Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2013/14

Lecture Il: Indexing

Indexing

=

[Web Forms]

ra Y

L Applications | | SOL Interface

SOL Commands
1
Executor Parser

Operator Evaluator Optimizer L
L
, >
Transaction Files and Access Methods 9
Manager ! w
Buffer Manager Recovery <
Lock T Manager o
@)
Manager Disk Space Manager —
T
e DBMS | ©

[data file

W

@ Database \ /

w

Figure inspired by Ramakrishnan/Ge hrke: “Database Manage ment Systems”, MoGraw-Hill 2003.

Database File Organization and Indexing

e Remember: Database tables are implemented as files
of records:
— A file consists of one or more pages.
— Each page contains one or more records.
— Each record corresponds to one tuple in a table.

* File organization: Method of arranging the records in
a file when the file is stored on disk.

* Indexing: Building data structures that organize data
records on disk in (multiple) ways to optimize search
and retrieval operations on them.

File Organization

e Given a query such as the following:

SELECT *
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

e How should we organize the storage of our
data files on disk such that we can evaluate
this query efficiently?

Heap Files?

SELECT *
FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8800 AND 8999

* A heap file stores records in no particular order.

e Therefore, CUSTOMER table consists of records that are
randomly ordered in terms of their ZIPCODE.

* The entire file must be scanned, because the qualifying
records could appear anywhere in the file and we don’t
know in advance how many such records exist.

Sorted Files?

SELECT =*
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

e Sort the CUSTOMERS table in ZIPCODE order.

 Then use binary search to find the first qualifying
record, and scan further as long as ZIPCODE < 8999.

I

scan

4104x*
4123%
4222%
4450%
4528%
5012x*
6330%
6423*
8050%
8105%*
8180
8245%
8280%
8406x%
8570%*
8600%
8604 *
8700
T—8808*
8887 *
8910%*
8953*
¥ 9016%*
9200%*
9532%

Are Sorted Files good enough?

H K[| || W [)| W[|| W[|| W[|| W[||
= M| OO0 N|IO Mo Ww|o Wwiia ©|lo Ot O M~ Mm|w o™
O N W[D N|W oo S0 O~ OO Ol ||l Wl oM
— ([N D oM SO || NN D D0 0 O R[OS N||W
o =H||<F =H||F WO OO0 ||o W[l WOl W[l WO |l o|llh R
page © pagel page2 page3l page4 pages page6 page7 page8 pageg pagel0 pagell pageiz
| %
1 .
SCan

v’ Scan phase: We get sequential access during this phase.

X Search phase: We need to read log,N records during this phase
(N: total number of records in the CUSTOMER table).
— We need to fetch as many pages as are required to access these records.
— Binary search involves unpredictable jumps that makes prefetching
difficult.

X What about insertions and deletions?

Tree-based Indexing

e Can we reduce the number of pages fetched during
the search phase?

 Tree-based indexing:
— Arrange the data entries in sorted order by search key value
(e.g., ZIPCODE).

— Add a hierarchical search data structure on top that directs
searches for given key values to the correct page of data
entries.

— Since the index data structure is much smaller than the data
file itself, the binary search is expected to fetch a smaller
number of pages.

— Two alternative approaches: ISAM and B*-tree.

Indexed Sequential Access Method

ISAM

saded xapul

sogded
e1ep

" *ZEG6

*00Z6
*9106

*£G68
*0T68

*/,888

" %8088

*00.8
*7098

*0098
*0.LS8

*9078

%0828

| *G¥C8

*0818

*G018

*0508

*ECT9
*0EED

*C 109G
*8CS¥

*QS¥T
*CCCT

*ECTIV

*OTH

All nodes are of the size of a page.

pointer

k1;m k> P

index entry

}D

Q
o0
(4]
o
5 £
Q
D.mw“N
)
Sdu
Q o
rWn
205 &
O
+ O
fUI
(@)
O 2
5 & +
o)
%)
@ E 0
T o ©
S 25
hbr
(q0)
| | @
(Vs

key
kn EELH

P

1

Key k; serves as a “separator” for the

pages pointed to by p, ; and p..

$
|
b

10

ISAM Index Structure

* Index pages stored at non-leaf nodes

e Data pages stored at leaf nodes
— Primary data pages & Overflow data pages

index pages

- P -"-\-\._____-----
Non-leaf — ' T
Pages ll_ v l_
— 71 I 7

4 3 4 ' 3
Leaf .o R .o - oa
Pages :;‘. ;} v R 4

Overflow --———--- » iy
page

data pages

Primary pages

Updates on ISAM Index Structure

 |[SAM index structure is inherently static.

— Deletion is not a big problem:
e Simply remove the record from the corresponding data page.

* If the removal makes an overflow data page empty, remove that
overflow data page.

 If the removal makes a primary data page empty, keep it as a
placeholder for future insertions.

 Don’t move records from overflow data pages to primary data
pages even if the removal creates space for doing so.

— Insertion requires more effort:

e If there is space in the corresponding primary data page, insert
the record there.

e Otherwise, an overflow data page needs to be added.

* Note that the overflow pages will violate the sequential order.
» ISAM indexes degrade after some time.

ISAM Example

e Assume: Each node can hold two entries.

Root g
40
/ .
E'H.
e
T
20 | | 33 a1l | [63

: |) | \

/ \ .
/ \
!) . .

7N / - Y
10 [15° 20" ‘ 27" S I Tl 40" ‘ 467 1" 25" 63" | 97°

After Inserting 23%*, 48*, 41*, 42*

Root
Index 40 :
Pages / T
—
e,
200 33 511 [63
\
" 'lll..

Primary T L
Leaf 10* ‘ 15+ 20* 2T+ 33 | 37" 40% | 46* 51" ah* 63" a7
Pages .

1 lII

v ¥
Overflow 23" 48| 41" < Overflow data
Pages T pages had to

<—— be added.

42"

14

... Then Deleting 42*, 51*, 97%

51 appears in index page,

ks but not in the data page.

/ "-.__q__ﬂh l

210 33 | 63
|
II". .-'JII l III"-.

10 ‘ 15 20 i 37 40 ‘ 4&6* * B3
v v
273 ‘ 48 | 41
<«—| The empty overflow

data page is removed.

15

ISAM: Overflow Pages & Locking

The non-leaf pages that hold the index data are static;
updates affect only the leaf pages.

» May lead to long overflow chains.

Leave some free space during index creation.
» Typically ~ 20% of each page is left free.

Since ISAM indexes are static, pages need not be locked
during index access.

— Locking can be a serious bottleneck in dynamic tree indexes
(particularly near the root node).

ISAM may be the index of choice for relatively static data.

B*-trees: A Dynamic Index Structure

e The B*-tree is derived from the ISAM index, but is
fully dynamic with respect to updates.

— No overflow chains; B*-trees remain balanced at all times.

— Gracefully adjusts to insertions and deletions.

— Minimum occupancy for all B*-tree nodes (except the
root): 50% (typically: 67 %).
— Original version:

e B-tree: R. Bayer and E. M. McCreight, “Organization and
Maintenance of Large Ordered Indexes”, Acta Informatica, vol. 1,
no. 3, September 1972.

B*-trees: Basics

e B*-trees look like ISAM indexes, where
— leaf nodes are, generally, not in sequential order on disk
— leaves are typically connected to form a doubly-linked list

— leaves may contain actual data (like the ISAM index) or just
references to data pages (e.g., record ids (rids))
* We will assume the latter case, since it is the more common one.

— each B*-tree node contains between d and 2d entries (d is
the order of the B*-tree; the root is the only exception).

| I | | R | S

o B L W] —

W 00 =~d

10

Searching a B*-tree

Function: search (k)
return tree_search (k, root):

Function: tree_search (k, node)

if node is a leaf then
return node;

switch k do
case k < kg

| return tree_search (k, p,) ;
case k; < k < ki,
return tree_search (k, p;);
case K,y < k
return tree_search (k, pui);

* Function search (k)
returns a pointer to the
leaf node that contains
potential hits for search
key k.

* Node page layout:

index entry pointer key

— o >
-

}@ﬁﬁ P ksz kﬂﬁi‘
—

Insertion to a B*-tree: Overview

* The B*-tree needs to remain balanced after every update
(i.e., every root-to-leaf path must be of the same length).

» We cannot create overflow pages.

o Sketch of the insertion procedure for entry <k, p> (key
value k pointing to data page p):
1. Find leaf page n where we would expect the entry for k.

2. If n has enough space to hold the new entry (i.e., at most
2d-1 entries in n), simply insert <k, p> into n.

3. Otherwise, node n must be split into n and n’, and a new
separator has to be inserted into the parent of n.

Splitting happens recursively and may eventually lead to
a split of the root node (increasing the height of the tree).

Insertion to a B*-tree: Example

o
o
Ly
oo
- Tmede0
o O o | WD
— |0 O |
| N [~ <
| oo oo [
: .
S\ & | e
M| || N|m|O(wn o | = oo | O |0 [~ 1) [=]
OO (LD | O — | MWD 0o OO OO0 |
O = (WD o= || | =H Wy | wy | [~ (00 | 0O o [T
| = [| =H L | |00 | oo | oo oo | oo |00 oD (00 | 0O oh [T
|II |I ||I |I i i i Il IIII |I I I'II |I) |II =|
[imde% Lo nfdeﬂ Lol node g I nEdeE ol Hfde? } node 8

- pointers to data pages - - -

* Insert new entry with key 4222.

— Enough space in node 3, simply insert without split.
— Keep entries sorted within nodes.

Insertion to a B*-tree: Example

o
o
Iy}
0
_— -~ Tmede o N
N[O | _d{:} o
|| O o~
O | e
|0 | (vaje)]
/ odEt—_ I'x “hade 2
_ .;'"f . I — . Y
MmN |< |00 ™N|O Mo |u o | =f o | O [O |00 | [~ w0 o
N WD [CN — |7 N (O o O |~ O oo |0 — O
[N WD o (M <H| O | o | =H || w [~ |00 |00 oY
| = || w (O O |0 | | o0 0o |00 0 oo |00 |00 |
node 3 node 4 node g node g node 6 node 7 node 8
ey 6330 new separator_ |&
o <
Insert key : new entry 3
— Must split node 4. ey o P P
- =2 | 1582
— New separator goes into node 1 218 IR

(including pointer to new page).

node 4

new node g

Insertion to a B*-tree: Example

oo
NS
s
0| w
o e n_-::?dE'@——-__________
O[O B o C} ___JC} w
| v O o0 O |
& o =1 ~|O
= | WD 00 | O jvo R o)’
de \ e 12 \ de 2
" f'~,
< | N[O Nlo m|o wlow ol olo| olo~| | |olo
o s [Tellng () [[Ty O |0 |=H o O~ i =llele (O
™ [+ O = (D o) O |0 O [=1 W (W) D [~ [CO |00 |
= |<H = |<H [=H o w00 ealliallve] o000 O (OO (0D 0000 | 0O |
node 3 node 11 node 4 node g node 10 node g node & node 7 node &
e After 8180, 8245, insert key 4104. new separator o
— Must split node 3. L |
- from leaf split ©
— Node 1 overflows => split it! Ny
— New separator goes into root. Q15 B
: : : ~N|O — | N
 Note: Unlike during leaf split, separator Bl |
r'll:'d'f"l new node 12

key does not remain in inner node.

Insertion to a B*-tree: Root Node Split

Splitting starts at the leaf level and continues

upward as long as index nodes are fully occupied.
Eventually, this can lead to a split of the root node:
— Split like any other inner node.

— Use the separator to create a new root.

The root node is the only node that may have an
occupancy of less than 50 %.

This is the only situation where the tree height
increases.

W 00 =1 Thu B

10

12
13

14
15

Insertion Algorithm

Function: tree_insert (k, rid, node)

if node is a leaf then
return leaf_insert (k, rid, node):;

else

switch k do

case k;

case k < kg,
L (sep, ptr) —[tree_insert (k, rid, po) ;

case kog < k
i (sep, ptr) «—|tree_insert (k, rid, p) ;

E k < k.l'+'

(sep, ptr) «—|tree_insert (k, rid, pi) ;

if sep is null then

else

return

return (null, null);

split (sep, ptr, node);

» see tree_search ()

25

—

W 00 -1 O un Boue

o

—r

W 00 -1 O un o W

°

—
—k

Function: 1leaf_insert (k, rid, node)

if another entry fits into node then

else

insert (k, rid) into node ;
return (null, null);

allocate new leaf page p;
take { (k7. pi), - (kD PRass) } .= entries from node U { (k, ptr) }
leave entries (k" p,"), ..., (kj,pg) in node;
\» move entries fkd+1,pd+1} (kG pl) top;

return e‘de,) 2d+1 2d+1

Function: split (k, ptr, node)

if another entry fits into node then

else

insert (k, ptr) into node ;
return (null, null);

allocate new leaf page p;
take { (k. pi). ..., fk2d+1,p2d+1 | 1= entries from node U { (k, ptr) }

leave E‘I"I’[ri.ES {k:;, p; }J,r. (kT pf} in node ;
move entrlis {.k_dﬁ,deL kT, pay) top,
(] a1 ¥ 2d+1 2d+1

return (k. p);

26

1 Function: insert (k, rid)

2 (key, ptr) «— |tree_insert (k, rid, root);
3 if key is not nullthen

4 allocate new root page r;

5 populate n with

6 Po < root;
7
8
9

ki < key;
p — ptr;
root «— r:

* jnsert (k, rid) is called from outside.

 Note how leaf node entries point to rids, while inner
nodes contain pointers to other B*-tree nodes.

27

Deletion from a B*-tree

If a node is sufficiently full (i.e., contains at least d+1
entries), we may simply remove the entry from the node.

— Note: Afterwards, inner nodes may contain keys that no longer
exist in the database. This is perfectly legal.

Merge nodes in case of an underflow (i.e., “undo” a split):

o|mlo oo
©|N| O ©| S
< | <t |0 <'| D
_c‘f'JtDEG n]erge |

& I |I =
. x |)

P o (inner nodes) alalolo

N 0 |||

N|o o N|o||a

<+ | w0 €0 < |w |0 |©

“Pull” separator (i.e., key 6423) into merged node.

Deletion from a B*-tree

e |tis not that easy:

olmo oMo

DN IC oI O

<H [<H (LD = |00 |

™[O |0 ? ™ |0 |
/N — — N\
ofev]en o redistribution [al« nlo
(=[N o |] |00
|| 00 (] ™MD = |
=H (LD | LD (1] =H | LD w0

 Merging only works if two neighboring nodes were
50% full.

e Otherwise, we have to re-distribute:

— “rotate” entry through parent

B*-trees in Real Systems

e Actual systems often avoid the cost of merging and/or
redistribution, but relax the minimum occupancy rule.

e Example: IBM DB2 UDB

— The “MINPCTUSED’” parameter controls when the system
should try a leaf node merge (“on-line index reorganization”).

— This is particularly easy because of the pointers between
adjacent leaf nodes.

— Inner nodes are never merged (need to do a full table
reorganization for that).

* To improve concurrency, systems sometimes only mark
index entries as deleted and physically remove them
later (e.g., IBM DB2 UDB “type-2 indexes”).

What is stored inside the leaves?

e Basically there are three alternatives:

1. The full data entry k*. Such an index is inherently clustered (e.g.,
ISAM).

2. A <k, rid> pair, where rid is the record id of the data entry.

3. A<k, {rid,, rid,, ...}> pair, where the items in the rid list rid. are
record ids of data entries with search key value k.

2 and 3 are reasons why we want record ids to be stable.
e 2 seems to be the most common one.

B*-trees and Sorting

e A typical situation according to alternative 2 looks as follows:

» index file

s JL data file

32

Clustered B*-trees

e |f the data file was sorted, the scenario would look different:

1 "'m_____?
B B » index file
N T v N
— T - 2. —3
o \:, ..I:'E_I:“:l..... - I II";II......... (.../.. -
| \‘n | | A f / { XH' x|
'] | -+ datafile

 We call such an index a clustered index.
— Scanning the index now leads to sequential access.
— This is particularly good for range queries.

Index-organized Tables

e Alternative 1 is a special case of a clustered index.
— index file = data file
— Such a file is often called an index-organized table.

e Example: Oracle 8i

CREATE TABLE(...

PRIMARY KEY(...))
ORGANIZATION INDEX:

Key Compression: Suffix Truncation

B*-tree fan-out is proportional to the number of index
entries per page, i.e., inversely proportional to the key size.

» Reduce key size, particularly for variable-length strings.

"“| Goofy |__J

[Daisy [5{1;_1:| | [Mickey M;usé| Mini Mouse |

|Dag0bert Duck| | |Daisykﬁuck| | |Gmﬂfy| | |Hickey ﬁﬁuse| | | Mini Mcuse|

Suffix truncation: Make separator keys only as long as

necessary:
|Dagubert Duck| | |Daisy Duck | | |G00fyw | |Mickey ﬁcuse| | | Mini ﬁeuse|

Note that separators need not be actual data values.

Key Compression: Prefix Truncation

e Keys within a node often share a common prefix.

Mic | Min

Gﬂmfg- Mickey Mouse

Hini.ﬁﬁuse

L

i
/

 Prefix truncation:

— Store common prefix only once (e.g., as “k,”).
— Keys have become highly discriminative now.

Gcmfkﬂ

Mickey Mouse

Mini ﬁﬁuse

R. Bayer, K. Unterauer, “Prefix B-Trees”, ACM TODS 2(1), March 1977.
B. Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, VLDB'09.

Composite Keys

e B*-trees can in theory be used to index everything
with a defined total order such as:

— integers, strings, dates, etc., and
— concatenations thereof (based on lexicographical order)

e Example: In most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME); |
* A useful application are, e.g., partitioned B-trees:

— Leading index attributes effectively partition the resulting

B*-tree.

G. Graefe, “Sorting and Indexing with Partitioned B-Trees”, CIDR’03.

Bulk-Loading B*-trees

e Building a B+-tree is particularly easy when the input
is sorted.

I
___...-----Ejf:_:_______________ E:I .
e ‘JH\W || |’”fj|\|\'| || |’“ﬁln\'| || |’“f -

e Build B+-tree bottom-up and left-to-right.

 Create a parent for every 2d+1 un-parented nodes.

— Actual implementations typically leave some space for
future updates (e.g., DB2’s “PCTFREE"” parameter).

Stars, Pluses, ...

In the foregoing we described the B*-tree.

Bayer and McCreight originally proposed the B-tree:
— Inner nodes contain data entries, too.

There is also a B*-tree:

— Keep non-root nodes at least 2/3 full (instead of 1/2).

— Need to redistribute on inserts to achieve this
=> Whenever two nodes are full, split them into three.

Most people say “B-tree” and mean any of these
variations. Real systems typically implement B*-trees.

“B-trees” are also used outside the database domain,
e.g., in modern file systems (ReiserFS, HFS, NTFS, ...).

Hash-based Indexing

 B*-trees are by far the predominant type of indices in
databases. An alternative is hash-based indexing.

 Hash indexes can only be used to answer equality
selection queries (not range selection queries).

e Like in tree-based indexing, static and dynamic hashing
techniques exist; their trade-offs are similar to ISAM vs.
B*-trees.

Hash-based Indexing

bucket o
2| bucket1 , R
key 27 -
h : dom(key) — [0..n —1] bucket n —
primary overflow
bucket pages pages

 Records in a file are grouped into buckets.

* A bucket consists of a primary page and possibly
overflow pages linked in a chain.

e Hash function:

— Given a the search key of a record, returns the corresponding
bucket number that contains that record.

— Then we search the record within that bucket.

Hash Function

* A good hash function distributes values in the
domain of the search key uniformly over the
collection of buckets.

e Given N buckets 0 .. N-1, h(value) = (a*value + b)
works well.

— h(value) mod N gives the bucket number.
— a and b are constants to be tuned.

Static Hashing

* Number of primary pages is fixed.

* Primary pages are allocated sequentially and are never
de-allocated. Use overflow pages if need more pages.

* h(k) mod N gives the bucket to which the data entry

with search key k belongs. (N: number of buckets)
hikev) mod N 0 7 -
- T IZ o B
— 1 For primary pages:
m“\ e Read =1 disk I/O
E\ * Insert, Delete = 2 disk |/Os
NN I, ... Whatabout the overflow pages?

Primary bucket pages Overflow pages

Problems with Static Hashing

e Number of buckets n is fixed.
— How to choose n?
— Many deletions => space is wasted

— Many insertions => long overflow chains that degrade
search performance

e Static hashing has similar problems and advantages as
in ISAM.

 Rehashing solution:

— Periodically rehash the whole file to restore the ideal (i.e.,
no overflow chains and 80% occupancy)

— Takes long and makes the index unusable during rehashing.

Dynamic Hashing

To deal with the problems of static hashing, database
systems use dynamic hashing techniques:

— Extendible hashing

— Linear hashing

Note that: Few real systems support true hash indexes
(such as PostgreSQL).
More popular uses of hashing are:

— support for B*-trees over hash values (e.g., SQL Server)

— the use of hashing during query processing => hash join

Extendible Hashing: The Idea

* Overflows occur when bucket (primary page) becomes
full. Why not re-organize the file by doubling the number
of buckets?

— Reading and writing all pages is expensive!

* |dea: Use a directory of pointers to buckets; double the
number of buckets by doubling the directory and
splitting just the bucket that overflowed.

— Directory is much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split.

— No overflow pages!
— Trick lies in how the hash function is adjusted.

 The directory is an array of size 4.

Extendible Hashing: An Example

Search:

-~
LOCAL DEPTH

32*:. dataentryr
with h(r)=32

L

]

4* 12* 31* 14"

— To find the bucket for search key rFLeBAL TEPTH

take the last “global depth”
number of bits of h(r):

— h(r) =5 = binary 101 => The data
entry for ris in the bucket pointed
to by 01.

Insertion:
— If the bucket is full, split it.

— If “necessary”, double the
directory.

="

1
10

11

~ /

-
-

1* &= 11* 1=

Fut

10*

DIRECTORY

Ng

15= 7= 10=

DATAPAGES

Bucket A

Bucket B

Bucket C

Bucket D

Extendible Hashing: Directory Doubling

Insert 20*: h(r) = 20 = binary 10100

00
01
10
11

LOCAL DEPTH-Z—7} &
17:16} Bucket A
@LOEAL DEPTH -
Y
¥ /
1 E
= 3 1+ 5+ 2113} BucketB
S 1
E-h"‘“:l“i.f.l."‘ Bucket C .
e
DIEECTORY :l:"~:* = 10+ Bucket D

4= 11*10=

Bucket Al
("split image'
of Bucket A)

LOCAL DEPTH~Z—%

i
0ol
010
011
100
101
1110
111

32*167

GLOBAL DEPTH
.
{
3 T

1* 5% 11*137

DIRECTORY

4= 12#10*

Bucket A

Bucket B

Bucket C

Bucket D

Bucket Al
“splitimage'
of Bucket A)

48

Extendible Hashing: Directory Doubling

e 20 =binary 10100. The last 2 bits (00) tell us that r belongs
in bucket A or A2. The last 3 bits are needed to tell which.

— Global depth of directory = maximum number of bits needed to
tell which bucket an entry belongs to.

— Local depth of a bucket = number of bits used to determine if an
entry belongs to a given bucket.

* When does a bucket split cause directory doubling?
— Before the insertion and split, local depth = global depth.
— After the insertion and split, local depth > global depth.

— Directory is doubled by copying it over and fixing the pointer to
the split image page.

— After the doubling, global depth = local depth.

Extendible Hashing: Directory Doubling

e Using the least significant bits enables efficient doubling
via copying of directory.

6=110 e 6=110 3
000 000
001 100

- —
....... * I:IID .2.: I:IID
0 G 01 = 100 0 10 001
1 10 101 | 6 o1 101
611
11 110] 6* 11 011 ;?(

111 11

Least Signiticant VS. Most Significant

Extendible Hashing: Other Issues

o Efficiency:

— If the directory fits in memory, an equality selection query
can be answered with 1 disk I/O. Otherwise, 2 disk I/Os are
needed.

* Deletions:

— If removal of a data entry makes a bucket empty, then that
bucket can be merged with its “split image”.

— Merging buckets decreases the local depth.

— |If each directory element points to the same bucket as its
split image, then we can halve the directory.

Linear Hashing: The Idea

e Linear Hashing handles the problem of long overflow chains
without using a directory.

* ldea: Use a family of hash functions h,, h,, h,, ..., such that
— h,,,’s range is twice that of h..
— First, choose an initial hash function h and number of buckets N.
— Then, h,(key) = h(key) mod (2'N).
— If N =29, for some dO, h; consists of applying h and looking at the last di
bits, where di = d0 + .
— Example: Assume N =32 =2°. Then:
e d0=5 (i.e., look at the last 5 bits)
o= h mod (1*32) (i.e., buckets in range 0 to 31)
dl1=d0+1=5+1=6 (i.e., look at the last 6 bits)
h,=h mod (2*32) (i.e., buckets in range 0 to 63)
e ...andsoon.

Linear Hashing: Rounds of Splitting

e Directory is avoided in Linear Hashing by using overflow
pages, and choosing bucket to split in a round-robin fashion.

— Splitting proceeds in “rounds”. A round ends when all N initial (for
round R) buckets are split.

— Current round number is “Level”. During the current round, only
N, o @nd hy .., rein use.

— Search: To find bucket for a data entry r, find h,_,.,(r):
e Assume: Buckets O to Next-1 have been split; Next to N, yet to be split.
e If h,,(r) in range “Next to N;”, r belongs here.

* Else, r could belong to bucket h,, .,(r) or bucket h,, .(r) + Ng;
must apply h,,,...,(r) to find out.

Linear Hashing: Insertion

* Insertion: Find bucket by applying h,,,., and h,_, .,

— If bucket to insert into is full:
e Add overflow page and insert data entry.
* Split Next bucket and increment Next.

e Since buckets are split round-robin, long overflow
chains don’t develop!

* Similar to directory doubling in Extendible Hashing.

Linear Hashing: An Example

* On split, h,,,..,; is used to re-distribute entries.

Leve
Level=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVEEFLOW
1 0| Next=0 PAGES 1 { PAGES PAGES
IICET T 2
000 | oo | L33 oo0 | oo | L%
o %Fl —
Tacdes Data entry r APrRrn
001 | 01 el e with h(r)=5 ao1 | 01 0% 2545
010 10 149187109307, Primary 010 10 1494187109307
— bucket page —-
LR L 'Ir:'r = E :17 T:-: + 3
011 11 31733 11 011 11 3113 11 N 43
{ Ilins info (The actual contents)
15 for illustration af the linear hashed 100 00 447 367
only!) file) L

55

Summary of Hash-based Indexing

 Hash-based indexes are best for equality selection
queries; they cannot support range selection queries.

e Static Hashing can lead to long overflow chains.

 Dynamic Hashing: Extendible or Linear.

— Extendible Hashing avoids overflow pages by splitting a full
bucket when a new data entry is to be added to it.
* Directory to keep track of buckets, doubles periodically.

— Linear Hashing avoids directory by splitting buckets round-

robin and using overflow pages.
e Overflow pages are not likely to be long (usually at most 2).

Indexing Recap
Indexed Sequential Access Method (ISAM)

— A static, tree-based index structure.

B*-trees

— The database index structure; indexing based on any kind of
(linear) order; adapts dynamically to inserts and deletes; low
tree heights (~3-4) guarantee fast lookups.

Clustered vs. Unclustered Indexes

— An index is clustered if its underlying data pages are ordered
according to the index; fast sequential access for clustered B*-
trees.

Hash-Based Indexes

— Extendible hashing and linear hashing adapt dynamically to the
number of data entries.

	Systems Infrastructure for Data Science
	Lecture II: Indexing
	Indexing
	Database File Organization and Indexing
	File Organization
	Heap Files?
	Sorted Files?
	Are Sorted Files good enough?
	Tree-based Indexing
	ISAM: Indexed Sequential Access Method
	ISAM Index Structure
	Updates on ISAM Index Structure
	ISAM Example
	After Inserting 23*, 48*, 41*, 42*
	… Then Deleting 42*, 51*, 97*
	ISAM: Overflow Pages & Locking
	B+-trees: A Dynamic Index Structure
	B+-trees: Basics
	Searching a B+-tree
	Insertion to a B+-tree: Overview
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Root Node Split
	Insertion Algorithm
	Foliennummer 26
	Foliennummer 27
	Deletion from a B+-tree
	Deletion from a B+-tree
	B+-trees in Real Systems
	What is stored inside the leaves?
	B+-trees and Sorting
	Clustered B+-trees
	Index-organized Tables
	Key Compression: Suffix Truncation
	Key Compression: Prefix Truncation
	Composite Keys
	Bulk-Loading B+-trees
	Stars, Pluses, …
	Hash-based Indexing
	Hash-based Indexing
	Hash Function
	Static Hashing
	Problems with Static Hashing
	Dynamic Hashing
	Extendible Hashing: The Idea
	Extendible Hashing: An Example
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Other Issues
	Linear Hashing: The Idea
	Linear Hashing: Rounds of Splitting
	Linear Hashing: Insertion
	Linear Hashing: An Example
	Summary of Hash-based Indexing
	Indexing Recap

