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Database File Organization and Indexing 

• Remember: Database tables are implemented as files 
of records: 
– A file consists of one or more pages. 
– Each page contains one or more records. 
– Each record corresponds to one tuple in a table. 

• File organization: Method of arranging the records in 
a file when the file is stored on disk. 

• Indexing: Building data structures that organize data 
records on disk in (multiple) ways to optimize search 
and retrieval operations on them. 
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File Organization 

• Given a query such as the following: 
 
 
 
 

• How  should we organize the storage of our 
data files on disk such that we can evaluate 
this query efficiently? 
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Heap Files? 

• A heap file stores records in no particular order. 
• Therefore, CUSTOMER table consists of records that are 

randomly ordered in terms of their ZIPCODE. 
• The entire file must be scanned, because the qualifying 

records could appear anywhere in the file and we don’t 
know in advance how many such records exist. 
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Sorted Files? 

• Sort the CUSTOMERS table in ZIPCODE order. 
• Then use binary search to find the first qualifying 

record, and scan further as long as ZIPCODE < 8999. 

7 



Are Sorted Files good enough? 

 Scan phase: We get sequential access during this phase. 
Search phase: We need to read log2N records during this phase 
(N: total number of records in the CUSTOMER table). 
– We need to fetch as many pages as are required to access these records. 
– Binary search involves unpredictable jumps that makes prefetching 

difficult. 

What about insertions and deletions? 
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Tree-based Indexing 
• Can we reduce the number of pages fetched during 

the search phase? 
• Tree-based indexing: 

– Arrange the data entries in sorted order by search key value 
(e.g., ZIPCODE). 

– Add a hierarchical search data structure on top that directs 
searches for given key values to the correct page of data 
entries. 

– Since the index data structure is much smaller than the data 
file itself, the binary search is expected to fetch a smaller 
number of pages. 

– Two alternative approaches: ISAM and B+-tree. 
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ISAM: Indexed Sequential Access Method 

• All nodes are of the size of a page. 
– hundreds of entries per page 
– large fan-out, low depth 

• Search cost ~ logfan-outN 
• Key ki serves as a “separator” for the 
 pages pointed to by pi-1 and pi. 

 pointer  
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ISAM Index Structure 
• Index pages stored at non-leaf nodes 
• Data pages stored at leaf nodes 

– Primary data pages & Overflow data pages 
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Updates on ISAM Index Structure 
• ISAM index structure is inherently static. 

– Deletion is not a big problem: 
• Simply remove the record from the corresponding data page. 
• If the removal makes an overflow data page empty, remove that 

overflow data page. 
• If the removal makes a primary data page empty, keep it as a 

placeholder for future insertions. 
• Don’t move records from overflow data pages to primary data 

pages even if the removal creates space for doing so. 
– Insertion requires more effort: 

• If there is space in the corresponding primary data page, insert 
the record there. 

• Otherwise, an overflow data page needs to be added. 
• Note that the overflow pages will violate the sequential order. 

 ISAM indexes degrade after some time. 
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ISAM Example 
• Assume: Each node can hold two entries. 
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After Inserting 23*, 48*, 41*, 42* 

Overflow data 
pages had to 
be added. 
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… Then Deleting 42*, 51*, 97* 

51 appears in index page, 
but not in the data page. 

The empty overflow 
data page is removed. 
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ISAM: Overflow Pages & Locking 
• The non-leaf pages that hold the index data are static; 

updates affect only the leaf pages. 
May lead to long overflow chains. 

• Leave some free space during index creation. 
Typically ~ 20% of each page is left free. 

 

• Since ISAM indexes are static, pages need not be locked 
during index access. 
– Locking can be a serious bottleneck in dynamic tree indexes 

(particularly near the root node). 

• ISAM may be the index of choice for relatively static data. 
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B+-trees: A Dynamic Index Structure 

• The B+-tree is derived from the ISAM index, but is 
fully dynamic with respect to updates. 
– No overflow chains; B+-trees remain balanced at all times. 
– Gracefully adjusts to insertions and deletions. 
– Minimum occupancy for all B+-tree nodes (except the 

root): 50% (typically: 67 %). 
– Original version: 

• B-tree: R. Bayer and E. M. McCreight, “Organization and 
Maintenance of Large Ordered Indexes”, Acta Informatica, vol. 1, 
no. 3, September 1972. 
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B+-trees: Basics 
• B+-trees look like ISAM indexes, where 

– leaf nodes are, generally, not in sequential order on disk 
– leaves are typically connected to form a doubly-linked list 
– leaves may contain actual data (like the ISAM index) or just 

references to data pages (e.g., record ids (rids)) 
• We will assume the latter case, since it is the more common one. 

– each B+-tree node contains between d and 2d entries (d is 
the order of the B+-tree; the root is the only exception). 
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Searching a B+-tree 
• Function search (k) 

returns a pointer to the 
leaf node that contains 
potential hits for search 
key k. 
 

• Node page layout: 

 pointer  
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Insertion to a B+-tree: Overview 
• The B+-tree needs to remain balanced after every update 

(i.e., every root-to-leaf path must be of the same length). 
We cannot create overflow pages. 

 
• Sketch of the insertion procedure for entry <k, p> (key 

value k pointing to data page p): 
  1. Find leaf page n where we would expect the entry for k. 
  2. If n has enough space to hold the new entry (i.e., at most 

     2d-1 entries in n), simply insert <k, p> into n. 
  3. Otherwise, node n must be split into n and n’, and a new 

     separator has to be inserted into the parent of n. 
      Splitting happens recursively and may eventually lead to 
      a split of the root node (increasing the height of the tree). 
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Insertion to a B+-tree: Example 

• Insert new entry with key 4222. 
– Enough space in node 3, simply insert without split. 
– Keep entries sorted within nodes. 
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Insertion to a B+-tree: Example 

• Insert key 6330. 
– Must split node 4. 
– New separator goes into node 1 

(including pointer to new page). 
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Insertion to a B+-tree: Example 

• After 8180, 8245, insert key 4104. 
– Must split node 3. 
– Node 1 overflows => split it! 
– New separator goes into root. 

• Note: Unlike during leaf split, separator 
key does not remain in inner node. 
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Insertion to a B+-tree: Root Node Split 

• Splitting starts at the leaf level and continues 
upward as long as index nodes are fully occupied. 

• Eventually, this can lead to a split of the root node: 
– Split like any other inner node. 
– Use the separator to create a new root. 

• The root node is the only node that may have an 
occupancy of less than 50 %. 

• This is the only situation where the tree height 
increases. 
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Insertion Algorithm 
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2d+1 2d+1 

2d+1 2d+1 
d+1 
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• insert (k, rid) is called from outside. 
• Note how leaf node entries point to rids, while inner 

nodes contain pointers to other B+-tree nodes. 
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Deletion from a B+-tree 
• If a node is sufficiently full (i.e., contains at least d+1 

entries), we may simply remove the entry from the node. 
– Note: Afterwards, inner nodes may contain keys that no longer 

exist in the database. This is perfectly legal. 

• Merge nodes in case of an underflow (i.e., “undo” a split): 
 
 
 
 

• “Pull” separator (i.e., key 6423) into merged node. 
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Deletion from a B+-tree 
• It is not that easy: 

 
 
 
 
 

• Merging only works if two neighboring nodes were 
50% full. 

• Otherwise, we have to re-distribute: 
– “rotate” entry through parent 
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B+-trees in Real Systems 
• Actual systems often avoid the cost of merging and/or 

redistribution, but relax the minimum occupancy rule. 
• Example: IBM DB2 UDB 

– The “MINPCTUSED” parameter controls when the system 
should try a leaf node merge (“on-line index reorganization”). 

– This is particularly easy because of the pointers between 
adjacent leaf nodes. 

– Inner nodes are never merged (need to do a full table 
reorganization for that). 

• To improve concurrency, systems sometimes only mark 
index entries as deleted and physically remove them 
later (e.g., IBM DB2 UDB “type-2 indexes”). 
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What is stored inside the leaves? 

• Basically there are three alternatives: 

 1. The full data entry k*. Such an index is inherently clustered (e.g., 
ISAM). 

 2. A <k, rid> pair, where rid is the record id of the data entry. 
 3. A <k, {rid1, rid2, …}> pair, where the items in the rid list ridi are 

record ids of data entries with search key value k. 

 
• 2 and 3 are reasons why we want record ids to be stable. 
• 2 seems to be the most common one. 
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B+-trees and Sorting 
• A typical situation according to alternative 2 looks as follows: 
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Clustered B+-trees 
• If the data file was sorted, the scenario would look different: 

 
 
 
 
 
 

• We call such an index a clustered index. 
– Scanning the index now leads to sequential access. 
– This is particularly good for range queries. 
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Index-organized Tables 

• Alternative 1 is a special case of a clustered index. 
– index file = data file 
– Such a file is often called an index-organized table. 

 
• Example: Oracle 8i 

 

CREATE TABLE(... 
    ..., 
    PRIMARY KEY(...)) 
ORGANIZATION INDEX; 
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Key Compression: Suffix Truncation 
• B+-tree fan-out is proportional to the number of index 

entries per page, i.e., inversely proportional to the key size. 
Reduce key size, particularly for variable-length strings. 

 
 
 

• Suffix truncation: Make separator keys only as long as 
necessary: 
 
 

• Note that separators need not be actual data values. 
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Key Compression: Prefix Truncation 
• Keys within a node often share a common prefix. 

 
 
 
 

• Prefix truncation: 
– Store common prefix only once (e.g., as “k0”). 
– Keys have become highly discriminative now. 
 
R. Bayer, K. Unterauer, “Prefix B-Trees”, ACM TODS 2(1), March 1977. 
B. Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, VLDB’09. 
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Composite Keys 
• B+-trees can in theory be used to index everything 

with a defined total order such as: 
– integers, strings, dates, etc., and 
– concatenations thereof (based on lexicographical order) 

• Example: In most SQL dialects: 
 
 

 
• A useful application are, e.g., partitioned B-trees: 

– Leading index attributes effectively partition the resulting 
B+-tree. 

 
G. Graefe, “Sorting and Indexing with Partitioned B-Trees”, CIDR’03. 
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Bulk-Loading B+-trees 
• Building a B+-tree is particularly easy when the input 

is sorted. 
 
 
 
 

• Build B+-tree bottom-up and left-to-right. 
• Create a parent for every 2d+1 un-parented nodes. 

– Actual implementations typically leave some space for 
future updates (e.g., DB2’s “PCTFREE” parameter). 
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Stars, Pluses, … 

• In the foregoing we described the B+-tree. 
• Bayer and McCreight originally proposed the B-tree: 

– Inner nodes contain data entries, too. 
• There is also a B*-tree: 

– Keep non-root nodes at least 2/3 full (instead of 1/2). 
– Need to redistribute on inserts to achieve this 
 => Whenever two nodes are full, split them into three. 

• Most people say “B-tree” and mean any of these 
variations. Real systems typically implement B+-trees. 

• “B-trees” are also used outside the database domain, 
e.g., in modern file systems (ReiserFS, HFS, NTFS, ...). 
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Hash-based Indexing 
• B+-trees are by far the predominant type of indices in 

databases. An alternative is hash-based indexing. 
 

• Hash indexes can only be used to answer equality 
selection queries (not range selection queries). 
 

• Like in tree-based indexing, static and dynamic hashing 
techniques exist; their trade-offs are similar to ISAM vs. 
B+-trees. 
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Hash-based Indexing 

• Records in a file are grouped into buckets. 
• A bucket consists of a primary page and possibly 

overflow pages linked in a chain. 
• Hash function: 

– Given a the search key of a record, returns the corresponding 
bucket number that contains that record. 

– Then we search the record within that bucket. 
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Hash Function 

• A good hash function distributes values in the 
domain of the search key uniformly over the 
collection of buckets. 
 

• Given N buckets 0 .. N-1, h(value) = (a*value + b) 
works well. 
– h(value) mod N gives the bucket number. 
– a and b are constants to be tuned. 
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Static Hashing 
• Number of primary pages is fixed. 
• Primary pages are allocated sequentially and are never 

de-allocated. Use overflow pages if need more pages. 
• h(k) mod N gives the bucket to which the data entry 

with search key k belongs. (N: number of buckets) 

1 

For primary pages: 
• Read = 1 disk I/O 
• Insert, Delete = 2 disk I/Os 
What about the overflow pages? 
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Problems with Static Hashing 

• Number of buckets n is fixed. 
– How to choose n? 
– Many deletions => space is wasted 
– Many insertions => long overflow chains that degrade 

search performance 
• Static hashing has similar problems and advantages as 

in ISAM. 
• Rehashing solution: 

– Periodically rehash the whole file to restore the ideal (i.e., 
no overflow chains and 80% occupancy) 

– Takes long and makes the index unusable during rehashing. 
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Dynamic Hashing 

• To deal with the problems of static hashing, database 
systems use dynamic hashing techniques: 
– Extendible hashing 
– Linear hashing 

• Note that: Few real systems support true hash indexes 
(such as PostgreSQL). 

• More popular uses of hashing are: 
– support for B+-trees over hash values (e.g., SQL Server) 
– the use of hashing during query processing => hash join 
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Extendible Hashing: The Idea 
• Overflows occur when bucket (primary page) becomes 

full. Why not re-organize the file by doubling the number 
of buckets? 
– Reading and writing all pages is expensive! 

• Idea: Use a directory of pointers to buckets; double the 
number of buckets by doubling the directory and 
splitting just the bucket that overflowed. 
– Directory is much smaller than file, so doubling it is much 

cheaper. Only one page of data entries is split. 
– No overflow pages! 
– Trick lies in how the hash function is adjusted. 
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Extendible Hashing: An Example 

Bucket A 

Bucket B 

Bucket C 

Bucket D 

32*: data entry r 
with h(r)=32 • The directory is an array of size 4. 

• Search: 
– To find the bucket for search key r, 

take the last “global depth” 
number of bits of h(r): 

– h(r) = 5 = binary 101 => The data 
entry for r is in the bucket pointed 
to by 01. 

• Insertion: 
– If the bucket is full, split it. 
– If “necessary”, double the 

directory.   
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Extendible Hashing: Directory Doubling 
Insert 20*: h(r) = 20 = binary 10100 
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Extendible Hashing: Directory Doubling 
• 20 = binary 10100. The last 2 bits (00) tell us that r belongs 

in bucket A or A2. The last 3 bits are needed to tell which. 
– Global depth of directory = maximum number of bits needed to 

tell which bucket an entry belongs to. 
– Local depth of a bucket = number of bits used to determine if an 

entry belongs to a given bucket. 

• When does a bucket split cause directory doubling? 
– Before the insertion and split, local depth = global depth. 
– After the insertion and split, local depth > global depth. 
– Directory is doubled by copying it over and fixing the pointer to 

the split image page. 
– After the doubling, global depth = local depth. 
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Extendible Hashing: Directory Doubling 
• Using the least significant bits enables efficient doubling 

via copying of directory. 

6* 
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Extendible Hashing: Other Issues 

• Efficiency: 
– If the directory fits in memory, an equality selection query 

can be answered with 1 disk I/O. Otherwise, 2 disk I/Os are 
needed. 

• Deletions: 
– If removal of a data entry makes a bucket empty, then that 

bucket can be merged with its “split image”. 
– Merging buckets decreases the local depth. 
– If each directory element points to the same bucket as its 

split image, then we can halve the directory. 
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Linear Hashing: The Idea 
• Linear Hashing handles the problem of long overflow chains 

without using a directory. 
• Idea: Use a family of hash functions h0, h1, h2, ..., such that 

– hi+1’s range is twice that of hi. 
– First, choose an initial hash function h and number of buckets N. 
– Then, hi(key) = h(key) mod (2iN). 
– If N = 2d0, for some d0, hi consists of applying h and looking at the last di 

bits, where di = d0 + i. 
– Example: Assume N = 32 =25. Then: 

• d0 = 5 (i.e., look at the last 5 bits) 
• h0 = h mod (1*32) (i.e., buckets in range 0 to 31) 
• d1 = d0 + 1 = 5 + 1 = 6 (i.e., look at the last 6 bits) 
• h1 = h mod (2*32) (i.e., buckets in range 0 to 63) 
• … and so on. 
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Linear Hashing: Rounds of Splitting 

• Directory is avoided in Linear Hashing by using overflow 
pages, and choosing bucket to split in a round-robin fashion. 
– Splitting proceeds in “rounds”. A round ends when all NR initial (for 

round R) buckets are split. 
– Current round number is “Level”. During the current round, only 

hLevel and hLevel+1 are in use. 
– Search: To find bucket for a data entry r, find hLevel(r): 

• Assume: Buckets 0 to Next-1 have been split; Next to NR yet to be split. 

• If hLevel(r) in range “Next to NR”, r belongs here. 
• Else, r could belong to bucket hLevel(r) or bucket hLevel(r) + NR; 

must apply hLevel+1(r) to find out. 
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Linear Hashing: Insertion 

• Insertion: Find bucket by applying hLevel  and hLevel+1: 
– If bucket to insert into is full: 

• Add overflow page and insert data entry. 
• Split Next bucket and increment Next. 

• Since buckets are split round-robin, long overflow 
chains don’t develop! 

• Similar to directory doubling in Extendible Hashing. 
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Linear Hashing: An Example 
• On split, hLevel+1 is used to re-distribute entries. 

55 



Summary of Hash-based Indexing 
• Hash-based indexes are best for equality selection 

queries; they cannot support range selection queries. 
• Static Hashing can lead to long overflow chains. 
• Dynamic Hashing: Extendible or Linear. 

– Extendible Hashing avoids overflow pages by splitting a full 
bucket when a new data entry is to be added to it. 

• Directory to keep track of buckets, doubles periodically. 

– Linear Hashing avoids directory by splitting buckets round-
robin and using overflow pages.  

• Overflow pages are not likely to be long (usually at most 2). 
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Indexing Recap 
• Indexed Sequential Access Method (ISAM) 

– A static, tree-based index structure. 

• B+-trees 
– The database index structure; indexing based on any kind of 

(linear) order; adapts dynamically to inserts and deletes; low 
tree heights (~3-4) guarantee fast lookups. 

• Clustered vs. Unclustered Indexes 
– An index is clustered if its underlying data pages are ordered 

according to the index; fast sequential access for clustered B+-
trees. 

• Hash-Based Indexes 
– Extendible hashing and linear hashing adapt dynamically to the 

number of data entries. 
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