
Systems Infrastructure for Data
Science

Web Science Group

Uni Freiburg

WS 2014/15

Lecture V: Query Optimization

Finding the “Best” Query Plan

• We already saw that there may be more than one
way to answer a given query.

– Which one of the join operators should we pick? With
which parameters (block size, buffer allocation, ...)?

• The task of finding the best execution plan is, in fact,
the “holy grail” of any database implementation.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 3

Query Plan Generation Process

• Parser: syntactical/semantical analysis

• Rewriting: optimizations independent
of the current database state (table
sizes, availability of indexes, etc.)

• Optimizer: optimizations that rely on a
cost model and information about the
current database state

 The resulting plan is then evaluated by
the system’s execution engine.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 4

Impact on Performance
• Finding the right plan can dramatically impact performance.

• In terms of execution times, these differences can easily
mean “seconds vs. days”.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 5

The SQL Parser
• Besides some analyses regarding the syntactical and

semantical correctness of the input query, the parser
creates an internal representation of the input query.

• This representation still resembles the original query:
– Each SELECT-FROM-WHERE clause is translated into a query block.

– Each Ri can be a base relation or another query block.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 6

Finding the “Best” Execution Plan

• The parser output is fed into a rewrite engine

which, again, yields a tree of query blocks.

• It is then the optimizer’s task to come up with

the optimal execution plan for the given query.

• Essentially, the optimizer

1. enumerates all possible execution plans,

2. determines the quality (cost) of each plan, then

3. chooses the best one as the final execution plan.

• Before we can do so, we need to answer the question:

– What is a “good” execution plan?

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 7

Cost Metrics
• Database systems judge the quality of an execution plan

based on a number of cost factors, e.g.,

– the number of disk I/Os required to evaluate the plan,

– the plan’s CPU cost,

– the overall response time observable by the user as well as the
total execution time.

• A cost-based optimizer tries to anticipate these costs and
find the cheapest plan before actually running it.

– All of the above factors depend on one critical piece of
information: the size of (intermediate) query results.

– Database systems, therefore, spend considerable effort into
accurate result size estimates.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 8

Result Size Estimation
• Consider a query block corresponding to a simple

SELECT-FROM-WHERE query Q.

• We can estimate the result size of Q based on

– the size of the input tables, |R1|, …, |Rn|, and

– the selectivity sel() of the predicate predicate-list.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 9

Table Cardinalities
• If not coming from another query block, the size |R| of an

input table R is available in the DBMS’s system catalogs.

• E.g., IBM DB2:

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 10

Selectivity Estimation

• General selectivity rules make a fair amount of
assumptions:

– uniform distribution of data values within a column,

– independence between individual predicates.

• Since these assumptions aren’t generally met, systems
try to improve selectivity estimation by gathering data
statistics.

– These statistics are collected offline and stored in the system
catalog.
• Example: IBM DB2: RUNSTATS ON TABLE ...

– The most popular type of statistics are histograms.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 11

Describing Value Distribution

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 12

Figure © A. Kemper

Parametric Distribution

Histogram

Example: Histograms in IBM DB2

• SYSCAT.COLDIST also
contains information like:
– the n most frequent values and

their frequency,
– the number of distinct values in

each histogram bucket.

• Some explanation:
– SEQNO: Frequency rank
– COLVALUE is a single value
– VALCOUNT with TYPE=Q

shows the number of colums
with value <= COLVALUE
(Why?)

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 13

Join Optimization (R S T)
• We’ve now translated the query into a graph of query blocks.

– Query blocks essentially are multi-way Cartesian products with a
number of selection predicates on top.

• We can estimate the cost of a given execution plan.

– Use result size estimates in combination with the cost for individual
join algorithms that we saw in the previous lecture.

• We are now ready to enumerate all possible execution plans,
i.e., all possible 3-way join combinations for each query block.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 14

R

How Many Combinations Are there?

• A join over n+1 relations R1, …, Rn+1 requires n binary joins.

• Its root-level operator joins sub-plans of k and n-k-1 join
operators (0 ≤ k ≤ n-1):

• Let Ci be the number of possibilities to construct a binary
tree of i inner nodes (join operators):

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 15

Catalan Numbers

• This recurrence relation is satisfied by Catalan numbers
describing the number of ordered binary trees with n+1
leaves:

• For each of these trees, we can permute the input
relations R1, …, Rn+1, leading to:

possibilities to evaluate an (n+1)-way join.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 16

Search Space
• The resulting search space is enormous:

• And we haven’t yet even considered the use of k different
join algorithms (yielding another factor of k(n-1))!

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 17

Dynamic Programming

• The traditional approach to master this search space is the
use of dynamic programming.

• Idea:

– Find the cheapest plan for an n-way join in n passes.

– In each pass k, find the best plans for all k-relation sub-queries.

– Construct the plans in pass k from best i-relation and (k-i)-relation
sub-plans found in earlier passes (1 ≤ i < k).

• Assumption:

– To find the optimal global plan, it is sufficient to only consider the
optimal plans of its sub-queries.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 18

Example: Four-relation Join

• Pass 1: (best 1-relation plans)

– Find the best access path to each of the Ri individually.

• Pass 2: (best 2-relation plans)

– For each pair of tables Ri and Rj, determine the best order to join
Ri and Rj (Ri Rj or Rj Ri ?):

• Pass 3: (best 3-relation plans)

– For each triple of tables Ri, Rj, and Rk, determine the best three-
table join plan, using sub-plans obtained so far:

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 19

12 plans
to consider

24 plans
to consider

Example: Four-relation Join (cont’d)

• Pass 4: (best 4-relation plans)
– For each set of four tables Ri, Rj, Rk, and Rl, determine the best

four-table join plan, using sub-plans obtained so far:

Overall, we looked at only 50 (sub-)plans (12+24+14=50
instead of the possible 120 four-way join plans shown in
slide # 16).

All decisions required the evaluation of simple sub-plans
only (no need to re-evaluate the interior of optPlan()).

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 20

14 plans
to consider

Dynamic Programming Algorithm

 possible_joins(R, S) enumerates the possible joins between R
and S (nested loops join, merge join, etc.).

 prune_plans(set) discards all but the best plan from set.
Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 21

Dynamic Programming: Discussion

• find_join_tree_dp() draws its advantage from filtering
plan candidates early in the process.

– In our example, pruning in Pass 2 reduced the search space
by a factor of 2, and another factor of 6 in Pass 3.

• Some heuristics can be used to prune even more plans:

– Try to avoid Cartesian products.

– Produce left-deep plans only (see the next slides).

• Such heuristics can be used as a handle to balance plan
quality and optimizer runtime.

– Example: IBM DB2:

SET CURRENT QUERY OPTIMIZATION = n

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 22

Left/Right-Deep vs. Bushy Join Trees

• The dynamic programming algorithm explores all
possible shapes a join tree could take:

• Actual systems often prefer left-deep join trees (e.g.,
the seminal IBM System R prototype considered only
left-deep plans).
– The inner relation is always a base relation.

– Allows the use of index nested loops join.

– Easier to implement in a pipelined fashion.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 23

Joining Many Relations

• Dynamic programming still has exponential resource
requirements:

– time complexity: O(3n)

– space complexity: O(2n)

• This may still be too expensive

– for joins involving many relations (~ 10 - 20 and more),

– for simple queries over well-indexed data (where the right
plan choice should be easy to make).

• The greedy join enumeration algorithm targets
solving this case.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 24

Greedy Join Enumeration

 In each iteration, choose the cheapest join that can be made
over the remaining sub-plans.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 25

Greedy Join Enumeration: Discussion

• Greedy join enumeration:

– The greedy algorithm has O(n3) time complexity.
• The loop has O(n) iterations.

• Each iteration looks at all remaining pairs of plans in worklist: an
O(n2) task.

• Other join enumeration techniques:

– Randomized algorithms: randomly rewrite the join tree one
rewrite at a time; use hill-climbing or simulated annealing
strategy to find optimal plan.

– Genetic algorithms: explore plan space by combining plans
(“creating offspring”) and altering some plans randomly
(“mutations”).

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 26

Physical Plan Properties

• Consider the query:

where table ORDERS is indexed with a clustered index
OK_IDX on column O_ORDERKEY.

• Possible table access plans are:

 ORDERS : full table scan: estimated I/Os: NORDERS

index scan: estimated I/Os: NOK_IDX + NORDERS

 LINEITEM : full table scan: estimated I/Os: NLINEITEM

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 27

Physical Plan Properties
• Since the full table scan is the cheapest access method for

both tables, our join algorithms will select them as the
best 1-relation plans in Pass 1 (in both DP and GJE).

• To join the two scan outputs, we now have the following
choices:

– nested loops join, or

– hash join, or

– sort both inputs, then use merge join.

• Hash join or sort-merge join are probably the preferable
candidates here, incurring a cost of ~ 2(NORDERS + NLINEITEM).

– Overall cost: NORDERS + NLINEITEM + 2(NORDERS + NLINEITEM).

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 28

A Better Plan

• It is easy to see, however, that there is a better way to
evaluate the query:
1. Use an index scan to access ORDERS. This guarantees that

the scan output is already in O_ORDERKEY order.

2. Then only sort LINEITEM, and

3. join using merge join.

 Overall cost: (NOK_IDX + NORDERS)+ 2 * NLINEITEM

• Although more expensive as a standalone table access
plan, the use of the index pays off in the overall plan.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 29

1 2+3

Interesting Orders

• The advantage of the index-based access to ORDERS is
that it provides beneficial physical properties.

• Optimizers, therefore, keep track of such properties by
annotating candidate plans.

• IBM System R introduced the concept of interesting
orders, determined by
– ORDER BY or GROUP BY clauses in the input query, or

– join attributes of subsequent joins (merge join).

• In prune_plans(), retain
– the cheapest “unordered” plan and

– the cheapest plan for each interesting order.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 30

Query Rewriting

• Join optimization essentially takes a set of relations
and a set of join predicates to find the best join order.

• By rewriting query graphs beforehand, we can
improve the effectiveness of this procedure.

• The query rewriter applies (heuristic) rules, without
looking into the actual database state (no information
about cardinalities, indexes, etc.). In particular, it

– Pushes predicates and projections

– rewrites predicates, and

– unnests queries.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 31

Predicate/Projection Pushdown

• Applies heuristics to exploits equivalence
transformations in relational algebra

• Some examples:
1. c1c2 ... cn

(R)  c1
(c2

(…(cn
(R)) …))

2. c1
(c2

((R))  c2
(c1

((R))
3. If L1  L2  …  Ln:

L1
( L2

(…( Ln
(R)) …))  L1

(R)
4. If selection only refers to attributes A1, …, An

A1, …, An
(c(R))  c (A1, …, An

(R))
5. , ,  und A are commutative

R Ac S  S Ac R (we already used this)

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 32

More equivalence rules

1. If c only accesses attributes in R
c(R Aj S)  c(R) Aj S

2. If c is a conjunction„c1  c2“,
c1 only accesses attribues in R, c2 in S

c(R A j S)  c(R) A j (c2
(S))

3. Similar rules exist for projection

Heuristics:
• Push down predicates
• Push down projection

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 33

Example

• Direct flights from Basel to New York
Select c.dep

from Airport n, Connection c,

Airport p

where n.loc = “New York” and

n.code = c.to and

c.from = p.code and

p.loc = “Basel”

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 34

c

p





n.loc = ´New York´ and ...

c.dep

n

Splitting Predicates

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 35



n.loc=. ´New York ´

p.loc = ´Basel´

c.from=p.code

n.code=c.to

c

p





n.loc = ´New York´ and ...

c.dep

n

c

p



n

Selection Pushing

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 36



n.loc=. ´New York ´

p.loc = ´Basel´

c.from=p.code

n.code=c.to

c

p



n

c
p





c.from=p.code

c.dep

p.loc= `Basel`

n.loc= `NY`

n.code=c.to

n

Introducing Joins

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 37

c
p





c.from=p.code

c.dep

p.loc= `Basel`

n.loc= `NY`

n.code=c.to

n c
p

c.dep

p.loc= `Basel`

n

n.loc= `NY`

An.code=c.to

Ac.from=p.code

What about projections?

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 38

c
p

c.dep

p.loc= `Basel`

n

n.loc= `NY`

An.code=c.to

Ac.from=p.code

Predicate Simplification
• Example: Rewrite the following query

• into the following:

• Predicate simplification may enable the use of indexes and
simplify the detection of opportunities for join algorithms.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 39

Additional Join Predicates
• Implicit join predicates as in

• can be turned into explicit ones:

• This enables plans like:
– Otherwise, we would have a Cartesian product between A and C.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 40

Nested Queries
• SQL provides a number of ways to write nested queries.

– Uncorrelated sub-query:

– Correlated sub-query:

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 41

Query Unnesting

• Taking query nesting literally might be expensive.
– An uncorrelated query, e.g., need not be re-evaluated for

every tuple in the outer query.

• Often times, sub-queries are only used as a syntactical
way to express a join (or a semi-join).

• The query rewriter tries to detect such situations and
make the join explicit.

• This way, the sub-query can become part of the regular
join order optimization.

 Won Kim, “On Optimizing an SQL-like Nested Query”, ACM TODS 7:3, 1982.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 42

Summary

• Query Parser
– Translates input query into (SFW-like) query blocks.

• Query Rewriter
– Logical (database state-independent) optimizations

• predicate/projection pushdown
• predicate simplification
• query unnesting

• Query Optimizer (join optimization)
– Find “best” query execution plan based on

• a cost model (considering I/O cost, CPU cost, ...)
• data statistics (histograms)
• dynamic programming, greedy join enumeration
• physical plan properties (interesting orders)

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 43

