Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Data Stream Processing

Today’s Topic

* Stream Processing
— Model Issues
— System Issues
— Distributed Processing Issues

Distributed Stream Processing
Motivation

Distributed data sources
Performance and Scalability

High availability and Fault tolerance

Design Options for Distributed DSMS

Almost same split as with distributed databases
vs cloud databases

Currently, most of the work is on fairly tightly
coupled, strongly maintained distributed DSMS

We will study a number of general/traditional
approaches for most of the lecture, look at some
ideas for cloud-based streaming

As usual, distributed processing is about
tradeoffs!

Distributed Stream Processing
Borealis Example

End-point Applications

Push-based Data Sources

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 6

Distributed Stream Processing
Major Problem Areas

* Load distribution and balancing
— Dynamic / Correlation-based techniques
— Static / Load-resilient techniques
— (Network-aware techniques)

* Distributed load shedding
* High availability and Fault tolerance

— Handling node failures
— Handling link failures (esp. network partitions)

Load Distribution

* Goal: to distribute a given set of continuous
guery operators onto multiple stream
processing server nodes

* What makes an operator distribution good?
— Load balance across nodes
— Resiliency to load variations
— Low operator migration overhead
— Low network bandwidth usage

Correlation-based Techniques

e Goals:
— to minimize end-to-end query processing latency
— to balance load across nodes to avoid overload

e Key ideas:

— Group boxes with small load correlation together
= helps minimize the overall load variance on that node
—> keeps the node load steady as input rates change

— Maximize load correlation among nodes
= helps minimize the need for load migration

Example

A M A M
I"1_> C g C - 2r 2r —
r — r—
r2—> C > C e
> >
time time
Connected Plan 1 \ Cut Plan
| — A — o |
| | I
r—{ C > C —:—>> 2Cr "—Ir’ C : :: C :_’
A I | y |
F= === = = = = = == - | l I [
I :) : |:]
| | |
2r— C " C ——rdcr 2r—= C Tk C T
T I A Y M ;

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 3 cr 3 Cr 10

Example: Cut Plan beats the Connect Plan

()]
o
o

(@)
o
o

N
o
o

W
-
o

N
o
o

RN
o
o

Average End-to-End Latency (ms)

—o-CONNECTED|
|-8-CUT

(&)

0.6

............. o T |

0.7 0.8 0.9
Average Node CPU Utilization

Formal Problem Definition

n: number of server nodes
X.: load time series of node N,
p;;: correlation coefficient of X;and X, 1 <i, j<n

Find a plan that maps operators to nodes with the
following properties:

> EX, ~ EX, = ... EX_
> EZvar Xi is minimized, or
N5

> Y, pi is maximized.

1I<i<j<n

Dynamic Load Distribution Algorithms

* Periodically repeat:

N e

If t
21

Collect load statistics from all nodes.
Order nodes by their average load.
Pair the ith node with the (n-i+1)" node.

here exists a pair (A, B) such that |A.load — B.load|
nreshold, then move operators between them to

ba

ance their average load and to minimize their

average load variance.
* Two load movement algorithms for pairs in Step 4:
— One-way
— Two-way

One-way Algorithm

* Given a pair (A, B) that must move load, the node with
the higher load (say A) offloads half of its excess load
to the other node (B).

e Operators of A are ordered based on a score, and the
operator with the largest score is moved to B until
balance is achieved.

e Score of an operator O is computed as follows:
correlation_coefficient(O, other operators at A)
— correlation_coefficient(O, other operators at B)

Two-way Algorithm

All operators in a given pair can be moved in both ways.
Assume both nodes are initially empty.
Score all the operators.

Select the largest score operator and place it at the less
loaded node.

Continue until all operators are placed.

Two-way algorithm could results in a better placement.
But, load migration cost would be higher.

Load-resilient Techniques

* Goal: to tolerate as many load conditions as
possible without the need for operator migration.
* Resilient Operator Distribution (ROD)

— ROD does not become overloaded easily in the face of
fluctuating input rates.

— Key idea:

illpllt stream rate 7

((((((((((((

mput stream rate 7

maximize this area !

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 16

Comparison of Approaches

Correlation-based Load-resilient
* Dynamic e Static
* Medium-to-long term e Short-term load
load variations fluctuations
* Periodic operator * No operator movement

movement

Distributed Stream Processing
Major Problem Areas

* Load distribution and balancing
— Dynamic / Correlation-based techniques
— Static / Load-resilient techniques
— (Network-aware techniques)

* Distributed load shedding
* High availability and Fault tolerance

— Handling node failures
— Handling link failures (esp. network partitions)

Distributed Load Shedding

Problem: One or more servers can be overloaded.

Goal: Remove excess load from all of them with
minimal quality loss at query end-points.

There is a load dependency among the servers.

To keep quality under control, servers must
coordinate in their load shedding decisions.

Distributed Load Shedding

Load Dependency
QR i ISR .

1 tuple/sec ‘ Cost = 1 ‘ Cost = 3 31/4 tuple/sec
M Seclectivity = 1.0 JE Il Selectivity = 1.0 [JE]

1tup|e/sec§ ‘ ‘ Cost = 1 51/4 tuple/sec

” ” olel~ () () ¢ C
Op"'lmal @ ” ”
for A‘ 1
feasible 2 . . . ?E:lg\ﬂh
for both| 3 1/5,2/5 1 1/5,2/5 1 1/5,2/5 [—

(L= I [romize
20

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

Distributed Load Shedding

as a Linear Optimization Problem

o -

Find xj such that for allnodes O0<1<N :
2 . . i . .<é/.
;rjXXjXSJ— XCi,jS (i
0<x <1
erijijx pj is maximized.
=1

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

21

Distributed Stream Processing
Major Problem Areas

* Load distribution and balancing
— Dynamic / Correlation-based techniques
— Static / Load-resilient techniques
— (Network-aware techniques)

* Distributed load shedding
* High availability and Fault tolerance

— Handling node failures
— Handling link failures (esp. network partitions)

High Availability and Fault Tolerance

Overview

* Problem: node failures and network link failures
» Query execution stalls
» Queries produce incorrect results

* Requirements:
— Consistency -> Avoid lost, duplicate, or out of order data

— Performance -> Avoid overhead during normal processing
+ overhead during failure recovery

* Major tasks:
— Failure preparation -> Replication of volatile processing state
— Failure detection -> Timeouts
— Failure recovery -> Replica coordination upon failure

High Availability and Fault Tolerance

General Approach

* Adapt traditional approaches to stream processing

 Two general approaches:

— State-machine approach
* Replicate the processing on multiple nodes
e Send all the nodes the same input in the same order
* Advantage: Fast fail-over
* Disadvantage: High resource requirements

— Rollback recovery approach
* Periodically check-point processing state to other nodes
* Log input between check-points
* Advantage: Low run-time overhead
* Disadvantage: High recovery time

e Different trade-offs can be made among:
— Availability, Run-time overhead, and Consistency

Handling Node Failures

Active Replicas
Passive Standby
Passive Replicas

Upstream Backup

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

25

Active Replicas

output queue operator
7Zbuffer W\
= data |
. = ‘“\-:" ___________ -v""" .
replica P1| . ack .1 replica Cq
— N N —
NS) ><:' S
-~ ack s
R L
Ea data |
replica P, | ;| replica Cy
= 3 R

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

Passive Standby

output queue operator
/ buffer //\></\\
—I S) data - :
primary| .. S primary
S ack““m\% A-checkpoint
~ S
backup S backup
S S

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

27

Upstream Backup

output queue operator

- / buffer M\

— H ' data ,"
primar 3 primary .~
~ ° P,

S -.ack §

backup S backup
?
S S
Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

28

Run-time Overhead vs. Recovery Time Trade-off

* Active Replicas:

— High run-time overhead

— Fast fail-over (i.e., low recovery time)
* Passive Standby:

— Check-point interval can be flexibly adjusted

e Upstream Backup:
— Low run-time overhead

— Recovery time is proportional to the size of the upstream
buffers

Handling Network Partitions

 “Network Partitions” occur when data sources,

processing nodes, and clients are split into
disconnected partitions due to network failures.

* Two general options:
— Suspend processing to avoid inconsistency.
— Continue processing to avoid unavailability.

* Delay-Process-Correct (DPC) Protocol

— Adjust the trade-off btw consistency and availability using
maximum tolerable latency threshold and tentative tuples.

Undo tuples T3 through TS

Stable tuples Tentative tuples | Corrections and new tuples

st|[s2] [m3][Tal[Ts] [v2] [s3][s4

time
-

Other Advanced HA Techniques

e Cooperative and Self-configuring HA [Borealis]

— Each server node is backed up by multiple servers in a cooperative
fashion, which can take over processing in parallel.

— Backup assignment dynamically changes to balance HA load.
— Wide-area extensions

* Integrating Fault Tolerance with Load Balancing [Flux]
— Fine-granularity dataflow partitions
— Rebalance load after failure recovery

