
Google in 2004 to support parallel and fault-
tolerant computations over large data sets on 
clusters of computers

• based on the map/reduce functions commonly 
used in the functional programming world
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MapReduce in a Nutshell

• Given:

– a very large dataset

– a well-defined computation task to be performed on elements of 
this dataset (preferably, in a parallel fashion on a large cluster)

• MapReduce framework:

– Just express what you want to compute (map() & reduce()).

– Don’t worry about parallelization, fault tolerance, data 
distribution, load balancing (MapReduce takes care of these).

– What changes from one application to another is the actual 
computation; the programming structure stays similar.
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MapReduce in a Nutshell

• Here is the framework in simple terms:

– Read lots of data.

– Map: extract something that you care about from each record.

– Shuffle and sort.

– Reduce: aggregate, summarize, filter, or transform.

– Write the results.

• One can use as many Maps and Reduces as needed to 
model a given problem.
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MapReduce vs. Traditional RDBMS

MapReduce Traditional RDBMS

Datasize Petabytes Gigabytes

Access Batch Interactive and batch

Updates Write once, read many 

times

Read and write many

times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear Non-linear (general SQL)
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Functional Programming Foundations

• map in MapReduce map in FP

• reduce in MapReduce fold in FP

• Note: There is no precise 1-1 correspondence, 
but the general idea is similar.
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map() in Haskell
• Create a new list by applying f to each element of the input list.

• Definition of map:
map :: (a  b)  [a]  [b] -- type of map

map f [] = [] -- the empty list case

map f (x:xs) = f x : map f xs -- the non-empty list case

• Example: Double all numbers in a list.
Haskell-prompt > map ((*) 2) [1, 2, 3]

[2, 4, 6]
f f f f f f
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Implicit Parallelism in map()

• In a purely functional setting, an element of a list being 
computed by map cannot see the effects of the 
computations on other elements.

• If the order of application of a function f to elements in 
a list is commutative, then we can reorder or parallelize 
execution.

• This is the “secret” that MapReduce exploits.
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fold() in Haskell
• Move across a list, applying a function f to each 

element plus an accumulator. f returns the next 
accumulator value, which is combined with the next 
element of the list.

• Two versions: fold left & fold right

f f f f f returned

initial

accumulators
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fold() in Haskell
• Definition of fold left:

foldl :: (b  a  b)  b  [a]  b -- type of foldl

foldl f y [] = y -- the empty list case

foldl f y (x:xs) = foldl f (f y x) xs -- the non-empty list case

• Definition of fold right:

foldr :: (a  b  b)  b  [a]  b -- type of foldr

foldr f y [] = y -- the empty list case

foldr f y (x:xs) = f x (foldr f y xs) -- the non-empty list case

• Example: Compute the sum of all numbers in a list.

Haskell-prompt > foldl (+) 0 [1, 2, 3] foldl (+) 0 [1, 2, 3]

6  (((0 + 1) + 2) + 3)

 6
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reduce() in Haskell

• reduce is a type-specialized version of fold.

• Definition of reduce:

reduce :: (a  a  a)  a  [a]  a   -- type of reduce

reduce = foldl -- definition of reduce
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MapReduce Basic Programming Model

• Transform a set of input key-value pairs to a 
set of output values:

– Map: (k1, v1)  list(k2, v2)

– MapReduce library groups all intermediate pairs 
with same key together.

– Reduce: (k2, list(v2))  list(v2)
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MapReduce Canonical Example
“Count word occurrences in a set of documents.”

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

map(k1, v1)  list(k2, v2) reduce(k2, list(v2)) list(v2)
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Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)
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MapReduce Parallelization

• Multiple map() functions run in parallel, creating 
different intermediate values from different input 
data sets.

• Multiple reduce() functions also run in parallel, each 
working on a different output key.

• All values are processed independently.

• Bottleneck: The reduce phase can’t start until the 
map phase is completely finished.
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MapReduce Parallel Processing Model

Data store 1 Data store n
map

(key 1, 

values...)

(key 2, 

values...)
(key 3, 

values...)

map

(key 1, 

values...)

(key 2, 

values...)
(key 3, 

values...)

Input key*value 

pairs

Input key*value 

pairs

== Barrier ==  : Aggregates intermediate values by output key

reduce reduce reduce

key 1, 

intermediate 

values

key 2, 

intermediate 

values

key 3, 

intermediate 

values

final key 1 

values

final key 2 

values

final key 3 

values

...
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Hadoop Main Cluster Components

• HDFS daemons

– NameNode: namespace and block management (~ master in GFS) 

– DataNodes: block replica container (~ chunkserver in GFS)

• MapReduce daemons

– JobTracker: client communication, job scheduling, resource 
management, lifecycle coordination (~ master in Google MR)

– TaskTrackers: task execution module (~ worker in Google MR)

NameNode JobTracker

TaskTracker TaskTracker TaskTracker

DataNodeDataNodeDataNode
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Shuffle & Sort Overview
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Moving Data from Mappers to Reducers

• “Shuffle & Sort” phase

– synchronization barrier between map and reduce phase

– one of the most expensive parts of a MapReduce
execution

• Mappers need to separate output intended for 
different reducers

• Reducers need to collect their data from all 
mappers and group it by key

– keys at each reducer are processed in order
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MapReduce Data Locality

• Goal: To conserve network bandwidth.

• In GFS, data files are divided into 64 MB blocks and 3 
copies of each are stored on different machines.

• Master program schedules map() tasks based on the 
location of these replicas:

– Put map() tasks physically on the same machine as one of 
the input replicas (or, at least on the same rack / network 
switch).

• This way, thousands of machines can read input at 
local disk speed. Otherwise, rack switches would 
limit read rate.
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MapReduce Scheduling

• One master, many workers
– Input data split into M map tasks (typically 64 MB (~ chunk size in GFS))
– Reduce phase partitioned into R reduce tasks (hash(k) mod R)
– Tasks are assigned to workers dynamically

• Master assigns each map task to a free worker
– Considers locality of data to worker when assigning a task
– Worker reads task input (often from local disk)
– Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker
– Worker reads intermediate k/v pairs from map workers
– Worker sorts & applies user’s reduce operation to produce the output
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Choosing M and R

• M = number of map tasks, R = number of reduce tasks
• Larger M, R: creates smaller tasks, enabling easier load 

balancing and faster recovery (many small tasks from 
failed machine)

• Limitation: O(M+R) scheduling decisions and O(M*R) 
in-memory state at master
– Very small tasks not worth the startup cost

• Recommendation:
– Choose M so that split size is approximately 64 MB
– Choose R a small multiple of the number of workers; 

alternatively choose R a little smaller than #workers to 
finish reduce phase in one “wave”
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MapReduce Fault Tolerance (I)
On worker/ JobTracker failure:

• Master/TaskTracker detects failure via periodic heartbeats.

• Both completed and in-progress map tasks on that worker 
should be re-executed (→ output stored on local disk).

• Only in-progress reduce tasks on that worker should be re-
executed (→ output stored in global file system).

• All reduce workers will be notified about any map re-
executions.
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MapReduce Fault Tolerance (II)

• On master/JobTracker failure:
– Google: 

State is check-pointed to GFS: new master recovers & 
continues.

– Hadoop cannot deal with JobTracker failure
– Could use Google’s proposed JobTracker take-over 

idea, using ZooKeeper to make sure there is at most 
one JobTracker

– Improvements in progress in newer releases…

• Robustness:
– Example: Lost 1600 of 1800 machines once, but finished fine.
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Stragglers & Backup Tasks

• Problem: “Stragglers” (i.e., slow workers) significantly 
lengthen the completion time.

• Solution: Close to completion, spawn backup copies of 
the remaining in-progress tasks.

– Whichever one finishes first, “wins”.

• Additional cost: a few percent more resource usage.

• Example: A sort program without backup = 44% longer.
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Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)
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MapReduce Job Execution in Hadoop
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Basic MapReduce Program Design

• Tasks that can be performed independently on a data 
object, large number of them: Map

• Tasks that require combining of multiple data 
objects: Reduce

• Sometimes it is easier to start program design with 
Map, sometimes with Reduce

• Select keys and values such that the right objects end 
up together in the same Reduce invocation

• Might have to partition a complex task into multiple 
MapReduce sub-tasks
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MapReduce Development Steps

• Write Map and Reduce functions
– Create unit tests

• Write driver program to run a job
– Can run from IDE with small data subset for testing
– If test fails, use IDE for debugging
– Update unit tests and Map/Reduce if necessary

• Once program works on small test set, run it on 
full data set
– If there are problems, update tests and code 

accordingly

• Fine-tune code, do some profiling
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Other Practical Extensions

• User-specified combiner functions for partial combination 
within a map task can save network bandwidth (~ mini-reduce)
– Example: Word Count?

• User-specified partitioning functions for mapping intermediate 
key values to reduce workers (by default: hash(key) mod R)
– Example: hash(Hostname(urlkey)) mod R

• Ordering guarantees: Processing intermediate k/v pairs in 
increasing order
– Example: reduce of Word Count outputs ordered results.

• Custom input and output format handlers

• Single-machine execution option for testing & debugging
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Combiner Functions

• Pre-reduces mapper output before transfer to 
reducers (to minimize data transferred)

• Does not change program semantics

• Usually same as reduce function, but has to 
have same output type as Map

• Works only for certain types of reduce 
functions (commutative and associative (a.k.a. 
distributive))
– E.g.: max(5, 4, 1, 2) = max(max(5, 1), max(4, 2))
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Partitioner Functions

• Partitioner determines which keys are assigned 
to which reduce task

• Default HashPartitioner essentially assigns keys 
randomly

• Create custom partitioner by implementing your 
own getPartition() method of Partitioner in 
org.apache.hadoop.mapreduce
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Local (Standalone) Mode

• Runs same MapReduce user program as cluster 
version, but does it sequentially on a single 
machine

• Does not use any of the Hadoop daemons

• Works directly with local file system

– No HDFS, hence no need to copy data to/from HDFS

• Great for development, testing, initial debugging
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Pseudo-Distributed Mode

• Still runs on a single machine, but simulating a real 
Hadoop cluster

– Simulates multiple nodes

– Runs all daemons

– Uses HDFS

• For more advanced testing and debugging

• You can also set this up on your laptop
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Programming Language Support

• Java API (native)

• Hadoop Streaming API

– allows writing map and reduce functions in any 
programming language that can read from standard 
input and write to standard output

– Examples: Ruby, Python

• Hadoop Pipes API

– allows map and reduce functions written in C++ using 
sockets to communicate with Hadoop’s TaskTrackers
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Overview of this Lecture Module

• Background

• Cluster File Storage
– GFS

– HDFS

• Computation: MapReduce
– Model

– Implementation

– Programming and Usage

• The Hadoop Ecosystem (next lecture)
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