
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2013/14

Lecture II: Indexing

Indexing

Pa
rt

 I
 o

f t
hi

s c
ou

rs
e

3

Database File Organization and Indexing

• Remember: Database tables are implemented as files
of records:
– A file consists of one or more pages.
– Each page contains one or more records.
– Each record corresponds to one tuple in a table.

• File organization: Method of arranging the records in
a file when the file is stored on disk.

• Indexing: Building data structures that organize data
records on disk in (multiple) ways to optimize search
and retrieval operations on them.

4

File Organization

• Given a query such as the following:

• How should we organize the storage of our
data files on disk such that we can evaluate
this query efficiently?

5

Heap Files?

• A heap file stores records in no particular order.
• Therefore, CUSTOMER table consists of records that are

randomly ordered in terms of their ZIPCODE.
• The entire file must be scanned, because the qualifying

records could appear anywhere in the file and we don’t
know in advance how many such records exist.

6

Sorted Files?

• Sort the CUSTOMERS table in ZIPCODE order.
• Then use binary search to find the first qualifying

record, and scan further as long as ZIPCODE < 8999.

7

Are Sorted Files good enough?

 Scan phase: We get sequential access during this phase.
Search phase: We need to read log2N records during this phase
(N: total number of records in the CUSTOMER table).
– We need to fetch as many pages as are required to access these records.
– Binary search involves unpredictable jumps that makes prefetching

difficult.

What about insertions and deletions?

8

Tree-based Indexing
• Can we reduce the number of pages fetched during

the search phase?
• Tree-based indexing:

– Arrange the data entries in sorted order by search key value
(e.g., ZIPCODE).

– Add a hierarchical search data structure on top that directs
searches for given key values to the correct page of data
entries.

– Since the index data structure is much smaller than the data
file itself, the binary search is expected to fetch a smaller
number of pages.

– Two alternative approaches: ISAM and B+-tree.

9

ISAM: Indexed Sequential Access Method

• All nodes are of the size of a page.
– hundreds of entries per page
– large fan-out, low depth

• Search cost ~ logfan-outN
• Key ki serves as a “separator” for the
 pages pointed to by pi-1 and pi.

 pointer

10

ISAM Index Structure
• Index pages stored at non-leaf nodes
• Data pages stored at leaf nodes

– Primary data pages & Overflow data pages

in
de

x
pa

ge
s

da
ta

 p
ag

es

11

Updates on ISAM Index Structure
• ISAM index structure is inherently static.

– Deletion is not a big problem:
• Simply remove the record from the corresponding data page.
• If the removal makes an overflow data page empty, remove that

overflow data page.
• If the removal makes a primary data page empty, keep it as a

placeholder for future insertions.
• Don’t move records from overflow data pages to primary data

pages even if the removal creates space for doing so.
– Insertion requires more effort:

• If there is space in the corresponding primary data page, insert
the record there.

• Otherwise, an overflow data page needs to be added.
• Note that the overflow pages will violate the sequential order.

 ISAM indexes degrade after some time.

12

ISAM Example
• Assume: Each node can hold two entries.

13

After Inserting 23*, 48*, 41*, 42*

Overflow data
pages had to
be added.

14

… Then Deleting 42*, 51*, 97*

51 appears in index page,
but not in the data page.

The empty overflow
data page is removed.

15

ISAM: Overflow Pages & Locking
• The non-leaf pages that hold the index data are static;

updates affect only the leaf pages.
May lead to long overflow chains.

• Leave some free space during index creation.
Typically ~ 20% of each page is left free.

• Since ISAM indexes are static, pages need not be locked
during index access.
– Locking can be a serious bottleneck in dynamic tree indexes

(particularly near the root node).

• ISAM may be the index of choice for relatively static data.
16

B+-trees: A Dynamic Index Structure

• The B+-tree is derived from the ISAM index, but is
fully dynamic with respect to updates.
– No overflow chains; B+-trees remain balanced at all times.
– Gracefully adjusts to insertions and deletions.
– Minimum occupancy for all B+-tree nodes (except the

root): 50% (typically: 67 %).
– Original version:

• B-tree: R. Bayer and E. M. McCreight, “Organization and
Maintenance of Large Ordered Indexes”, Acta Informatica, vol. 1,
no. 3, September 1972.

17

B+-trees: Basics
• B+-trees look like ISAM indexes, where

– leaf nodes are, generally, not in sequential order on disk
– leaves are typically connected to form a doubly-linked list
– leaves may contain actual data (like the ISAM index) or just

references to data pages (e.g., record ids (rids))
• We will assume the latter case, since it is the more common one.

– each B+-tree node contains between d and 2d entries (d is
the order of the B+-tree; the root is the only exception).

18

Searching a B+-tree
• Function search (k)

returns a pointer to the
leaf node that contains
potential hits for search
key k.

• Node page layout:

 pointer

19

Insertion to a B+-tree: Overview
• The B+-tree needs to remain balanced after every update

(i.e., every root-to-leaf path must be of the same length).
We cannot create overflow pages.

• Sketch of the insertion procedure for entry <k, p> (key

value k pointing to data page p):
 1. Find leaf page n where we would expect the entry for k.
 2. If n has enough space to hold the new entry (i.e., at most

 2d-1 entries in n), simply insert <k, p> into n.
 3. Otherwise, node n must be split into n and n’, and a new

 separator has to be inserted into the parent of n.
 Splitting happens recursively and may eventually lead to
 a split of the root node (increasing the height of the tree).

20

Insertion to a B+-tree: Example

• Insert new entry with key 4222.
– Enough space in node 3, simply insert without split.
– Keep entries sorted within nodes.

21

Insertion to a B+-tree: Example

• Insert key 6330.
– Must split node 4.
– New separator goes into node 1

(including pointer to new page).
22

Insertion to a B+-tree: Example

• After 8180, 8245, insert key 4104.
– Must split node 3.
– Node 1 overflows => split it!
– New separator goes into root.

• Note: Unlike during leaf split, separator
key does not remain in inner node.

23

Insertion to a B+-tree: Root Node Split

• Splitting starts at the leaf level and continues
upward as long as index nodes are fully occupied.

• Eventually, this can lead to a split of the root node:
– Split like any other inner node.
– Use the separator to create a new root.

• The root node is the only node that may have an
occupancy of less than 50 %.

• This is the only situation where the tree height
increases.

24

Insertion Algorithm

25

2d+1 2d+1

2d+1 2d+1
d+1

26

• insert (k, rid) is called from outside.
• Note how leaf node entries point to rids, while inner

nodes contain pointers to other B+-tree nodes.

27

Deletion from a B+-tree
• If a node is sufficiently full (i.e., contains at least d+1

entries), we may simply remove the entry from the node.
– Note: Afterwards, inner nodes may contain keys that no longer

exist in the database. This is perfectly legal.

• Merge nodes in case of an underflow (i.e., “undo” a split):

• “Pull” separator (i.e., key 6423) into merged node.

28

Deletion from a B+-tree
• It is not that easy:

• Merging only works if two neighboring nodes were
50% full.

• Otherwise, we have to re-distribute:
– “rotate” entry through parent

29

B+-trees in Real Systems
• Actual systems often avoid the cost of merging and/or

redistribution, but relax the minimum occupancy rule.
• Example: IBM DB2 UDB

– The “MINPCTUSED” parameter controls when the system
should try a leaf node merge (“on-line index reorganization”).

– This is particularly easy because of the pointers between
adjacent leaf nodes.

– Inner nodes are never merged (need to do a full table
reorganization for that).

• To improve concurrency, systems sometimes only mark
index entries as deleted and physically remove them
later (e.g., IBM DB2 UDB “type-2 indexes”).

30

What is stored inside the leaves?

• Basically there are three alternatives:

 1. The full data entry k*. Such an index is inherently clustered (e.g.,
ISAM).

 2. A <k, rid> pair, where rid is the record id of the data entry.
 3. A <k, {rid1, rid2, …}> pair, where the items in the rid list ridi are

record ids of data entries with search key value k.

• 2 and 3 are reasons why we want record ids to be stable.
• 2 seems to be the most common one.

31

B+-trees and Sorting
• A typical situation according to alternative 2 looks as follows:

32

Clustered B+-trees
• If the data file was sorted, the scenario would look different:

• We call such an index a clustered index.
– Scanning the index now leads to sequential access.
– This is particularly good for range queries.

33

Index-organized Tables

• Alternative 1 is a special case of a clustered index.
– index file = data file
– Such a file is often called an index-organized table.

• Example: Oracle 8i

CREATE TABLE(...
 ...,
 PRIMARY KEY(...))
ORGANIZATION INDEX;

34

Key Compression: Suffix Truncation
• B+-tree fan-out is proportional to the number of index

entries per page, i.e., inversely proportional to the key size.
Reduce key size, particularly for variable-length strings.

• Suffix truncation: Make separator keys only as long as
necessary:

• Note that separators need not be actual data values.
35

Key Compression: Prefix Truncation
• Keys within a node often share a common prefix.

• Prefix truncation:
– Store common prefix only once (e.g., as “k0”).
– Keys have become highly discriminative now.

R. Bayer, K. Unterauer, “Prefix B-Trees”, ACM TODS 2(1), March 1977.
B. Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, VLDB’09.

36

Composite Keys
• B+-trees can in theory be used to index everything

with a defined total order such as:
– integers, strings, dates, etc., and
– concatenations thereof (based on lexicographical order)

• Example: In most SQL dialects:

• A useful application are, e.g., partitioned B-trees:

– Leading index attributes effectively partition the resulting
B+-tree.

G. Graefe, “Sorting and Indexing with Partitioned B-Trees”, CIDR’03.

37

Bulk-Loading B+-trees
• Building a B+-tree is particularly easy when the input

is sorted.

• Build B+-tree bottom-up and left-to-right.
• Create a parent for every 2d+1 un-parented nodes.

– Actual implementations typically leave some space for
future updates (e.g., DB2’s “PCTFREE” parameter).

38

Stars, Pluses, …

• In the foregoing we described the B+-tree.
• Bayer and McCreight originally proposed the B-tree:

– Inner nodes contain data entries, too.
• There is also a B*-tree:

– Keep non-root nodes at least 2/3 full (instead of 1/2).
– Need to redistribute on inserts to achieve this
 => Whenever two nodes are full, split them into three.

• Most people say “B-tree” and mean any of these
variations. Real systems typically implement B+-trees.

• “B-trees” are also used outside the database domain,
e.g., in modern file systems (ReiserFS, HFS, NTFS, ...).

39

Hash-based Indexing
• B+-trees are by far the predominant type of indices in

databases. An alternative is hash-based indexing.

• Hash indexes can only be used to answer equality
selection queries (not range selection queries).

• Like in tree-based indexing, static and dynamic hashing
techniques exist; their trade-offs are similar to ISAM vs.
B+-trees.

40

Hash-based Indexing

• Records in a file are grouped into buckets.
• A bucket consists of a primary page and possibly

overflow pages linked in a chain.
• Hash function:

– Given a the search key of a record, returns the corresponding
bucket number that contains that record.

– Then we search the record within that bucket.
41

Hash Function

• A good hash function distributes values in the
domain of the search key uniformly over the
collection of buckets.

• Given N buckets 0 .. N-1, h(value) = (a*value + b)
works well.
– h(value) mod N gives the bucket number.
– a and b are constants to be tuned.

42

Static Hashing
• Number of primary pages is fixed.
• Primary pages are allocated sequentially and are never

de-allocated. Use overflow pages if need more pages.
• h(k) mod N gives the bucket to which the data entry

with search key k belongs. (N: number of buckets)

1

For primary pages:
• Read = 1 disk I/O
• Insert, Delete = 2 disk I/Os
What about the overflow pages?

43

Problems with Static Hashing

• Number of buckets n is fixed.
– How to choose n?
– Many deletions => space is wasted
– Many insertions => long overflow chains that degrade

search performance
• Static hashing has similar problems and advantages as

in ISAM.
• Rehashing solution:

– Periodically rehash the whole file to restore the ideal (i.e.,
no overflow chains and 80% occupancy)

– Takes long and makes the index unusable during rehashing.

44

Dynamic Hashing

• To deal with the problems of static hashing, database
systems use dynamic hashing techniques:
– Extendible hashing
– Linear hashing

• Note that: Few real systems support true hash indexes
(such as PostgreSQL).

• More popular uses of hashing are:
– support for B+-trees over hash values (e.g., SQL Server)
– the use of hashing during query processing => hash join

45

Extendible Hashing: The Idea
• Overflows occur when bucket (primary page) becomes

full. Why not re-organize the file by doubling the number
of buckets?
– Reading and writing all pages is expensive!

• Idea: Use a directory of pointers to buckets; double the
number of buckets by doubling the directory and
splitting just the bucket that overflowed.
– Directory is much smaller than file, so doubling it is much

cheaper. Only one page of data entries is split.
– No overflow pages!
– Trick lies in how the hash function is adjusted.

46

Extendible Hashing: An Example

Bucket A

Bucket B

Bucket C

Bucket D

32*: data entry r
with h(r)=32 • The directory is an array of size 4.

• Search:
– To find the bucket for search key r,

take the last “global depth”
number of bits of h(r):

– h(r) = 5 = binary 101 => The data
entry for r is in the bucket pointed
to by 01.

• Insertion:
– If the bucket is full, split it.
– If “necessary”, double the

directory.

47

Extendible Hashing: Directory Doubling
Insert 20*: h(r) = 20 = binary 10100

48

Extendible Hashing: Directory Doubling
• 20 = binary 10100. The last 2 bits (00) tell us that r belongs

in bucket A or A2. The last 3 bits are needed to tell which.
– Global depth of directory = maximum number of bits needed to

tell which bucket an entry belongs to.
– Local depth of a bucket = number of bits used to determine if an

entry belongs to a given bucket.

• When does a bucket split cause directory doubling?
– Before the insertion and split, local depth = global depth.
– After the insertion and split, local depth > global depth.
– Directory is doubled by copying it over and fixing the pointer to

the split image page.
– After the doubling, global depth = local depth.

49

Extendible Hashing: Directory Doubling
• Using the least significant bits enables efficient doubling

via copying of directory.

6*

50

Extendible Hashing: Other Issues

• Efficiency:
– If the directory fits in memory, an equality selection query

can be answered with 1 disk I/O. Otherwise, 2 disk I/Os are
needed.

• Deletions:
– If removal of a data entry makes a bucket empty, then that

bucket can be merged with its “split image”.
– Merging buckets decreases the local depth.
– If each directory element points to the same bucket as its

split image, then we can halve the directory.

51

Linear Hashing: The Idea
• Linear Hashing handles the problem of long overflow chains

without using a directory.
• Idea: Use a family of hash functions h0, h1, h2, ..., such that

– hi+1’s range is twice that of hi.
– First, choose an initial hash function h and number of buckets N.
– Then, hi(key) = h(key) mod (2iN).
– If N = 2d0, for some d0, hi consists of applying h and looking at the last di

bits, where di = d0 + i.
– Example: Assume N = 32 =25. Then:

• d0 = 5 (i.e., look at the last 5 bits)
• h0 = h mod (1*32) (i.e., buckets in range 0 to 31)
• d1 = d0 + 1 = 5 + 1 = 6 (i.e., look at the last 6 bits)
• h1 = h mod (2*32) (i.e., buckets in range 0 to 63)
• … and so on.

52

Linear Hashing: Rounds of Splitting

• Directory is avoided in Linear Hashing by using overflow
pages, and choosing bucket to split in a round-robin fashion.
– Splitting proceeds in “rounds”. A round ends when all NR initial (for

round R) buckets are split.
– Current round number is “Level”. During the current round, only

hLevel and hLevel+1 are in use.
– Search: To find bucket for a data entry r, find hLevel(r):

• Assume: Buckets 0 to Next-1 have been split; Next to NR yet to be split.

• If hLevel(r) in range “Next to NR”, r belongs here.
• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR;

must apply hLevel+1(r) to find out.

53

Linear Hashing: Insertion

• Insertion: Find bucket by applying hLevel and hLevel+1:
– If bucket to insert into is full:

• Add overflow page and insert data entry.
• Split Next bucket and increment Next.

• Since buckets are split round-robin, long overflow
chains don’t develop!

• Similar to directory doubling in Extendible Hashing.

54

Linear Hashing: An Example
• On split, hLevel+1 is used to re-distribute entries.

55

Summary of Hash-based Indexing
• Hash-based indexes are best for equality selection

queries; they cannot support range selection queries.
• Static Hashing can lead to long overflow chains.
• Dynamic Hashing: Extendible or Linear.

– Extendible Hashing avoids overflow pages by splitting a full
bucket when a new data entry is to be added to it.

• Directory to keep track of buckets, doubles periodically.

– Linear Hashing avoids directory by splitting buckets round-
robin and using overflow pages.

• Overflow pages are not likely to be long (usually at most 2).

56

Indexing Recap
• Indexed Sequential Access Method (ISAM)

– A static, tree-based index structure.

• B+-trees
– The database index structure; indexing based on any kind of

(linear) order; adapts dynamically to inserts and deletes; low
tree heights (~3-4) guarantee fast lookups.

• Clustered vs. Unclustered Indexes
– An index is clustered if its underlying data pages are ordered

according to the index; fast sequential access for clustered B+-
trees.

• Hash-Based Indexes
– Extendible hashing and linear hashing adapt dynamically to the

number of data entries.
57

	Systems Infrastructure for Data Science
	Lecture II: Indexing
	Indexing
	Database File Organization and Indexing
	File Organization
	Heap Files?
	Sorted Files?
	Are Sorted Files good enough?
	Tree-based Indexing
	ISAM: Indexed Sequential Access Method
	ISAM Index Structure
	Updates on ISAM Index Structure
	ISAM Example
	After Inserting 23*, 48*, 41*, 42*
	… Then Deleting 42*, 51*, 97*
	ISAM: Overflow Pages & Locking
	B+-trees: A Dynamic Index Structure
	B+-trees: Basics
	Searching a B+-tree
	Insertion to a B+-tree: Overview
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Root Node Split
	Insertion Algorithm
	Foliennummer 26
	Foliennummer 27
	Deletion from a B+-tree
	Deletion from a B+-tree
	B+-trees in Real Systems
	What is stored inside the leaves?
	B+-trees and Sorting
	Clustered B+-trees
	Index-organized Tables
	Key Compression: Suffix Truncation
	Key Compression: Prefix Truncation
	Composite Keys
	Bulk-Loading B+-trees
	Stars, Pluses, …
	Hash-based Indexing
	Hash-based Indexing
	Hash Function
	Static Hashing
	Problems with Static Hashing
	Dynamic Hashing
	Extendible Hashing: The Idea
	Extendible Hashing: An Example
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Other Issues
	Linear Hashing: The Idea
	Linear Hashing: Rounds of Splitting
	Linear Hashing: Insertion
	Linear Hashing: An Example
	Summary of Hash-based Indexing
	Indexing Recap

