Systems Infrastructure for Data Science

Web Science Group Uni Freiburg WS 2012/13

Data Stream Processing

Topics

- Model Issues
- System Issues
- Distributed Processing
- Web-Scale Streaming

System Issues

- Architecture and Run-time operation
- Resource limitations
 - CPU
 - Memory
 - Bandwidth (distributed case)
- Performance goals
 - Low latency
 - High throughput
 - Maximum QoS utility
 - Minimum error

General Concerns

- In principle, same architecture choices as in databases
- Different tradeoffs:
 - Latency bounds more important than throughput
 - Processing driven by data arrival, not query optimization
- Architecture changes:
 - Push-based execution more popular (why?)
 - Decoupling using queues
 - Adaptive processing

System Issues

• Two systems as case studies:

– Aurora [Brandeis-Brown-MIT]

- STREAM [Stanford]

System Issues in Aurora

Aurora System Model

Uni Freiburg, WS2012/13

Systems Infrastructure for Data Science

Aurora Architecture

Operator Scheduling

- <u>Goal</u>: To allocate the CPU among multiple queries with multiple operators so as to optimize a metric, such as:
 - minimize total average latency
 - maximize total average latency QoS utility
 - maximize total average throughput
 - minimize total memory consumption
- Deciding which operator should run next, for how long or with how much input.
- Must be low overhead.

Why should the DSMS worry about scheduling? Thread-based vs. State-based Execution

Batching

- Exploit inter-box and intra-box non-linearities in execution overhead
- Train scheduling

batching and executing multiple tuples together

• Superbox scheduling

batching and executing multiple boxes together

Batching reduces execution costs

Systems Infrastructure for Data Science

Distribution of Execution Overhead

The Overload Problem

- If Load > Capacity during the spikes, then queues form and latency proliferates.
- Given a query network N, a set of input streams I, and a CPU with processing capacity C; when Load(N(I)) > C, transform N into N' such that:
 - -Load(N'(I)) < C, and
 - Utility(N(I)) Utility(N'(I)) is minimized.

Load Shedding in Aurora

Aurora Query Network

- Solution: Insert drop operators into the query plan.
- Result: Deliver "approximate answers" with low latency.

The Drop Operator

- is an abstraction for load reduction
- can be added, removed, updated, moved
- reduces load by a factor
- produces a "subset" of its input
- picks its victims
 - probabilistically
 - semantically (i.e., based on tuple content)

When to Shed Load?

• Load coefficients

$$R_{i} \longrightarrow \underbrace{cost_{1}}_{sel_{1}} \longrightarrow \underbrace{cost_{2}}_{sel_{2}} \longrightarrow \cdots \longrightarrow \underbrace{cost_{n}}_{sel_{n}} \longrightarrow \\ L_{i} = \sum_{j=1}^{n} \left(\prod_{k=1}^{j-1} sel_{k}\right) \times cost_{j} \quad (CPU \text{ cycles per tuple})$$

Total load

 $\sum L_i \times R_i$ (CPU cycles per time unit)

Aurora Load Shedding Three Basic Principles

- 1. Minimize run-time overhead.
- 2. Minimize loss in query answer accuracy.
- 3. Deliver subset results.

Principle 1: Plan in advance.

Systems Infrastructure for Data Science

Principle 2: Minimize error.

- Early drops save more processing cycles.
- Drops before sharing points can cause more accuracy loss.
- We rank possible drop locations by their loss/gain ratios.

Principle 3: Keep sliding windows intact.

- Two parameters: size and slide
- Example: Trades(time, symbol, price, volume)

Windowed Aggregation

- Apply an aggregate function on the window
 - Average, Sum, Count, Min, Max
 - User-defined
- Can be nested
- Example:

Dropping from an Aggregation Query Tuple-based Approach

• Drop before : non-subset result of nearly the same size

• Drop after : subset result of smaller size

Systems Infrastructure for Data Science

Dropping from an Aggregation Query Window-based Approach

• Drop before : subset result of smaller size

- Window-aware load shedding
 - works with any aggregate function
 - delivers correct results
 - keeps error propagation under control
 - can handle nesting
 - can drop load early

System Issues in STREAM

STREAM Query Plans

Query in CQL -> Physical query plan tree

STREAM Operators

Name	Operator Type	Description
select	relation-to-relation	Filters elements based on predicate(s)
project	relation-to-relation	Duplicate-preserving projection
binary-join	relation-to-relation	Joins two input relations
mjoin	relation-to-relation	Multiway join from [22]
union	relation-to-relation	Bag union
except	relation-to-relation	Bag difference
intersect	relation-to-relation	Bag intersection
antisemijoin	relation-to-relation	Antisemijoin of two input relations
aggregate	relation-to-relation	Performs grouping and aggregation
duplicate-eliminate	relation-to-relation	Performs duplicate elimination
seq-window	stream-to-relation	Implements time-based, tuple-based,
		and partitioned windows
i-stream	relation-to-stream	Implements <i>Istream</i> semantics
d-stream	relation-to-stream	Implements <i>Dstream</i> semantics
r-stream	relation-to-stream	Implements $Rstream$ semantics

STREAM Queues

- Queues encapsulate the typical producerconsumer relationship between the operators.
- They act as in-memory buffers.
- They enforce that tuple timestamps are nondecreasing.
 - >Why is this necessary?
 - Heartbeat mechanism for time management

STREAM Heartbeats in a Nutshell

- Problem: Out of order data arrival
 - Unsynchronized application clocks at the sources
 - Different network latencies from different sources to the DSMS
 - Data transmission over a non-orderpreserving channel
- Solution: Order tuples at the input manager by generating heartbeats based on applicationspecified parameters
 - Heartbeat value T at a given time instant means that all tuples after that instant will have a timestamp greater than T.

Systems Infrastructure for Data Science

STREAM Synopses

- A synopsis stores the internal state of an operator needed for its evaluation.
 - <u>Example</u>: A windowed join maintains a hash table for each of its inputs as a synopsis.

> Do we need synopses for all types of operators?

- Like queues, synopses are also kept in memory.
- Synopses can also be used in more advanced ways:
 - shared among multiple operators (for space optimization)
 - store summary of stream tuples (for approximate processing)

STREAM Performance Issues Synopsis Sharing for Eliminating Data Redundancy

• Replace identical synopses with "stubs" and store the actual tuples in a single store.

STREAM Performance Issues Exploiting Constraints for Reducing Synopsis Sizes

- Constraints on data and arrival patterns to reduce, bound, eliminate memory state
- Schema-level constraints
 - Clustering (e.g., contiguous duplicates)
 - Ordering (e.g., slack parameter in SQuAl)
 - Referential integrity (e.g., timestamp synchronization)
 - In relaxed form: k-constraints (k: adherence parameter)
- Simple example:
 - Orders (orderID, customer, cost)
 - Fulfillments (orderID, portion, clerk)
 - If Fulfillments is k-clustered on orderID, can infer when to discard Orders.

STREAM Performance Issues Exploiting Constraints for Reducing Synopsis Sizes

- Data-level constraints: "Punctuations"
- Punctuations are special annotations embedded in data streams to specify the end of a subset of data.
 No more tuples will follow that match the punctuation.
- A punctuation is represented as an ordered set of patterns, where each pattern corresponds to an attribute of a tuple.
 - Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø
 - Example: < item_id, buyer_id, bid >
 - < {10, 20}, *, * > => all bids on items 10 and 20.

STREAM Performance Issues Operator Scheduling for Reducing Intermediate State

• A global scheduler decides on the order of operator execution.

• Changing the execution order of the operators does not affect their semantic correctness, but may affect system's total memory utilization.

STREAM Performance Issues Operator Scheduling for Reducing Intermediate State

• Example Query Plan:

cost = 1 cost = 1selectivity = 0.2 selectivity = 0

• Total Queue Sizes for two alternative scheduling policies:

•	FIFO scheduling	Greedy scheduling	Time
•	1	1	0
	1.2	1.2	1
SE	2.0	1.4	2
	2.2	1.6	3
	3.0	1.8	4
	3.2	2.0	5
	4.0	2.2	6

- Greedy always prioritizes OP1.
- FIFO schedules OP1-OP2 in sequence.
 - Greedy has smaller max.

queue size.

(Chain Scheduling Algorithm)