
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2013/14

Hadoop Ecosystem

Not everybody is content
with Map/Reduce

3

http://pig.apache.org/

4

Pig & Pig Latin

• MapReduce model is too low-level and rigid
– one-input, two-stage data flow

• Custom code even for common operations
– hard to maintain and reuse

 Pig Latin: high-level data flow language
 Pig: a system that compiles Pig Latin into physical

MapReduce plans that are executed over Hadoop

5

Pig & Pig Latin

6

dataflow
program

written in
Pig Latin
language

Pig

system

physical
dataflow

job

Hadoop

A high-level language provides:
• more transparent program structure
• easier program development and maintenance
• automatic optimization opportunities

Example
Find the top 10 most visited pages in each category.

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits Url Info

7

Example
Data Flow Diagram

Load Visits

Group by url

Foreach url
generate count

Load Url Info

Join on url

Group by category

Foreach category
generate top10 urls

8

Example in Pig Latin

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;
 9

Quick Start and Interoperability

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Operates directly over files.

10

Quick Start and Interoperability

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Schemas are optional;
can be assigned dynamically.

11

User-Code as a First-Class Citizen

visits = load ‘/data/visits’ as (user, url, time);
gVisits = group visits by url;
visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);
visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;
topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

User-Defined Functions (UDFs)
can be used in every construct

• Load, Store
• Group, Filter, Foreach

12

• Pig Latin has a fully nested data model with four types:
– Atom: simple atomic value (int, long, float, double, chararray, bytearray)

• Example: ‘alice’
– Tuple: sequence of fields, each of which can be of any type

• Example: (‘alice’, ‘lakers’)
– Bag: collection of tuples, possibly with duplicates

• Example:

– Map: collection of data items, where each item can be looked
up through a key

• Example:

Nested Data Model

13

Expressions in Pig Latin

14

Commands in Pig Latin

15

Command Description
LOAD Read data from file system.
STORE Write data to file system.
FOREACH .. GENERATE Apply an expression to each record and

output one or more records.
FILTER Apply a predicate and remove records

that do not return true.
GROUP/COGROUP Collect records with the same key from

one or more inputs.
JOIN Join two or more inputs based on a key.
CROSS Cross product two or more inputs.

Commands in Pig Latin (cont’d)

16

Command Description
UNION Merge two or more data sets.
SPLIT Split data into two or more sets, based on

filter conditions.
ORDER Sort records based on a key.
DISTINCT Remove duplicate tuples.
STREAM Send all records through a user provided

binary.
DUMP Write output to stdout.
LIMIT Limit the number of records.

LOAD

17

file as a bag of tuples
optional deserializer

optional tuple schema logical bag handle

STORE

• STORE command triggers the actual input reading
and processing in Pig.

18

a bag of tuples in Pig

optional serializer

output file

FOREACH .. GENERATE

19

a bag of tuples

output tuple with two fields

UDF

FILTER

20

a bag of tuples

filtering condition
(comparison)

filtering condition
(UDF)

COGROUP vs. JOIN

21

group identifier

equi-join field

COGROUP vs. JOIN

• JOIN ~ COGROUP + FLATTEN

22

COGROUP vs. GROUP

• GROUP ~ COGROUP with only one input data set
• Example: group-by-aggregate

23

Nested Operations in Pig Latin

24

• FILTER, ORDER, and DISTINCT can be nested within a
FOREACH command.

MapReduce in Pig Latin

• A MapReduce program can be expressed in
Pig Latin.

25

map UDF produces
a bag of key-value pairs

key is the first field

reduce UDF

Pig System Overview

cluster

Hadoop
Map-Reduce

Pig

SQL

automatic
rewrite +
optimize

or

or

user

26

Compilation into MapReduce
Load Visits

Group by url

Foreach url
generate count

Load Url Info

Join on url

Group by category

Foreach category
generate top10(urls)

Map1

Reduce1
Map2

Reduce2

Map3

Reduce3

Every (co)group or join operation
forms a map-reduce boundary.

Other operations are
pipelined into map
and reduce phases.

27

Pig vs. MapReduce
• MapReduce welds together 3 primitives:
 process records → create groups → process groups
• In Pig, these primitives are:

– explicit
– independent
– fully composable

• Pig adds primitives for common operations:
– filtering data sets
– projecting data sets
– combining 2 or more data sets

28

Pig vs. DBMS

29

DBMS Pig

Bulk and random reads &
writes; indexes, transactions

Bulk reads & writes only;
no indexes or transactions

System controls data format
Must pre-declare schema
(flat data model, 1NF)

Pigs eat anything
(nested data model)

System of constraints
(declarative)

Sequence of steps
(procedural)

Custom functions second-
class to logic expressions

Easy to incorporate
custom functions

workload

data
representation

programming
style

customizable
processing

http://hive.apache.org/

30

Hive – What?

• A system for managing and querying structured data
– is built on top of Hadoop
– uses MapReduce for execution
– uses HDFS for storage
– maintains structural metadata in a system catalog

• Key building principles:

– SQL-like declarative query language (HiveQL)
– support for nested data types
– extensibility (types, functions, formats, scripts)
– performance

31

Hive – Why?
• Big data

– Facebook: 100s of TBs of new data every day
• Traditional data warehousing systems have limitations

– proprietary, expensive, limited availability and scalability
• Hadoop removes these limitations, but it has a low-level

programming model
– custom programs
– hard to maintain and reuse

 Hive brings traditional warehousing tools and techniques to the

Hadoop eco system.
 Hive puts structure on top of the data in Hadoop + provides an

SQL-like language to query that data.

32

Example: HiveQL vs. Hadoop MapReduce
$ hive> select key, count(1)
 from kv1
 where key > 100
 group by key;

instead of:
$ cat > /tmp/reducer.sh
uniq -c | awk '{print $2"\t"$1}‘
$ cat > /tmp/map.sh
awk -F '\001' '{if($1 > 100) print $1}‘
$ bin/hadoop jar contrib/hadoop-0.19.2-dev-streaming.jar
-input /user/hive/warehouse/kv1 -file /tmp/map.sh -file /tmp/reducer.sh
-mapper map.sh -reducer reducer.sh -output /tmp/largekey
-numReduceTasks 1
$ bin/hadoop dfs -cat /tmp/largekey/part*

33

Hive Data Model and Organization
Tables

• Data is logically organized into tables.
• Each table has a corresponding directory under a

particular warehouse directory in HDFS.
• The data in a table is serialized and stored in files under

that directory.
• The serialization format of each table is stored in the

system catalog, called “Metastore”.
• Table schema is checked during querying, not during

loading (“schema on read” vs. “schema on write”).

34

Hive Data Model and Organization
Partitions

• Each table can be further split into partitions, based on the
values of one or more of its columns.

• Data for each partition is stored under a subdirectory of
the table directory.

• Example:
– Table T under: /user/hive/warehouse/T/
– Partition T on columns A and B
– Data for A=a and B=b will be stored in files under:

/user/hive/warehouse/T/A=a/B=b/

35

Hive Data Model and Organization
Buckets

• Data in each partition can be further divided into buckets,
based on the hash of a column in the table.

• Each bucket is stored as a file in the partition directory.
• Example:

– If bucketing on column C (hash on C):
 /user/hive/warehouse/T/A=a/B=b/part-0000
 …
 /user/hive/warehouse/T/A=a/B=b/part-1000

36

Hive Column Types
• Primitive types

– integers (tinyint, smallint, int, bigint)
– floating point numbers (float, double)
– boolean
– string
– timestamp

• Complex types
– array<any-type>
– map<primitive-type, any-type>
– struct<field-name: any-type, ..>

• Arbitrary level of nesting
37

Hive Query Model
• DDL: data definition statements to create tables with

specific serialization formats, partitioning/ bucketing
columns
– CREATE TABLE …

• DML: data manipulation statements to load and insert

data (no updates or deletes)
– LOAD ..
– INSERT OVERWRITE ..

• HiveQL: SQL-like querying statements

– SELECT .. FROM .. WHERE .. (subset of SQL)

38

Example

• Status updates table:
 CREATE TABLE status_updates (userid int, status string, ds string)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY `\t`;

• Load the data daily from log files:
 LOAD DATA LOCAL INPATH ‘/logs/status_updates’
 INTO TABLE status_updates PARTITION (ds=’2009-03-20’)

39

Example Query (Filter)

• Filter status updates
 containing ‘michael jackson’.

SELECT *
FROM status_updates
WHERE status LIKE ‘michael jackson’

40

Example Query (Aggregation)

• Find the total number of
 status_updates in a given day.

SELECT COUNT(1)
FROM status_updates
WHERE ds = ’2009-08-01’

41

Hive Architecture

42

Hive Architecture

43

Metastore
• System catalog that contains metadata about

Hive tables
– namespace
– list of columns and their types; owner, storage, and

serialization information
– partition and bucketing information
– statistics

• Not stored in HDFS
– should be optimized for online transactions with

random accesses and updates
– use a traditional relational database (e.g., MySQL)

• Hive manages the consistency between metadata
and data explicitly.
 44

Query Compiler

• Converts query language strings into plans:
– DDL -> metadata operations
– DML/LOAD -> HDFS operations
– DML/INSERT and HiveQL -> DAG of MapReduce jobs

• Consists of several steps:

– Parsing
– Semantic analysis
– Logical plan generation
– Query optimization and rewriting
– Physical plan generation

45

Example Optimizations

• Column pruning
• Predicate pushdown
• Partition pruning
• Combine multiple joins with the same join key into a

single multi-way join, which can be handled by a
single MapReduce job

• Add repartition operators for join and group-by
operators to mark the boundary between map and
reduce phases

46

Hive Extensibility

• Define new column types.
• Define new functions written in Java:

– UDF: user-defined functions
– UDA: user-defined aggregation functions

• Add support for new data formats by defining
custom serialize/de-serialize methods (“SerDe”).

• Embed custom map/reduce scripts written in any
language using a simple streaming interface.

47

References
• “Pig Latin: A Not-So-Foreign Language for Data Processing”, C. Olston et al,

SIGMOD 2008.
• “Building a High-Level Dataflow System on top of Map-Reduce: The Pig

Experience”, A. F. Gates et al, VLDB 2009.
• “Hive: A Warehousing Solution Over a Map-Reduce Framework”, A. Thusoo

et al, VLDB 2009.
• “Hive: A Petabyte Scale Data Warehouse Using Hadoop”, A. Thusoo et al,

ICDE 2010.
• “BigTable: A Distributed Storage System for Structured Data”, F. Chang et al,

OSDI 2006.

48

	Systems Infrastructure for Data Science
	Hadoop Ecosystem
	Not everybody is content �with Map/Reduce
	Foliennummer 4
	Pig & Pig Latin
	Pig & Pig Latin
	Example�Find the top 10 most visited pages in each category.
	Example�Data Flow Diagram
	Example in Pig Latin
	Quick Start and Interoperability
	Quick Start and Interoperability
	User-Code as a First-Class Citizen
	Nested Data Model
	Expressions in Pig Latin
	Commands in Pig Latin
	Commands in Pig Latin (cont’d)
	LOAD
	STORE
	FOREACH .. GENERATE
	FILTER
	COGROUP vs. JOIN
	COGROUP vs. JOIN
	COGROUP vs. GROUP
	Nested Operations in Pig Latin
	MapReduce in Pig Latin
	Pig System Overview
	Compilation into MapReduce
	Pig vs. MapReduce
	Pig vs. DBMS
	Foliennummer 30
	Hive – What?
	Hive – Why?
	Example: HiveQL vs. Hadoop MapReduce
	Hive Data Model and Organization�Tables
	Hive Data Model and Organization�Partitions
	Hive Data Model and Organization�Buckets
	Hive Column Types
	Hive Query Model
	Example
	Example Query (Filter)
	Example Query (Aggregation)
	Hive Architecture
	Hive Architecture
	Metastore
	Query Compiler
	Example Optimizations
	Hive Extensibility
	References

