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Data Stream Processing 



Topics 

• Model Issues 
• System Issues 
• Distributed Processing 
• Web-Scale Streaming 
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System Issues 
• Architecture and Run-time operation 
• Resource limitations 

– CPU 
– Memory 
– Bandwidth (distributed case) 

• Performance goals 
– Low latency 
– High throughput 
– Maximum QoS utility 
– Minimum error 
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General Concerns 

• In principle, same architecture choices as in 
databases 

• Different tradeoffs: 
– Latency bounds more important than throughput 
– Processing driven by data arrival, not query 

optimization 
• Architecture changes: 

– Push-based execution more popular (why?) 
– Decoupling using queues 
– Adaptive processing 
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System Issues 

• Two systems as case studies: 
– Aurora [Brandeis-Brown-MIT] 
– STREAM [Stanford] 
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System Issues in Aurora 



Aurora System Model 
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Aurora Quality of Service (QoS)   

• Loss-tolerance QoS 
utility 
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• Latency QoS 
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Aurora Architecture 
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Operator Scheduling 

• Goal: To allocate the CPU among multiple queries with 
multiple operators so as to optimize a metric, such as: 
– minimize total average latency 
– maximize total average latency QoS utility 
– maximize total average throughput 
– minimize total memory consumption 

• Deciding which operator should run next, for how long 
or with how much input. 

• Must be low overhead. 
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Why should the DSMS worry about scheduling? 
Thread-based vs. State-based Execution 
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Batching 
• Exploit inter-box and intra-box non-linearities 

in execution overhead 
 

• Train scheduling 
– batching and executing multiple tuples together 

 

• Superbox scheduling 
– batching and executing multiple boxes together 
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Batching reduces execution costs 
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Distribution of Execution Overhead 
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The Overload Problem 

• If Load > Capacity during the spikes, then 
queues form and latency proliferates. 

• Given a query network N, a set of input 
streams I, and a CPU with processing capacity 
C; when Load(N(I)) > C, transform N into N’ 
such that: 
– Load(N’(I)) < C, and 
– Utility(N(I)) – Utility(N’(I)) is minimized. 
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Load Shedding in Aurora 

Aurora Query Network 

. . . 
. . . 

• Problem: When load > capacity, latency QoS degrades. 
• Solution: Insert drop operators into the query plan. 
• Result: Deliver “approximate answers” with low latency. 
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 Key questions: 
 when to shed load? 
 where to shed load? 
 how much load to shed? 
 which tuples to drop? 



The Drop Operator 

• is an abstraction for load reduction 
• can be added, removed, updated, moved 
• reduces load by a factor 
• produces a “subset” of its input 
• picks its victims 

– probabilistically 
– semantically (i.e., based on tuple content) 
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When to Shed Load? 
• Load coefficients 

 
 
 
 
 

• Total load 
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Aurora Load Shedding 
Three Basic Principles 

1. Minimize run-time overhead. 
2. Minimize loss in query answer accuracy. 
3. Deliver subset results. 
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Principle 1: Plan in advance. 

cursor 

Excess Load Drop Insertion Plan 

shed less! 
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Principle 2: Minimize error.  

• Early drops save more processing cycles. 
• Drops before sharing points can cause more accuracy loss. 
• We rank possible drop locations by their loss/gain ratios. 
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(10:00, “IBM”,  20, 100) 
(10:00, “INTC”, 15, 200) 
(10:00, “MSFT”, 22, 100) 
(10:05, “IBM”,  18, 300) 
(10:05, “MSFT”, 21, 100) 
(10:10, “IBM”,  18, 200) 
(10:10, “MSFT”, 20, 100) 
(10:15, “IBM”,  20, 100) 
(10:15, “INTC”, 20, 200) 
(10:15, “MSFT”, 20, 200) 
  . 
  .  

• Two parameters: size and slide 
• Example: Trades(time, symbol, price, volume) 
 

 

 

 

 

Principle 3: Keep sliding windows intact. 

size = 10 min 

slide by 5 min 
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Windowed Aggregation 
• Apply an aggregate function on the window 

– Average, Sum, Count, Min, Max 
– User-defined 

• Can be nested 
• Example: 

Filter Aggregate 

symbol=“IBM” 

Filter 

diff > 5 ω = 5 min 
δ = 5 min 

diff = high-low 

ω = 60 min 
δ = 60 min 

count 

Filter 

count > 0 

Aggregate 
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• Drop before : non-subset result of nearly the same size 
 
 
 

• Drop after : subset result of smaller size 

Dropping from an Aggregation Query 
Tuple-based Approach 
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Dropping from an Aggregation Query 
Window-based Approach 

• Drop before : subset result of smaller size 
 
 
 
 

• Window-aware load shedding 
– works with any aggregate function 
– delivers correct results 
– keeps error propagation under control 
– can handle nesting 
– can drop load early 
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System Issues in STREAM 



operators 
for processing 

queues 
for buffering tuples 

synopses 
for storing operator state 

STREAM Query Plans 
• Query in CQL -> Physical query plan tree 
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SELECT * 
FROM S1 [ROWS 1000], S2 [RANGE 2 MINUTES] 
WHERE S1.A = S2.A AND S1.A > 10 



STREAM Operators 
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STREAM Queues 

• Queues encapsulate the typical producer-
consumer relationship between the operators. 

• They act as in-memory buffers. 
• They enforce that tuple timestamps are non-

decreasing. 
Why is this necessary? 
– Heartbeat mechanism for time management 
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STREAM Heartbeats in a Nutshell 
• Problem: Out of order data arrival 

– Unsynchronized application clocks at 
the sources 

– Different network latencies from 
different sources to the DSMS 

– Data transmission over a non-order-
preserving channel 

• Solution: Order tuples at the 
input manager by generating 
heartbeats based on application-
specified parameters 
– Heartbeat value T at a given time 

instant means that all tuples after 
that instant will have a timestamp 
greater than T. 
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STREAM Synopses 

• A synopsis stores the internal state of an operator 
needed for its evaluation. 
– Example: A windowed join maintains a hash table for each of 

its inputs as a synopsis. 
Do we need synopses for all types of operators? 

• Like queues, synopses are also kept in memory. 
• Synopses can also be used in more advanced ways: 

– shared among multiple operators (for space optimization) 
– store summary of stream tuples (for approximate processing) 
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STREAM Performance Issues 
Synopsis Sharing for Eliminating Data Redundancy 

• Replace identical synopses with “stubs” and store the 
actual tuples in a single store. 

• Also for multiple query plans. 
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SELECT * 
FROM S1 [ROWS 1000], 
     S2 [RANGE 2 MINUTES] 
WHERE S1.A = S2.A AND S1.A > 10 

SELECT A, MAX(B) 
FROM S1 [ROWS 200] 
GROUP By A 



STREAM Performance Issues 
Exploiting Constraints for Reducing Synopsis Sizes 

• Constraints on data and arrival patterns to reduce, bound, 
eliminate memory state 

• Schema-level constraints 
– Clustering (e.g., contiguous duplicates) 
– Ordering (e.g., slack parameter in SQuAl) 
– Referential integrity (e.g., timestamp synchronization) 
– In relaxed form: k-constraints (k: adherence parameter) 

• Simple example: 
– Orders (orderID, customer, cost) 
– Fulfillments (orderID, portion, clerk) 
– If Fulfillments is k-clustered on orderID, can infer when to discard 

Orders. 
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STREAM Performance Issues 
Exploiting Constraints for Reducing Synopsis Sizes 

• Data-level constraints: “Punctuations” 
• Punctuations are special annotations embedded in 

data streams to specify the end of a subset of data. 
– No more tuples will follow that match the punctuation. 

• A punctuation is represented as an ordered set of 
patterns, where each pattern corresponds to an 
attribute of a tuple. 
– Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø 
– Example: < item_id, buyer_id, bid > 
     < {10, 20}, *, * >    => all bids on items 10 and 20. 
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STREAM Performance Issues 
Operator Scheduling for Reducing Intermediate State 

 
• A global scheduler decides on the order of 

operator execution. 
 

• Changing the execution order of the operators 
does not affect their semantic correctness, but 
may affect system’s total memory utilization. 
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• Example Query Plan: 

 
 
 
 

• Total Queue Sizes for two alternative scheduling policies: 

• Input Arrival Pattern: 

STREAM Performance Issues 
Operator Scheduling for Reducing Intermediate State 
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OP1 OP2 

cost = 1 
selectivity = 0.2 

cost = 1 
selectivity = 0 

n 0.2 n 0 

0 1 2 3 4 5 6 13 time 

t t t t t t t 

• Greedy always prioritizes OP1. 
• FIFO schedules OP1-OP2 in 
sequence. 
 Greedy has smaller max. 
queue size. 

• (Chain Scheduling Algorithm) 

t 
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