Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2014/15



Lecture II: Indexing



Indexing

[ Web Forms ] [ Applications | |'f SOL Interface )
SOL Commands
L
Executor Parser
Operator Evaluator Optimizer O
<
, -
Transaction |F— Files and Access Methods 9
Manager | w
Buffer Manager Recovery <
Lock T Manager o
o
Manager I Disk Space Manager -
T
B — DBMS | ©

[ data file @ Database v

Figure inspired by RamakrishnanGe hrke: “Database Manage ment Systems”, MoGraw-Hill 2003.

w



Database File Organization and Indexing

* Remember: Database tables are implemented as files
of records:
— A file consists of one or more pages.
— Each page contains one or more records.
— Each record corresponds to one tuple in a table.

* File organization: Method of arranging the records in
a file when the file is stored on disk.

* Indexing: Building data structures that organize data
records on disk in (multiple) ways to optimize search
and retrieval operations on them.



File Organization

* Given a query such as the following:

SELECT *
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

* How should we organize the storage of our
data files on disk such that we can evaluate
this query efficiently?




Heap Files?

SELECT =*
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

* A heap file stores records in no particular order.

e Therefore, CUSTOMER table consists of records that are
randomly ordered in terms of their ZIPCODE.

* The entire file must be scanned, because the qualifying
records could appear anywhere in the file and we don’t
know in advance how many such records exist.



Sorted Files?

SELECT =*
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

e Sort the CUSTOMERS table in ZIPCODE order.

* Then use binary search to find the first qualifying
record, and scan further as long as ZIPCODE < 8999.

W

SCdn

4104x*
4123*
4222%
4450%
4528%
5012x*
6330%
6423*
8050%
8105%*
8180
8245%
8280%
8406%
8570%
8600%
8604x*
8700
—8808*
8887
8910%*
8953*
¥ 9016%*
9200%*
9532%




Are Sorted Files good enough?

8910x*
8953 %
9016*

8808x*
8887 *
9200 *
9532 %

8406*
8570 *
8600 *
8604 *
8700x*

8050 %
8105 %
8245*
8280 %

8180%*

5012x*
6330
6423 *

*
(2]
o
—
=f

4222%
4450 %
4528%

4104 *

a1
4]

. age o dEE N age 12
(] &

LY

page 0 pagel page2 page3 page4 pages page6 page7 paged

-—-U
1]

[ajx]

T

(]

sCan
v’ Scan phase: We get sequential access during this phase.

X Search phase: We need to read log,N records during this phase
(N: total number of records in the CUSTOMER table).
— We need to fetch as many pages as are required to access these records.
— Binary search involves unpredictable jumps that makes prefetching
difficult.

X What about insertions and deletions?



Tree-based Indexing

e Can we reduce the number of pages fetched during
the search phase?

* Tree-based indexing:
— Arrange the data entries in sorted order by search key value
(e.g., ZIPCODE).

— Add a hierarchical search data structure on top that directs
searches for given key values to the correct page of data
entries.

— Since the index data structure is much smaller than the data
file itself, the binary search is expected to fetch a smaller
number of pages.

— Two alternative approaches: ISAM and B*-tree.



Indexed Sequential Access Method

ISAM

saded xapul

sagded
e1ep

" *ZESH

*0026
*9106

*E£G68
*0168

* /888

" %8088

*00.L8
*7098

*0098
*0.LS8

L | ¥9078

*(0828

| *S¥Z8

*0818

*G018

71 %0508

*ECV9
*0EED

*Z10S
*8CS¥

*QS¥¥
*CCoT

*EC1IV

*7OTT

All nodes are of the size of a page.

-

key
kn EELH

pointer

-

k1;m k> P

index entry

}D

Q
(o]0]
©
o
5 5
Q
Qo w.mw
nw o 5
Q 2
rWn
£ 05 &
o 0
+ O
55
O
Smt
©
wn
Q& o
T o ©
S © 5
c O
I i A
(©
| | @
V)

P

1

Key k. serves as a “separator” for the

pages pointed to by p, , and p..

$
|
b

10



index pages

data pages

ISAM Index Structure

* Index pages stored at non-leaf nodes

* Data pages stored at leaf nodes
— Primary data pages & Overflow data pages

- P -"-\-\.\_\_\_\_\_-----
Non-leaf — ' T
Pages ll_ v l_
— 71 I 7

4 3 4 ' 3
Leaf .. R .o - oa
Pages :;". ;} v R 4

Overflow --———--- » iy
page

Primary pages




Updates on ISAM Index Structure

* |SAM index structure is inherently static.

— Deletion is not a big problem:
e Simply remove the record from the corresponding data page.

* If the removal makes an overflow data page empty, remove that
overflow data page.

* If the removal makes a primary data page empty, keep it as a
placeholder for future insertions.

* Don’t move records from overflow data pages to primary data
pages even if the removal creates space for doing so.

— Insertion requires more effort:

* If there is space in the corresponding primary data page, insert
the record there.

e Otherwise, an overflow data page needs to be added.

* Note that the overflow pages will violate the sequential order.
» ISAM indexes degrade after some time.



ISAM Example

e Assume: Each node can hold two entries.

Root g,
40
/ —
I e
e
T,
20 | | 33 21 | | 63
: | ) | \
/ \ .

/ \
! ) . .
# 7 Y ¢ | !

10 | 15° 20 | 27" Kl I T 40" ‘ 467 1" Ly 63* | 97"




After Inserting 23%*, 48*, 41%*, 42*

Root
Index 40 .
Pages / T
—
e,
20|33 51| |63
\
" 'lll..

Primary ! 5
Leaf 10° ‘ 15 20¢ | 27 33+ | 37* 40* | 46* 59* | 55* | | g3+ | 97
Pages .

1 lI|

L v
Overflow 23" ‘ 48*| 41" [€<— Overflow data
Pages T pages had to

<——| be added.

42"

14




... Then Deleting 42*, 51*, 97*

51 appears in index page,

ks but not in the data page.

/ .-q---"‘ﬁ-. l

210 33 | 63
L
II". .-'JII 1 III"-.

10 ‘15 20 2T 37 40 ‘ 46* 25+ B3
v v
738 ‘ 48+ | a1
«—| The empty overflow

data page is removed.

15



ISAM: Overflow Pages & Locking

The non-leaf pages that hold the index data are static;
updates affect only the leaf pages.

» May lead to long overflow chains.

Leave some free space during index creation.
» Typically ~ 20% of each page is left free.

Since ISAM indexes are static, pages need not be locked
during index access.

— Locking can be a serious bottleneck in dynamic tree indexes
(particularly near the root node).

ISAM may be the index of choice for relatively static data.



B*-trees: A Dynamic Index Structure

e The B*-tree is derived from the ISAM index, but is
fully dynamic with respect to updates.

— No overflow chains; B*-trees remain balanced at all times.

— Gracefully adjusts to insertions and deletions.

— Minimum occupancy for all B*-tree nodes (except the
root): 50% (typically: 67 %).
— Original version:

e B-tree: R. Bayer and E. M. McCreight, “Organization and
Maintenance of Large Ordered Indexes”, Acta Informatica, vol. 1,
no. 3, September 1972.



B*-trees: Basics

e B*-trees look like ISAM indexes, where
— leaf nodes are, generally, not in sequential order on disk
— leaves are typically connected to form a doubly-linked list

— leaves may contain actual data (like the ISAM index) or just
references to data pages (e.g., record ids (rids))
 We will assume the latter case, since it is the more common one.

— each B*-tree node contains between d and 2d entries (d is
the order of the B*-tree; the root is the only exception).

| | I | | U | S



Oy B L I W ] —

WO 00 =

10

Searching a B*-tree

Function: search (k)
return tree_search (k, root):

Function: tree_search (k, node)

if node is a leaf then
return node;

switch k do
case k < kg

L return tree _search (k, p,);
case k; < k < k;.,
return tree_search (k, p;);
case K,y < k
return tree_search (k, psi);

* Function search (k)
returns a pointer to the
leaf node that contains
potential hits for search
key k.

* Node page layout:

index entry  pointer  key

— o >
-

}@ ki P k> Pal - Kn ﬁi‘
’ ¢

19




Insertion to a B*-tree: Overview

 The B*-tree needs to remain balanced after every update
(i.e., every root-to-leaf path must be of the same length).

» We cannot create overflow pages.

e Sketch of the insertion procedure for entry <k, p> (key
value k pointing to data page p):
1. Find leaf page n where we would expect the entry for k.

2. If n has enough space to hold the new entry (i.e., at most
2d-1 entries in n), simply insert <k, p> into n.

3. Otherwise, node n must be split into n and n’, and a new
separator has to be inserted into the parent of n.

Splitting happens recursively and may eventually lead to
a split of the root node (increasing the height of the tree).



Insertion to a B*-tree: Example

o
o
L
oo
" Trmedeo
™N|O o |0
— | O o |~
O[O I~
L | oo o | h
v .
/ \ “hog]\ehlﬁ 11 r‘redi:?
MmN |O | N|m|O|(Wwn o | oo« O |0 |~ lwo|o
IS N RITa R R — |0 O w o o~ C oo W — |
O = WD O O | =H W (w |[WO [~ |CO | O O |
III ! IIII II : |I i Il I|II |I 1 IIII |I ! IIII II
[l i‘ﬂdf‘j Lo ni::-deﬂ Lol node g /o nEdeE o] nLr:Ie? L node 8

L pointers to data pages - - -

* Insert new entry with key 4222,

— Enough space in node 3, simply insert without split.
— Keep entries sorted within nodes.



Insertion to a B*-tree: Example

o
o
0
0
_ -~ Tmede o 3
~lmlo| | olw
— (N0 o
o< | N ~|o
D |© | ©|d®
/ od&Et— \ “hede 2
_ .;'"r . I — . Y
m|ln|o|w| (oo M| (w0 o< o|o|w o | [~ w|o
NlNW| N [—|m aNn|o WO oo o|o|w — | O
N 0| |o|m <t | O | — o | < D (WD | © I~ |0 |0 ol
< | ||| [ |© O |00 |0 @ | 00 |60 | o 0 |00 |0 s
node 3 node 4 node g node g node & node 7 node &
new separator_ |&
() <
Insert key 6330. new entry 3
— Must split node 4. ~lo o P P
- R
— New separator goes into node 1 218 IR

(including pointer to new page).

node 4

new node g

22




Insertion to a B*-tree: Example

m|o
S
= | LD
w0
o e oo ol
| v O o0 O |
oo — | & ~| o
=H [ D) 00 | O jvo R o)’
de 1 \ £12 \ de 2
\ \
Ay AY -y
< | =1l Nlo mlo wlow ol olo| olo~| | |olo
O N TR lag () (a1 [T O |0 |=H o = [ i =lle](e (O
™ [y O |=H (D o) O |0 O [=1 L (L D [~ [CO |00 O
= |<H = |<H [<H w1 w0 QO (0O oD 00|00 QO |00 |00 0000 | 0O (5][e2}
node 3 node 1 node 4 node g node 10 node g node 6 node 7 node 8
. .
After 8180, 8245, insert key 4104. new separator o
— Must split node 3. L |
- from leaf split ©
— Node 1 overflows => split it! N
— New separator goes into root. Q15 B
. . . o™ E — [
* Note: Unlike during leaf split, separator = @]
m:ud-:‘-1 new node 12

key does not remain in inner node.

23



Insertion to a B*-tree: Root Node Split

Splitting starts at the leaf level and continues
upward as long as index nodes are fully occupied.
Eventually, this can lead to a split of the root node:
— Split like any other inner node.

— Use the separator to create a new root.

The root node is the only node that may have an
occupancy of less than 50 %.

This is the only situation where the tree height
Increases.



W 00 = Thun B

10

12
13

14
15

Insertion Algorithm

Function: tree_insert (k, rid, node)

if node is a leaf then
return leaf_insert (k, rid, node):;

else

switch k do

case k < kg,
L (sep, ptr) —[tree_insert (k, rid, po) ;

case ki < k < kit
(sep, ptr) «—|tree_insert (k, rid, pi) ;

case kog < k
i (sep, ptr) < [tree_insert (k, rid, p) ;

if sep is null then

else

return

return (null, null);

split (sep, ptr, node);

» see tree_search ()

25



—

W 00 -1 O un Boue

°

—r

W 00 -1 O un o W

°

—
—k

Function: 1eaf_insert (k, rid, node)

if another entry fits into node then

else

insert (k, rid) into node ;
return (null, null);

allocate new leaf page p;
take { (kF.pi) .- (kD Poa) } .= entries from node U { (k, ptr)}
leave entries (k\", p," ), ..., (kj,pg ) in node;
\» move entries s’kd+1,pd+1} kG, pl) top;

return (k}.,,p) 2d+1  2d+1

Function: split (k, ptr, node)

if another entry fits into node then

else

insert (k, ptr) into node ;
return (null, null);

allocate new leaf page p;
take { (k. pi). ..., (kiyys Poasa) | i= entries from node U { (k, ptr) }
leave entries (k. p; ), .. {k; pL)in node;

- + + +
move entrlis {.k ,pdﬂ}? (kT pTy) top,
fe{‘p_*—_ﬁ_o d—+1 “: j!ébf; 2d+1  2d+1

return (k. ., p);

26



1 Function: insert (k, rid)

2 (key, ptr) «— [tree_insert (k, rid, root);
3 if key is not nullthen

4 allocate new root page r;

5 populate n with

6 Po < root;
7
8
9

ki < key;
p: — ptr;
root «— r:

* jnsert (k, rid) is called from outside.

* Note how leaf node entries point to rids, while inner
nodes contain pointers to other B*-tree nodes.

27



Deletion from a B*-tree

If a node is sufficiently full (i.e., contains at least d+1
entries), we may simply remove the entry from the node.

— Note: Afterwards, inner nodes may contain keys that no longer
exist in the database. This is perfectly legal.

Merge nodes in case of an underflow (i.e., “undo” a split):

o mlo oo
©|N|O ©| S
< | <t |0 <'| D
M| WO |0 n]erge |

& \, — I'.

P o (inner nodes) alalolo

Nk 0 |||

N|o o N|o||a

<t | w0 €0 < |w |0 |©

“Pull” separator (i.e., key 6423) into merged node.



Deletion from a B*-tree

* |tis not that easy:

olmo oMo
DN IC DoIMN O
<H [<H (LD = |00 | W
™[O |0 ? ™ |0 |
ofev]en o redistribution [al« n|o
(=[N oo | o] |00
|| 00 (] ™MD = | Y
=H (LD | LD 0o =H | LD w00

* Merging only works if two neighboring nodes were
50% full.

 Otherwise, we have to re-distribute:

— “rotate” entry through parent



B*-trees in Real Systems

* Actual systems often avoid the cost of merging and/or
redistribution, but relax the minimum occupancy rule.

 Example: IBM DB2 UDB

— The “MINPCTUSED” parameter controls when the system
should try a leaf node merge (“on-line index reorganization”).

— This is particularly easy because of the pointers between
adjacent leaf nodes.

— Inner nodes are never merged (need to do a full table
reorganization for that).
* To improve concurrency, systems sometimes only mark
index entries as deleted and physically remove them
later (e.g., IBM DB2 UDB “type-2 indexes”).



What is stored inside the leaves?

* Basically there are three alternatives:

1. The full data entry k*. Such an index is inherently clustered (e.g.,
ISAM).

2. A <k, rid> pair, where rid is the record id of the data entry.

3. A<k, {rid,, rid,, ...}> pair, where the items in the rid list rid; are
record ids of data entries with search key value k.

e 2 and 3 are reasons why we want record ids to be stable.
e 2seems to be the most common one.



B*-trees and Sorting

* A typical situation according to alternative 2 looks as follows:

- index file

s J'* data file

32



Clustered B*-trees

* If the data file was sorted, the scenario would look different:

i) ---H“"--.;,
B - » index file
TN ST
—H -, L — —3 3 —
o \:, .E'L.I:‘E‘..... [— II";II......... (.‘./... | "
| \“‘x .'_ f 4 { / [ x‘xﬂ MI
' ] ~ | .-+ } datafile

* We call such an index a clustered index.
— Scanning the index now leads to sequential access.
— This is particularly good for range queries.



Index-organized Tables

* Alternative 1 is a special case of a clustered index.
— index file = data file
— Such a file is often called an index-organized table.

 Example: Oracle 8i

CREATE TABLE(...

e o g

PRIMARY KEY(...))
ORGANIZATION INDEX;



Key Compression: Suffix Truncation

B*-tree fan-out is proportional to the number of index
entries per page, i.e., inversely proportional to the key size.

» Reduce key size, particularly for variable-length strings.

"“| Goofy |__J

[Daisy Duck | | [Mickey House | Hini House |

Ny :
|Dag0bert Du¢k| | |Daisy Duck| | |Gmmfy| | |Hickey House| | | Mini HGHEE|

Suffix truncation: Make separator keys only as long as

necessary:
|Dag0bert Duck| | |Daisy huck| | |Gumfyw | |Hickey ﬁouse| || Mini ﬁﬂuse|

Note that separators need not be actual data values.



Key Compression: Prefix Truncation

* Keys within a node often share a common prefix.

1

Mic | Min

Gamfg- Mickey Mouse Mini Mouse

Mi |e|n

s
/

 Prefix truncation:

— Store common prefix only once (e.g., as “k,”).
— Keys have become highly discriminative now.

Gcmf?ﬂ

Mickey Mouse

Mini ﬁﬁuse

R. Bayer, K. Unterauer, “Prefix B-Trees”, ACM TODS 2(1), March 1977.
B. Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, VLDB’09.




Composite Keys

* B*-trees can in theory be used to index everything
with a defined total order such as:

— integers, strings, dates, etc., and
— concatenations thereof (based on lexicographical order)

 Example: In most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME); |
* A useful application are, e.g., partitioned B-trees:

— Leading index attributes effectively partition the resulting

B*-tree.

G. Graefe, “Sorting and Indexing with Partitioned B-Trees”, CIDR’03.



Bulk-Loading B*-trees

* Building a B+-tree is particularly easy when the input
is sorted.

[
___...-----E:lﬁ:_:______________ E:I .
e ‘j|\|\‘| || |’”fj|\|\'| || |’“ﬁ:h\'| || |"Kﬁ:‘ -

* Build B+-tree bottom-up and left-to-right.

* Create a parent for every 2d+1 un-parented nodes.

— Actual implementations typically leave some space for
future updates (e.g., DB2’s “PCTFREE” parameter).



Stars, Pluses, ...

In the foregoing we described the B*-tree.

Bayer and McCreight originally proposed the B-tree:
— Inner nodes contain data entries, too.

There is also a B*-tree:
— Keep non-root nodes at least 2/3 full (instead of 1/2).
— Need to redistribute on inserts to achieve this
=> Whenever two nodes are full, split them into three.

Most people say “B-tree” and mean any of these
variations. Real systems typically implement B*-trees.

“B-trees” are also used outside the database domain,
e.g., in modern file systems (ReiserFS, HFS, NTFS, ...).



Hash-based Indexing

e B*-trees are by far the predominant type of indices in
databases. An alternative is hash-based indexing.

* Hash indexes can only be used to answer equality
selection queries (not range selection queries).

* Like in tree-based indexing, static and dynamic hashing
techniques exist; their trade-offs are similar to ISAM vs.
B*-trees.



Hash-based Indexing

bucket o
2| bucket1 , .
key 27 -
h : dom(key) — [0..n —1] bucket n — 4
prirﬁary overflow
bucket pages pages

* Records in a file are grouped into buckets.

* A bucket consists of a primary page and possibly
overflow pages linked in a chain.

e Hash function:

— Given a the search key of a record, returns the corresponding
bucket number that contains that record.

— Then we search the record within that bucket.



Hash Function

* A good hash function distributes values in the
domain of the search key uniformly over the
collection of buckets.

 Given N buckets 0.. N-1, h(value) = (a*value + b)
works well.

— h(value) mod N gives the bucket number.
— a and b are constants to be tuned.



Static Hashing

 Number of primary pages is fixed.

* Primary pages are allocated sequentially and are never
de-allocated. Use overflow pages if need more pages.

* h(k) mod N gives the bucket to which the data entry

with search key k belongs. (N: number of buckets)
hikev) mod N 0 7 -
- A AT A

key — / _ . - - -

— bR For primary pages:

N\ e Read =1 disk I/O

H‘”\ * Insert, Delete = 2 disk I/Os
NN I, ... Whataboutthe overflow pages?

Primary bucket pages Overflow pages



Problems with Static Hashing

* Number of buckets n is fixed.
— How to choose n?
— Many deletions => space is wasted

— Many insertions => long overflow chains that degrade
search performance

e Static hashing has similar problems and advantages as
in ISAM.

* Rehashing solution:

— Periodically rehash the whole file to restore the ideal (i.e.,
no overflow chains and 80% occupancy)

— Takes long and makes the index unusable during rehashing.



Dynamic Hashing

To deal with the problems of static hashing, database
systems use dynamic hashing techniques:

— Extendible hashing

— Linear hashing

Note that: Few real systems support true hash indexes
(such as PostgreSQL).
More popular uses of hashing are:

— support for B*-trees over hash values (e.g., SQL Server)

— the use of hashing during query processing => hash join



Extendible Hashing: The Idea

e Overflows occur when bucket (primary page) becomes
full. Why not re-organize the file by doubling the number
of buckets?

— Reading and writing all pages is expensive!

* ldea: Use a directory of pointers to buckets; double the
number of buckets by doubling the directory and
splitting just the bucket that overflowed.

— Directory is much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split.

— No overflow pages!
— Trick lies in how the hash function is adjusted.



Extendible Hashing: An Example

] ] ] 32*:dataentryr
 The directory is an array of size 4. with h(r)=32

LG]
1# 12+ 32* 154 Bucket A

e Search: LOCAL DEPTH

— To find the bucket for search key r#LCEAL [EPTH
take the last “global depth” W /
number of bits of h(r): : :
— h(r)=5=binary 101 => The data " |1t 7 17 L3 Bucket B
entry for ris in the bucket pointed ™ —
to by 01. I = S
* |nsertion: H N pucket©
— If the bucket is full, split it. \.]T
DIREC TORY
— If “necessary”, double the 15* 7* 10* | Bucket D
directory.

DATAPAGES



Extendible Hashing: Directory Doubling

Insert 20*: h(r) = 20 = binary 10100

LOCAL DEPTH- 2—7H &

GLOBAL

0o
01
10
11

14 Ducket A
DEPTH 31=16
N
¥ /
1 E
7 H“,a¥"i; 5+ 21+13t+ BucketB
— 2
—~— Bucket C .
Fe B
DIRECTORY — Bucket D

4= 11+10=

Bucket Al
("split image'
of Bucket A)

LOCAL DEPTH--#‘Z’F---’LF?

.

3

ALOBAL DEPTH
- /5:?5?

32*167

i

1* 5% 11*137

0ol

010

011

100
101

1110

111

DIRECTORY

4= 12#10*

Bucket A

Bucket B

Bucket C

Bucket D

Bucket Al
“splitimage'

of Bucket A)
48



Extendible Hashing: Directory Doubling

e 20 =binary 10100. The last 2 bits (00) tell us that r belongs
in bucket A or A2. The last 3 bits are needed to tell which.

— Global depth of directory = maximum number of bits needed to
tell which bucket an entry belongs to.

— Local depth of a bucket = number of bits used to determine if an
entry belongs to a given bucket.

* When does a bucket split cause directory doubling?
— Before the insertion and split, local depth = global depth.
— After the insertion and split, local depth > global depth.

— Directory is doubled by copying it over and fixing the pointer to
the split image page.

— After the doubling, global depth = local depth.



Extendible Hashing: Directory Doubling

* Using the least significant bits enables efficient doubling
via copying of directory.

6 =110 & 6=110 3
000 000
001 100
: T

....... I:IID — I:IID
f " 011 4 0 110| 6%

0 6* 01 100 0 10 001

- _

! 10| 6 101 |6 01 o
11 6 11| 6 o

110 o1}

111 1)

Least Signiticant VS. Most Significant



Extendible Hashing: Other Issues

e Efficiency:

— If the directory fits in memory, an equality selection query
can be answered with 1 disk I/O. Otherwise, 2 disk I/Os are
needed.

* Deletions:

— If removal of a data entry makes a bucket empty, then that
bucket can be merged with its “split image”.

— Merging buckets decreases the local depth.

— If each directory element points to the same bucket as its
split image, then we can halve the directory.



Linear Hashing: The Idea

* Linear Hashing handles the problem of long overflow chains
without using a directory.

* Idea: Use a family of hash functions h,, h,, h,, ..., such that
— h,,,’s range is twice that of h..
— First, choose an initial hash function h and number of buckets N.
— Then, h,(key) = h(key) mod (2'N).
— If N =29, for some dO, h; consists of applying h and looking at the last di
bits, where di = d0 + .
— Example: Assume N =32 =2°. Then:
 d0=5 (i.e., look at the last 5 bits)
h,=h mod (1*32) (i.e., buckets in range 0 to 31)
dl1=d0+1=5+1=6 (i.e., look at the last 6 bits)
h,=h mod (2*32) (i.e., buckets in range 0 to 63)
...and so on.



Linear Hashing: Rounds of Splitting

* Directory is avoided in Linear Hashing by using overflow
pages, and choosing bucket to split in a round-robin fashion.

— Splitting proceeds in “rounds”. A round ends when all N, initial (for
round R) buckets are split.

— Current round number is “Level”. During the current round, only
h,.,and h, .., arein use.

— Search: To find bucket for a data entry r, find h,_,.,(r):
* Assume: Buckets O to Next-1 have been split; Next to N yet to be split.
* If h,,.[(r) in range “Next to N;”, r belongs here.

* Else, r could belong to bucket h,,(r) or bucket h,,./(r) + Ng;
must apply h,,,...;(r) to find out.



Linear Hashing: Insertion

* Insertion: Find bucket by applying h,,,., and h,_ .,
— If bucket to insert into is full:

* Add overflow page and insert data entry.
* Split Next bucket and increment Next.

* Since buckets are split round-robin, long overflow
chains don’t develop!

e Similar to directory doubling in Extendible Hashing.



Linear Hashing: An Example

. . . T . .
On split, h,,,..,; is used to re-distribute entries.
Level=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVERFLOW
1 0 | Next=0 PAGES 1 0 PAGES PAGES
14144 164 13
000 | oo | [P2TH36 ooo | oo | [
o Next=1 —
Tazdes Data entry r \ Tacd=z
001 | 01 2725757 | with hir)=s 001 | 01 il ol
010 10 149187109307, Primary 010 10 144185109307
— bucket page —-
EE T 'Irir E E :11 T:l: + E
011 11 31133 11 011 11 3113 11 N 43
{ Ilins info (The actual contents )
15 for illustration of the linear hashed 100 00 447 367
only!) file) L

55



Summary of Hash-based Indexing

* Hash-based indexes are best for equality selection
queries; they cannot support range selection queries.

e Static Hashing can lead to long overflow chains.

* Dynamic Hashing: Extendible or Linear.

— Extendible Hashing avoids overflow pages by splitting a full
bucket when a new data entry is to be added to it.
* Directory to keep track of buckets, doubles periodically.

— Linear Hashing avoids directory by splitting buckets round-

robin and using overflow pages.
* Overflow pages are not likely to be long (usually at most 2).



Indexing Recap

Indexed Sequential Access Method (ISAM)
— A static, tree-based index structure.

B*-trees

— The database index structure; indexing based on any kind of
(linear) order; adapts dynamically to inserts and deletes; low
tree heights (~3-4) guarantee fast lookups.

Clustered vs. Unclustered Indexes

— An index is clustered if its underlying data pages are ordered
according to the index; fast sequential access for clustered B*-
trees.

Hash-Based Indexes

— Extendible hashing and linear hashing adapt dynamically to the
number of data entries.



