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Lecture III: Multi-dimensional Indexing 



Querying Multi-dimensional Data 

• This example query involves a range predicate in 
two dimensions. 
 

• The general case: spatial queries over spatial data. 
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Spatial Data 

• Spatial data is used to model multi-dimensional points, 
lines, rectangles, polygons, cubes, and other geometric 
objects that exist in space. 
 

• Two main types: 
– Point Data 
– Region Data 
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Point Data 
• Points in a multi-dimensional space 
• No area or volume 
• Examples: 

– Raster data such as satellite imagery, where each pixel stores 
a directly measured value corresponding to a location in 
space (e.g., temperature, color) 

– Feature vectors extracted from images, text, signals such as 
time series, where the point data is obtained by transforming 
a data object 
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Region Data 
• Objects have spatial extent (i.e., occupy a certain 

region of space) characterized by their location and 
boundary. 

• DB typically stores geometric approximations for 
objects called “vector data”, which is constructed 
using points, line segments, polygons, etc. 

• Examples: 
– Geographic applications (roads and rivers represented as 

line segments; countries and lakes represented as polygons) 
– Computer-Aided Design (CAD) applications (airplane wing 

represented as polygons) 
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A Familiar Example for Spatial Data 
with Points, Lines, and Regions 
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Spatial Queries 

• Spatial queries refer to queries on spatial data. 
 

• Three main types: 
– Spatial range queries 
– Nearest neighbor queries 
– Spatial join queries 
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Spatial Range Queries 
• A spatial range query has an associated region (i.e., 

location and boundary). 
• The query should return all regions that overlap the 

specified range or all regions contained within the 
specified range. 

• Examples: relational queries, GIS queries, CAD/CAM 
queries. 
– Find all employees with salaries between $50K and $60K, 

and ages between 40 and 50. 
– Find all cities within 100 kilometers of Freiburg. 
– Find all rivers in Baden-Württemberg. 

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 9 



Nearest Neighbor Queries 

• A nearest neighbor query (k-NN) returns the k objects 
that have the smallest distance to a given reference 
object. 

• Results must be ordered by proximity. 
• Examples: GIS queries, similarity search in multi-media 

databases 
– Find the 10 cities nearest to Freiburg. 
– Find the 10 images that are the most similar to this picture 

of the criminal suspect (using feature vector point data for 
images). 
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Spatial Join Queries 

• In a spatial join query, the join condition involves regions 
and proximity. 

• These queries often times involve self-join operations and 
are expensive to evaluate. 

• Example: Consider a relation with points representing a 
city or a mountain. 
– Find pairs of cities within 200 kilometers of each other. 
– Find all cities near a mountain. 

• It gets more complex if we represent objects with region 
data instead of point data. 
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Spatial Applications Recap 
• Traditional relations with k fields ~ collections of k-

dimensional points 
• Geographic Information Systems (GIS) 

– Geo-spatial information (2- and 3-dim datasets) 
– All types of spatial queries and data are common. 

• Computer-Aided Design/Manufacturing (CAD/CAM) 
– Store spatial objects such as surface of airplane wing 
– Both point and range data. 
– Range queries and spatial join queries are the most common. 

• Multi-media Databases 
– Images, audio, video, text, etc. stored and retrieved by content 
– First converted to feature vector form (high dimensionality) 
– Nearest-neighbor queries (for querying similarity) are the most 

common. 
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Many Solutions for Multi-dimensional Indexing 
Quad Tree [Finkel 1974]       K-D-B-Tree [Robinson 1981] 
R-tree [Guttman 1984]       Grid File [Nievergelt 1984] 
R+-tree [Sellis 1987]        LSD-tree [Henrich 1989] 
R*-tree [Geckmann 1990]       hB-tree [Lomet 1990] 
Vp-tree [Chiueh 1994]        TV-tree [Lin 1994] 
UB-tree [Bayer 1996]        hB--tree [Evangelidis 1995] 
SS-tree [White 1996]        X-tree [Berchtold 1996] 
M-tree [Ciaccia 1996]        SR-tree [Katayama 1997] 
Pyramid [Berchtold 1998]       Hybrid-tree [Chakrabarti 1999] 
DABS-tree [Bohm 1999]       IQ-tree [Bohm 2000] 
Slim-tree [Faloutsos 2000]       landmark file [Bohm 2000] 
P-Sphere-tree [Goldstein 2000]   A-tree [Sakurai 2000] 

 
Note that none of these is a “fits all” solution. 
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Can’t we just use a B+-tree? 
• Maybe two B+-trees, over ZIPCODE and REVENUE each? 

 
 
 
 
 

• Can only scan along either index at once, and both of 
them produce many false hits. 

• If all you have are these two indexes, you can do index 
intersection: 
– Perform both scans in separation to obtain the rids of candidate 

tuples. 
– Then compute the (expensive!) intersection between the two 

rid lists (IBM DB2: IXAND – index AND’ing). 
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Maybe with a Composite Key? 

• Exactly the same thing! 
– Indexes over composite keys are not symmetric: The major attribute 

dominates the organization of the B+-tree. 

• Again, you can use the index if you really need to. Since the 
second argument is also stored in the index, you can discard 
non-qualifying tuples before fetching them from the data 
pages. 
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Single-dimensional Indexes 
• B+-trees are fundamentally single-dimensional indexes. 
• When we create a composite search key in B+-tree, e.g., an 

index on <age, sal>, we effectively linearize the 2-dimensional 
space, since we sort the data entries first by age and then by 
sal. 

• Consider the following 
 data entries: 

<11, 80> 
<12, 10> 
<12, 20> 
<13, 70> 
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Multi-dimensional Indexes 
• A multi-dimensional index clusters entries so as to exploit 

“nearness” in multi-dimensional space. 
• Keeping track of entries and maintaining a balanced index 

structure presents a challenge. 
• Consider the following 
 <age, sal> data entries: 

<11, 80> 
<12, 10> 
<12, 20> 
<13, 70> 
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Example Queries (B+-tree vs. Multi-dim) 
• age < 12 

– B+-tree performs better than the multi-dim index. 

• sal < 20 
– B+-tree can not be used, since age is the first field in the search 

key. 

• age < 12 AND sal < 20 
– B+-tree effectively utilizes only the index on age, and performs 

badly if most tuples satisfy age < 12. 
 

 If almost all data entries are to be retrieved in age order, 
then the multi-dim spatial index is likely to be slower than 
the B+-tree index. 
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Multi-dimensional Indexes 
• B+-trees can answer one-dimensional queries only. 
• We’d like to have a multi-dimensional index structure 

that 
– is symmetric in its dimensions, 
– clusters data in a space-aware fashion, 
– is dynamic with respect to updates, and 
– provides good support for useful queries. 

• We’ll start with data structures that have been 
designed for in-memory use, then tweak them into 
disk-aware database indexes. 
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Point Quad Trees 
• A binary tree in k dimensions 
 => 2k-ary tree 
• Each data point partitions the 

data space into 2k disjoint 
regions. 

• In each node, a region points to 
another node (representing a 
refined partitioning for that 
region) or to a special null value. 

 
 Finkel and Bentley, “Quad Trees: A Data 
Structure for Retrieval on Composite Keys”, 
Acta Informatica, vol. 4, 1974. 
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Searching a Point Quad Tree 
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Inserting into a Point Quad Tree 
• Inserting a point qnew into a quad tree happens analogously 

to an insertion into a binary tree: 
– Traverse the tree just like during a search for qnew until you 

encounter a partition P with a null pointer. 
– Create a new node n’ that spans the same area as P and is 

partitioned by qnew, with all partitions pointing to null. 
– Let P point to n’. 

• Note that this procedure does not keep the tree balanced. 
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Evaluating Range Queries with a Point 
Quad Tree Index 

• To evaluate a range query (i.e., rectangular regions), 
we may need to follow several children of a given quad 
tree node. 
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Range Query Example 
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Point Quad Trees 
• Point Quad Trees 
 are symmetric with respect to all dimensions 
 can answer point queries and region queries 

• However, 
the shape of a quad tree depends on the insertion order 
of its content, in the worst case degenerates into a linked 
list 
null pointers are space inefficient (particularly for large k) 
they can only store point data 

• Also, quad trees are designed for main memory. 
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k-d Trees 
• Index k-dimensional data, 

but keep the tree binary. 
• For each tree level l, use a 

different discriminator 
dimension dl along which 
to partition. 
– Typically: round robin 

 
 
 Bentley, “Multidimensional Binary Search 
Trees Used for Associative Searching”, 
Communications of the ACM, 18:9, 1975. 
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k-d Trees 
• k-d trees inherit the positive properties of the point 

quad trees, but improve on space efficiency. 
• For a given point set, we can also construct a balanced 

k-d tree (vi denotes coordinate i of point v): 
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Balanced k-d Tree Construction 
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K-D-B Trees 
• k-d trees improve on some of the deficiencies of point 

quad trees: 
We can balance a k-d tree by re-building it. (For a limited 

number of points and in-memory processing, this may be 
sufficient.) 

We are no longer wasting big amounts of space. 
• It’s time to bring k-d trees to the disk. The K-D-B Tree 

– uses page as an organizational unit (e.g., each node in the K-
D-B tree fills a page) 

– uses a k-d tree-like layout to organize each page 
 

 John T. Robinson, “The K-D-B Tree: A Search Structure for Large Multidimensional 
Dynamic Indexes”, SIGMOD’81. 
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K-D-B Trees 
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K-D-B Trees 
• K-D-B Trees 
 are symmetric with respect to all dimensions 
 cluster data in a space-aware and page-oriented fashion 
 are dynamic with respect to updates 
 can answer point queries and region queries 

• However, 
we still don’t have support for region data and 
K-D-B Trees (like k-d trees) won’t handle deletes dynamically. 

• This is because we always partitioned the data space 
such that 
– every region is rectangular 
– regions never intersect 
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R-Trees 
• R-trees do not have the disjointness requirement. 

– R-tree inner or leaf nodes contain <region, pageID> and 
<region, rid> entries, respectively. region is the minimum 
bounding rectangle that spans all data items reachable by 
the respective pointer. 

– Every node contains between d and 2d entries except the 
root node (as in B+-tree). 

– Insertion and deletion algorithms keep an R-tree balanced at 
all times. 

• R-trees allow the storage of point and region data. 
 

 Antonin Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching”, 
SIGMOD’84. 
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R-Tree Example 
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Searching an R-Tree 

• Start at the root. 
– If current node is non-leaf, for each entry <E, ptr>, if region 

E overlaps Q, search subtree identified by ptr. 
– If current node is leaf, for each entry <E, rid>, if E overlaps 

Q, rid identifies an object that might overlap Q. 

• While searching an R-tree, we may have to descend 
into more than one child node for point and region 
queries (in contrast, a B+-tree equality search goes to 
just one leaf). 
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Inserting into an R-Tree 

• Inserting into an R-tree very much resembles B+-tree 
insertion: 
1. Choose a leaf node n to insert the new entry. 

• Try to minimize the necessary region enlargement(s). 
2. If n is full, split it (resulting in n and n’) and distribute old 

and new entries evenly across n and n’. 
• Splits may propagate bottom-up and eventually reach the 

root (as in B+-tree). 
3. After the insertion, some regions in the ancestor nodes 

of n may need to be adjusted to cover the new entry. 
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Splitting an R-Tree Node 
• To split an R-tree node, we have more than one alternative. 

 
 

 
 

 
• Heuristic: Minimize the totally covered area. 

– Goal: To reduce the likelihood of both regions being searched on 
subsequent queries. Redistribute so as to minimize the total area. 

– Exhaustive search for the best split is infeasible. Guttman proposes two 
ways to approximate the search. Follow-up papers (e.g., the R*-tree 
paper) aim at improving the quality of node splits. 
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Deleting from an R-Tree 
• All R-tree invariants are maintained during deletions. 

1. If an R-tree node n underflows (i.e., less than d entries are 
left after a deletion), the whole node is deleted. 

2. Then, all entries that existed in n are re-inserted into the R-
tree, as discussed before. 

• Note that Step 1 may lead to a recursive deletion of n’s 
parent. 
– Deletion, therefore, is a rather expensive task in an R-tree. 
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R-Tree Variants 
• The R*-tree uses the concept of forced reinserts to 

reduce overlap in tree nodes. When a node overflows, 
instead of splitting: 
– Remove some (say, 30% of the) entries and reinsert them into 

the tree. 
– Could result in all reinserted entries fitting on some existing 

pages, avoiding a split. 

• R*-trees also use a different heuristic, minimizing box 
perimeters rather than box areas during insertion. 

• Another variant, the R+-tree, avoids overlap by inserting 
an object into multiple leaves if necessary. 
– Searches now take a single path to a leaf, at cost of redundancy. 

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 38 



Indexing High-dimensional Data 
• Typically, high-dimensional datasets are collections of 

points, not regions. 
– Example: Feature vectors in multi-media applications 
– Very sparse 

• Nearest neighbor queries are common. 
– R-tree becomes worse than sequential scan for most datasets 

with more than a dozen dimensions. 

• As dimensionality increases, contrast (i.e., the ratio of 
distances between nearest and farthest points) usually 
decreases; “nearest neighbor” is not meaningful. 
– In any given data set, it is advisable to empirically test contrast. 
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High Dimensional Spaces 
• For large k, all the techniques we discussed become 

ineffective: 
– Example: for k = 100, we’d get 2100  ~ 1030 partitions per node in 

a point quad tree. Even with billions of data points, almost all of 
these are empty. 

– Consider a really big search region, cube-sized covering 95% of 
the range along each dimension: 
 
 
 
 
 
 

 
– We experience the curse of dimensionality here. 
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Summary 
• Point Quad Tree 

– k-dimensional analogy to binary trees; main memory only. 
• k-d Tree, K-D-B Tree 

– k-d tree: Partition space one dimension at a time (round-
robin). 

– K-D-B Tree: B+-tree-like organization with pages as nodes; 
nodes use a k-d-like structure internally. 

• R-Tree 
– Regions within a node may overlap; fully dynamic; for point 

and region data. 
• Curse Of Dimensionality 

– Most indexing structures become ineffective for large k; fall 
back to sequential scanning and approximation/compression. 
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