
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Data Stream Processing

Topics

• Model Issues
• System Issues
• Distributed Processing
• Web-Scale Streaming

Uni Freiburg, WS2012/13 3 Systems Infrastructure for Data Science

System Issues
• Architecture and Run-time operation
• Resource limitations

– CPU
– Memory
– Bandwidth (distributed case)

• Performance goals
– Low latency
– High throughput
– Maximum QoS utility
– Minimum error

Uni Freiburg, WS2012/13 4 Systems Infrastructure for Data Science

General Concerns

• In principle, same architecture choices as in
databases

• Different tradeoffs:
– Latency bounds more important than throughput
– Processing driven by data arrival, not query

optimization
• Architecture changes:

– Push-based execution more popular (why?)
– Decoupling using queues
– Adaptive processing

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 5

System Issues

• Two systems as case studies:
– Aurora [Brandeis-Brown-MIT]
– STREAM [Stanford]

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 6

System Issues in Aurora

Aurora System Model

Uni Freiburg, WS2012/13 8 Systems Infrastructure for Data Science

Aurora Quality of Service (QoS)

• Loss-tolerance QoS
utility

% delivery
100 50 0

1.0

0.7

• Value-based QoS
utility

values
0 80 120 200

1.0

0.4

utility

 latency
0 δ

1.0

• Latency QoS

Uni Freiburg, WS2012/13 9 Systems Infrastructure for Data Science

Aurora Architecture

Uni Freiburg, WS2012/13 10 Systems Infrastructure for Data Science

Operator Scheduling

• Goal: To allocate the CPU among multiple queries with
multiple operators so as to optimize a metric, such as:
– minimize total average latency
– maximize total average latency QoS utility
– maximize total average throughput
– minimize total memory consumption

• Deciding which operator should run next, for how long
or with how much input.

• Must be low overhead.

Uni Freiburg, WS2012/13 11 Systems Infrastructure for Data Science

Why should the DSMS worry about scheduling?
Thread-based vs. State-based Execution

Uni Freiburg, WS2012/13 12 Systems Infrastructure for Data Science

Batching
• Exploit inter-box and intra-box non-linearities

in execution overhead

• Train scheduling
– batching and executing multiple tuples together

• Superbox scheduling
– batching and executing multiple boxes together

Uni Freiburg, WS2012/13 13 Systems Infrastructure for Data Science

Batching reduces execution costs

Uni Freiburg, WS2012/13 14 Systems Infrastructure for Data Science

Distribution of Execution Overhead

Uni Freiburg, WS2012/13 15 Systems Infrastructure for Data Science

The Overload Problem

• If Load > Capacity during the spikes, then
queues form and latency proliferates.

• Given a query network N, a set of input
streams I, and a CPU with processing capacity
C; when Load(N(I)) > C, transform N into N’
such that:
– Load(N’(I)) < C, and
– Utility(N(I)) – Utility(N’(I)) is minimized.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 16

Load Shedding in Aurora

Aurora Query Network

. . .
. . .

• Problem: When load > capacity, latency QoS degrades.
• Solution: Insert drop operators into the query plan.
• Result: Deliver “approximate answers” with low latency.

Uni Freiburg, WS2012/13 17 Systems Infrastructure for Data Science

 Key questions:
 when to shed load?
 where to shed load?
 how much load to shed?
 which tuples to drop?

The Drop Operator

• is an abstraction for load reduction
• can be added, removed, updated, moved
• reduces load by a factor
• produces a “subset” of its input
• picks its victims

– probabilistically
– semantically (i.e., based on tuple content)

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 18

When to Shed Load?
• Load coefficients

• Total load

1

1 1

jn

i k j
j k

L sel cost
−

= =

= ×

∑ ∏

(CPU cycles per time unit)

(CPU cycles per tuple)

1

m

i i
i

L R
=

×∑

cost1
sel1

Ri cost2
sel2

costn
seln

Uni Freiburg, WS2012/13 19 Systems Infrastructure for Data Science

Aurora Load Shedding
Three Basic Principles

1. Minimize run-time overhead.
2. Minimize loss in query answer accuracy.
3. Deliver subset results.

Uni Freiburg, WS2012/13 20 Systems Infrastructure for Data Science

Principle 1: Plan in advance.

cursor

Excess Load Drop Insertion Plan

shed less!

QoS Cursors

10%

20%

300%

shed more!

Uni Freiburg, WS2012/13 21 Systems Infrastructure for Data Science

Principle 2: Minimize error.

• Early drops save more processing cycles.
• Drops before sharing points can cause more accuracy loss.
• We rank possible drop locations by their loss/gain ratios.

1

2

3

utility

% delivery

utility

% delivery

Uni Freiburg, WS2012/13 22 Systems Infrastructure for Data Science

(10:00, “IBM”, 20, 100)
(10:00, “INTC”, 15, 200)
(10:00, “MSFT”, 22, 100)
(10:05, “IBM”, 18, 300)
(10:05, “MSFT”, 21, 100)
(10:10, “IBM”, 18, 200)
(10:10, “MSFT”, 20, 100)
(10:15, “IBM”, 20, 100)
(10:15, “INTC”, 20, 200)
(10:15, “MSFT”, 20, 200)
 .
 .

• Two parameters: size and slide
• Example: Trades(time, symbol, price, volume)

Principle 3: Keep sliding windows intact.

size = 10 min

slide by 5 min

Uni Freiburg, WS2012/13 23 Systems Infrastructure for Data Science

Windowed Aggregation
• Apply an aggregate function on the window

– Average, Sum, Count, Min, Max
– User-defined

• Can be nested
• Example:

Filter Aggregate

symbol=“IBM”

Filter

diff > 5 ω = 5 min
δ = 5 min

diff = high-low

ω = 60 min
δ = 60 min

count

Filter

count > 0

Aggregate

Uni Freiburg, WS2012/13 24 Systems Infrastructure for Data Science

• Drop before : non-subset result of nearly the same size

• Drop after : subset result of smaller size

Dropping from an Aggregation Query
Tuple-based Approach

Average
ω = 3
δ = 3

.. 25 20 .. 30 15 30 20 10 30

Average
ω = 3
δ = 3

.. 15 15 .. 30 15 30 20 10 30 Drop
p = 0.5

.. 30 15 30 20 10 30

Drop
p = 0.5

Average
ω = 3
δ = 3

.. 25 20 .. 30 15 30 20 10 30 .. 25 20

Uni Freiburg, WS2012/13 25 Systems Infrastructure for Data Science

Dropping from an Aggregation Query
Window-based Approach

• Drop before : subset result of smaller size

• Window-aware load shedding
– works with any aggregate function
– delivers correct results
– keeps error propagation under control
– can handle nesting
– can drop load early

Average
ω = 3
δ = 3

.. 25 20 .. 30 15 30 20 10 30 Window Drop
ω = 3, δ = 3

p = 0.5

.. 30 15 30 20 10 30

Uni Freiburg, WS2012/13 26 Systems Infrastructure for Data Science

System Issues in STREAM

operators
for processing

queues
for buffering tuples

synopses
for storing operator state

STREAM Query Plans
• Query in CQL -> Physical query plan tree

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 28

SELECT *
FROM S1 [ROWS 1000], S2 [RANGE 2 MINUTES]
WHERE S1.A = S2.A AND S1.A > 10

STREAM Operators

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 29

STREAM Queues

• Queues encapsulate the typical producer-
consumer relationship between the operators.

• They act as in-memory buffers.
• They enforce that tuple timestamps are non-

decreasing.
Why is this necessary?
– Heartbeat mechanism for time management

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 30

STREAM Heartbeats in a Nutshell
• Problem: Out of order data arrival

– Unsynchronized application clocks at
the sources

– Different network latencies from
different sources to the DSMS

– Data transmission over a non-order-
preserving channel

• Solution: Order tuples at the
input manager by generating
heartbeats based on application-
specified parameters
– Heartbeat value T at a given time

instant means that all tuples after
that instant will have a timestamp
greater than T.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 31

STREAM Synopses

• A synopsis stores the internal state of an operator
needed for its evaluation.
– Example: A windowed join maintains a hash table for each of

its inputs as a synopsis.
Do we need synopses for all types of operators?

• Like queues, synopses are also kept in memory.
• Synopses can also be used in more advanced ways:

– shared among multiple operators (for space optimization)
– store summary of stream tuples (for approximate processing)

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 32

STREAM Performance Issues
Synopsis Sharing for Eliminating Data Redundancy

• Replace identical synopses with “stubs” and store the
actual tuples in a single store.

• Also for multiple query plans.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 33

SELECT *
FROM S1 [ROWS 1000],
 S2 [RANGE 2 MINUTES]
WHERE S1.A = S2.A AND S1.A > 10

SELECT A, MAX(B)
FROM S1 [ROWS 200]
GROUP By A

STREAM Performance Issues
Exploiting Constraints for Reducing Synopsis Sizes

• Constraints on data and arrival patterns to reduce, bound,
eliminate memory state

• Schema-level constraints
– Clustering (e.g., contiguous duplicates)
– Ordering (e.g., slack parameter in SQuAl)
– Referential integrity (e.g., timestamp synchronization)
– In relaxed form: k-constraints (k: adherence parameter)

• Simple example:
– Orders (orderID, customer, cost)
– Fulfillments (orderID, portion, clerk)
– If Fulfillments is k-clustered on orderID, can infer when to discard

Orders.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 34

STREAM Performance Issues
Exploiting Constraints for Reducing Synopsis Sizes

• Data-level constraints: “Punctuations”
• Punctuations are special annotations embedded in

data streams to specify the end of a subset of data.
– No more tuples will follow that match the punctuation.

• A punctuation is represented as an ordered set of
patterns, where each pattern corresponds to an
attribute of a tuple.
– Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø
– Example: < item_id, buyer_id, bid >
 < {10, 20}, *, * > => all bids on items 10 and 20.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 35

STREAM Performance Issues
Operator Scheduling for Reducing Intermediate State

• A global scheduler decides on the order of

operator execution.

• Changing the execution order of the operators
does not affect their semantic correctness, but
may affect system’s total memory utilization.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 36

• Example Query Plan:

• Total Queue Sizes for two alternative scheduling policies:

• Input Arrival Pattern:

STREAM Performance Issues
Operator Scheduling for Reducing Intermediate State

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 37

OP1 OP2

cost = 1
selectivity = 0.2

cost = 1
selectivity = 0

n 0.2 n 0

0 1 2 3 4 5 6 13 time

t t t t t t t

• Greedy always prioritizes OP1.
• FIFO schedules OP1-OP2 in
sequence.
 Greedy has smaller max.
queue size.

• (Chain Scheduling Algorithm)

t

	Systems Infrastructure for Data Science
	Data Stream Processing
	Topics
	System Issues
	General Concerns
	System Issues
	System Issues in Aurora
	Aurora System Model
	Aurora Quality of Service (QoS)
	Aurora Architecture
	Operator Scheduling
	Why should the DSMS worry about scheduling?�Thread-based vs. State-based Execution
	Batching
	Batching reduces execution costs
	Distribution of Execution Overhead
	The Overload Problem
	Load Shedding in Aurora
	The Drop Operator
	When to Shed Load?
	Aurora Load Shedding�Three Basic Principles
	Principle 1: Plan in advance.
	Principle 2: Minimize error.
	Principle 3: Keep sliding windows intact.
	Windowed Aggregation
	Dropping from an Aggregation Query�Tuple-based Approach
	Dropping from an Aggregation Query�Window-based Approach
	System Issues in STREAM
	STREAM Query Plans
	STREAM Operators
	STREAM Queues
	STREAM Heartbeats in a Nutshell
	STREAM Synopses
	STREAM Performance Issues�Synopsis Sharing for Eliminating Data Redundancy
	STREAM Performance Issues�Exploiting Constraints for Reducing Synopsis Sizes
	STREAM Performance Issues�Exploiting Constraints for Reducing Synopsis Sizes
	STREAM Performance Issues�Operator Scheduling for Reducing Intermediate State
	STREAM Performance Issues�Operator Scheduling for Reducing Intermediate State

