
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2013/14

Lecture III: Multi-dimensional Indexing

Querying Multi-dimensional Data

• This example query involves a range predicate in
two dimensions.

• The general case: spatial queries over spatial data.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 3

Spatial Data

• Spatial data is used to model multi-dimensional points,
lines, rectangles, polygons, cubes, and other geometric
objects that exist in space.

• Two main types:
– Point Data
– Region Data

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 4

Point Data
• Points in a multi-dimensional space
• No area or volume
• Examples:

– Raster data such as satellite imagery, where each pixel stores
a directly measured value corresponding to a location in
space (e.g., temperature, color)

– Feature vectors extracted from images, text, signals such as
time series, where the point data is obtained by transforming
a data object

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 5

Region Data
• Objects have spatial extent (i.e., occupy a certain

region of space) characterized by their location and
boundary.

• DB typically stores geometric approximations for
objects called “vector data”, which is constructed
using points, line segments, polygons, etc.

• Examples:
– Geographic applications (roads and rivers represented as

line segments; countries and lakes represented as polygons)
– Computer-Aided Design (CAD) applications (airplane wing

represented as polygons)

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 6

A Familiar Example for Spatial Data
with Points, Lines, and Regions

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 7

Spatial Queries

• Spatial queries refer to queries on spatial data.

• Three main types:
– Spatial range queries
– Nearest neighbor queries
– Spatial join queries

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 8

Spatial Range Queries
• A spatial range query has an associated region (i.e.,

location and boundary).
• The query should return all regions that overlap the

specified range or all regions contained within the
specified range.

• Examples: relational queries, GIS queries, CAD/CAM
queries.
– Find all employees with salaries between $50K and $60K,

and ages between 40 and 50.
– Find all cities within 100 kilometers of Freiburg.
– Find all rivers in Baden-Württemberg.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 9

Nearest Neighbor Queries

• A nearest neighbor query (k-NN) returns the k objects
that have the smallest distance to a given reference
object.

• Results must be ordered by proximity.
• Examples: GIS queries, similarity search in multi-media

databases
– Find the 10 cities nearest to Freiburg.
– Find the 10 images that are the most similar to this picture

of the criminal suspect (using feature vector point data for
images).

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 10

Spatial Join Queries

• In a spatial join query, the join condition involves regions
and proximity.

• These queries often times involve self-join operations and
are expensive to evaluate.

• Example: Consider a relation with points representing a
city or a mountain.
– Find pairs of cities within 200 kilometers of each other.
– Find all cities near a mountain.

• It gets more complex if we represent objects with region
data instead of point data.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 11

Spatial Applications Recap
• Traditional relations with k fields ~ collections of k-

dimensional points
• Geographic Information Systems (GIS)

– Geo-spatial information (2- and 3-dim datasets)
– All types of spatial queries and data are common.

• Computer-Aided Design/Manufacturing (CAD/CAM)
– Store spatial objects such as surface of airplane wing
– Both point and range data.
– Range queries and spatial join queries are the most common.

• Multi-media Databases
– Images, audio, video, text, etc. stored and retrieved by content
– First converted to feature vector form (high dimensionality)
– Nearest-neighbor queries (for querying similarity) are the most

common.
Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 12

Many Solutions for Multi-dimensional Indexing
Quad Tree [Finkel 1974] K-D-B-Tree [Robinson 1981]
R-tree [Guttman 1984] Grid File [Nievergelt 1984]
R+-tree [Sellis 1987] LSD-tree [Henrich 1989]
R*-tree [Geckmann 1990] hB-tree [Lomet 1990]
Vp-tree [Chiueh 1994] TV-tree [Lin 1994]
UB-tree [Bayer 1996] hB--tree [Evangelidis 1995]
SS-tree [White 1996] X-tree [Berchtold 1996]
M-tree [Ciaccia 1996] SR-tree [Katayama 1997]
Pyramid [Berchtold 1998] Hybrid-tree [Chakrabarti 1999]
DABS-tree [Bohm 1999] IQ-tree [Bohm 2000]
Slim-tree [Faloutsos 2000] landmark file [Bohm 2000]
P-Sphere-tree [Goldstein 2000] A-tree [Sakurai 2000]

Note that none of these is a “fits all” solution.
Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 13

Can’t we just use a B+-tree?
• Maybe two B+-trees, over ZIPCODE and REVENUE each?

• Can only scan along either index at once, and both of
them produce many false hits.

• If all you have are these two indexes, you can do index
intersection:
– Perform both scans in separation to obtain the rids of candidate

tuples.
– Then compute the (expensive!) intersection between the two

rid lists (IBM DB2: IXAND – index AND’ing).

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 14

Maybe with a Composite Key?

• Exactly the same thing!
– Indexes over composite keys are not symmetric: The major attribute

dominates the organization of the B+-tree.

• Again, you can use the index if you really need to. Since the
second argument is also stored in the index, you can discard
non-qualifying tuples before fetching them from the data
pages.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 15

Single-dimensional Indexes
• B+-trees are fundamentally single-dimensional indexes.
• When we create a composite search key in B+-tree, e.g., an

index on <age, sal>, we effectively linearize the 2-dimensional
space, since we sort the data entries first by age and then by
sal.

• Consider the following
 data entries:

<11, 80>
<12, 10>
<12, 20>
<13, 70>

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 16

10
20
30
40
50
60
70
80

11 12 13
age

sal

linear sort order
in B+-tree

Multi-dimensional Indexes
• A multi-dimensional index clusters entries so as to exploit

“nearness” in multi-dimensional space.
• Keeping track of entries and maintaining a balanced index

structure presents a challenge.
• Consider the following
 <age, sal> data entries:

<11, 80>
<12, 10>
<12, 20>
<13, 70>

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 17

10
20
30
40
50
60
70
80

11 12 13
age

sal

spatial clusters in
a multi-dim index

Example Queries (B+-tree vs. Multi-dim)
• age < 12

– B+-tree performs better than the multi-dim index.

• sal < 20
– B+-tree can not be used, since age is the first field in the search

key.

• age < 12 AND sal < 20
– B+-tree effectively utilizes only the index on age, and performs

badly if most tuples satisfy age < 12.

 If almost all data entries are to be retrieved in age order,
then the multi-dim spatial index is likely to be slower than
the B+-tree index.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 18

Multi-dimensional Indexes
• B+-trees can answer one-dimensional queries only.
• We’d like to have a multi-dimensional index structure

that
– is symmetric in its dimensions,
– clusters data in a space-aware fashion,
– is dynamic with respect to updates, and
– provides good support for useful queries.

• We’ll start with data structures that have been
designed for in-memory use, then tweak them into
disk-aware database indexes.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 19

Point Quad Trees
• A binary tree in k dimensions
 => 2k-ary tree
• Each data point partitions the

data space into 2k disjoint
regions.

• In each node, a region points to
another node (representing a
refined partitioning for that
region) or to a special null value.

 Finkel and Bentley, “Quad Trees: A Data
Structure for Retrieval on Composite Keys”,
Acta Informatica, vol. 4, 1974.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 20

(k = 2)

Searching a Point Quad Tree

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 21

Inserting into a Point Quad Tree
• Inserting a point qnew into a quad tree happens analogously

to an insertion into a binary tree:
– Traverse the tree just like during a search for qnew until you

encounter a partition P with a null pointer.
– Create a new node n’ that spans the same area as P and is

partitioned by qnew, with all partitions pointing to null.
– Let P point to n’.

• Note that this procedure does not keep the tree balanced.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 22

Evaluating Range Queries with a Point
Quad Tree Index

• To evaluate a range query (i.e., rectangular regions),
we may need to follow several children of a given quad
tree node.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 23

Range Query Example

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 24

Point Quad Trees
• Point Quad Trees
 are symmetric with respect to all dimensions
 can answer point queries and region queries

• However,
the shape of a quad tree depends on the insertion order
of its content, in the worst case degenerates into a linked
list
null pointers are space inefficient (particularly for large k)
they can only store point data

• Also, quad trees are designed for main memory.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 25

k-d Trees
• Index k-dimensional data,

but keep the tree binary.
• For each tree level l, use a

different discriminator
dimension dl along which
to partition.
– Typically: round robin

 Bentley, “Multidimensional Binary Search
Trees Used for Associative Searching”,
Communications of the ACM, 18:9, 1975.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 26
(k = 2)

k-d Trees
• k-d trees inherit the positive properties of the point

quad trees, but improve on space efficiency.
• For a given point set, we can also construct a balanced

k-d tree (vi denotes coordinate i of point v):

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 27

Balanced k-d Tree Construction

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 28

K-D-B Trees
• k-d trees improve on some of the deficiencies of point

quad trees:
We can balance a k-d tree by re-building it. (For a limited

number of points and in-memory processing, this may be
sufficient.)

We are no longer wasting big amounts of space.
• It’s time to bring k-d trees to the disk. The K-D-B Tree

– uses page as an organizational unit (e.g., each node in the K-
D-B tree fills a page)

– uses a k-d tree-like layout to organize each page

 John T. Robinson, “The K-D-B Tree: A Search Structure for Large Multidimensional
Dynamic Indexes”, SIGMOD’81.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 29

K-D-B Trees

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 30

K-D-B Trees
• K-D-B Trees
 are symmetric with respect to all dimensions
 cluster data in a space-aware and page-oriented fashion
 are dynamic with respect to updates
 can answer point queries and region queries

• However,
we still don’t have support for region data and
K-D-B Trees (like k-d trees) won’t handle deletes dynamically.

• This is because we always partitioned the data space
such that
– every region is rectangular
– regions never intersect

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 31

R-Trees
• R-trees do not have the disjointness requirement.

– R-tree inner or leaf nodes contain <region, pageID> and
<region, rid> entries, respectively. region is the minimum
bounding rectangle that spans all data items reachable by
the respective pointer.

– Every node contains between d and 2d entries except the
root node (as in B+-tree).

– Insertion and deletion algorithms keep an R-tree balanced at
all times.

• R-trees allow the storage of point and region data.

 Antonin Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching”,
SIGMOD’84.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 32

R-Tree Example

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 33

Searching an R-Tree

• Start at the root.
– If current node is non-leaf, for each entry <E, ptr>, if region

E overlaps Q, search subtree identified by ptr.
– If current node is leaf, for each entry <E, rid>, if E overlaps

Q, rid identifies an object that might overlap Q.

• While searching an R-tree, we may have to descend
into more than one child node for point and region
queries (in contrast, a B+-tree equality search goes to
just one leaf).

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 34

Inserting into an R-Tree

• Inserting into an R-tree very much resembles B+-tree
insertion:
1. Choose a leaf node n to insert the new entry.

• Try to minimize the necessary region enlargement(s).
2. If n is full, split it (resulting in n and n’) and distribute old

and new entries evenly across n and n’.
• Splits may propagate bottom-up and eventually reach the

root (as in B+-tree).
3. After the insertion, some regions in the ancestor nodes

of n may need to be adjusted to cover the new entry.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 35

Splitting an R-Tree Node
• To split an R-tree node, we have more than one alternative.

• Heuristic: Minimize the totally covered area.

– Goal: To reduce the likelihood of both regions being searched on
subsequent queries. Redistribute so as to minimize the total area.

– Exhaustive search for the best split is infeasible. Guttman proposes two
ways to approximate the search. Follow-up papers (e.g., the R*-tree
paper) aim at improving the quality of node splits.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 36

Deleting from an R-Tree
• All R-tree invariants are maintained during deletions.

1. If an R-tree node n underflows (i.e., less than d entries are
left after a deletion), the whole node is deleted.

2. Then, all entries that existed in n are re-inserted into the R-
tree, as discussed before.

• Note that Step 1 may lead to a recursive deletion of n’s
parent.
– Deletion, therefore, is a rather expensive task in an R-tree.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 37

R-Tree Variants
• The R*-tree uses the concept of forced reinserts to

reduce overlap in tree nodes. When a node overflows,
instead of splitting:
– Remove some (say, 30% of the) entries and reinsert them into

the tree.
– Could result in all reinserted entries fitting on some existing

pages, avoiding a split.

• R*-trees also use a different heuristic, minimizing box
perimeters rather than box areas during insertion.

• Another variant, the R+-tree, avoids overlap by inserting
an object into multiple leaves if necessary.
– Searches now take a single path to a leaf, at cost of redundancy.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 38

Indexing High-dimensional Data
• Typically, high-dimensional datasets are collections of

points, not regions.
– Example: Feature vectors in multi-media applications
– Very sparse

• Nearest neighbor queries are common.
– R-tree becomes worse than sequential scan for most datasets

with more than a dozen dimensions.

• As dimensionality increases, contrast (i.e., the ratio of
distances between nearest and farthest points) usually
decreases; “nearest neighbor” is not meaningful.
– In any given data set, it is advisable to empirically test contrast.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 39

High Dimensional Spaces
• For large k, all the techniques we discussed become

ineffective:
– Example: for k = 100, we’d get 2100 ~ 1030 partitions per node in

a point quad tree. Even with billions of data points, almost all of
these are empty.

– Consider a really big search region, cube-sized covering 95% of
the range along each dimension:

– We experience the curse of dimensionality here.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 40

Summary
• Point Quad Tree

– k-dimensional analogy to binary trees; main memory only.
• k-d Tree, K-D-B Tree

– k-d tree: Partition space one dimension at a time (round-
robin).

– K-D-B Tree: B+-tree-like organization with pages as nodes;
nodes use a k-d-like structure internally.

• R-Tree
– Regions within a node may overlap; fully dynamic; for point

and region data.
• Curse Of Dimensionality

– Most indexing structures become ineffective for large k; fall
back to sequential scanning and approximation/compression.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 41

	Systems Infrastructure for Data Science
	Lecture III: Multi-dimensional Indexing
	Querying Multi-dimensional Data
	Spatial Data
	Point Data
	Region Data
	A Familiar Example for Spatial Data with Points, Lines, and Regions
	Spatial Queries
	Spatial Range Queries
	Nearest Neighbor Queries
	Spatial Join Queries
	Spatial Applications Recap
	Many Solutions for Multi-dimensional Indexing
	Can’t we just use a B+-tree?
	Maybe with a Composite Key?
	Single-dimensional Indexes
	Multi-dimensional Indexes
	Example Queries (B+-tree vs. Multi-dim)
	Multi-dimensional Indexes
	Point Quad Trees
	Searching a Point Quad Tree
	Inserting into a Point Quad Tree
	Evaluating Range Queries with a Point Quad Tree Index
	Range Query Example
	Point Quad Trees
	k-d Trees
	k-d Trees
	Balanced k-d Tree Construction
	K-D-B Trees
	K-D-B Trees
	K-D-B Trees
	R-Trees
	R-Tree Example
	Searching an R-Tree
	Inserting into an R-Tree
	Splitting an R-Tree Node
	Deleting from an R-Tree
	R-Tree Variants
	Indexing High-dimensional Data
	High Dimensional Spaces
	Summary

