Systems Infrastructure for Data Science

Web Science Group

Uni Freiburg

WS 2013/14

Introduction

About myself

- Since Fall 2011: Assistant/Junior Professor for Web Science
- Before Senior Researcher ("Oberassistent") at Systems Group, ETH Zurich
- Research Interests:
 - Social Media Analytics
 - Realtime Analytics
 - Temporal Data Management
 - Stream/Event Processing
- Systems-oriented approach

Contact: peter.fischer@cs.uni-freiburg.de

Basic Course Information

- Credits: 3V + 1U (= 6 ECTS)
- Language: English (feel free to ask in German)
- Time and Location:
 - Tuesday 16:15-18:00 (HS 00 006, Building 082)
 - Thursday 14:15-15:00 (HS 00 006, Building 082)
 - Exercise: Thursday 15:00-15:45 (also HS 00 006)
- Webpage:
 - https://websci.informatik.unifreiburg.de/teaching/ws201415/infosys/infosys

Workload & Grading

Exercises

- Weekly exercise sheets with questions related to the lecture coverage
- Not graded
- Attendance to exercise sessions is not mandatory, but it is highly recommended to do well in the exam.

Exam

- No prerequisites to participate
- Written or oral dependent on number of participants

Exercise Sessions

- Content
 - Explain the new exercise sheet
 - Provide solutions for the previous exercise sheet
 - Answer your questions
- First sheets will be made available on October 23rd
- The first exercise sessions will take place on October 30th

Course Objectives

Overall Objective:

 to understand how different platforms for data management and analysis work

Partial goals:

- Understand the internals of the architecture, implementation, and optimization of a relational database system
- Understand the basics of distributed data processing
- Understand concepts and implementations of novel platforms

Course Motivation: New Analytics

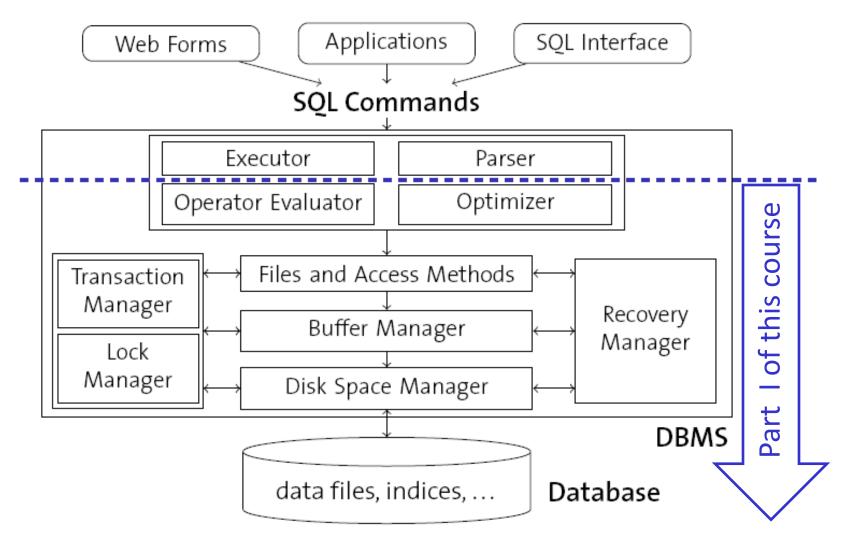
- No longer just structured, "clean" business data:
 - Text data, photos, videos
 - Social media: social networks, social streams
 - Science
 - **—** ...
- Much broader range of analytics
 - Information Retrieval
 - Machine Learning: Classification, Mining
 - Statistics
 - Human Interaction: Crowdsourcing, Interactive exploration
- Much larger volumes (think Google, Facebook!)
- Unpredictable workloads
- Results required in real time

Course Motivation: New Platforms

- Increasing CPU core count: Massive Parallelism
- Increasing RAM, "slower" disks, new storage
- Faster Networks and massive Distribution
 - Racks and Datacenters as new basic building blocks
 - Global Replication, Consistency and Access
- New Processing paradigms:
 - Map/Reduce
 - Key/Value Stores
 - Event, Data Stream Processing

Topics

- Classical Databases: "Complete" package for moderate workloads
 - Storage and Indexing
 - Query Processing and Optimization
 - Performance Tuning and Benchmarking
- Distributed and Parallel Databases: Scaling with DB means
 - General Architecture
 - Distribution
 - Query Processing
- Map-Reduce: Highly scalable, unstructured data, simple programming model
- Key-Value Stores: Storing and retrieving data at speed and scale
- Stream Processing: Processing instantly without storing
- (Graph Processing, Machine Learning)
- ...


Relation to other lectures

- Information Systems:
 - DB Intro: Foundations, Transactions
 - Distributed Systems: focused on data consistency and distributed transactions
 - Data Models and Query Languages: covers models, languages and theory
- Other areas:
 - Operating Systems, Networks: same foundations, sometimes same problems

Starting point: Classical DB

- Still useful for moderate-sized workloads (few TBs, standard queries, transactions)
- Guidepost for technologies
 - Nearly all aspects of data management covered
 - Decades of experience and refinement
 - (Many aspects being re-discovered by "cool new platforms")

Architecture of a Database System

