
Systems Infrastructure for Data 
Science 

Web Science Group 
Uni Freiburg 
WS 2012/13 



Data Stream Processing 



Topics 

• Model Issues 
• System Issues 
• Distributed Processing 
• Web-Scale Streaming 
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Data Streams 

• Continuous sequences of data elements that are 
typically: 
– Push-based (data flow controlled by sources) 
– Ordered (e.g., by arrival time, or by explicit timestamps) 
– Rapid (e.g., ~ 100K messages/second in market data) 
– Potentially unbounded (may have no end) 
– Time-sensitive (usually representing real-time events) 
– Time-varying (in content and speed) 
– Unpredictable (autonomous data sources) 
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Example Applications 

• Financial Services 

Typical Applications: 
 Algorithmic Trading 
 Foreign Exchange 
 Fraud Detection 
 Compliance Checking 

Example: 
 Trades(time, symbol, 
      price, volume) 
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Financial Services: Skyrocketing Data Rates 

[ Source: Options Price Reporting Authority, http://www.opradata.com ] 
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Some more up-to-date rates from http://www.marketdatapeaks.com/: 
• 4 M mps on January 25, 2013 
• 6.65 M mps on October 7, 2011 
 
Low response time critical (think high frequency trading)! 

http://www.marketdatapeaks.com/
http://www.marketdatapeaks.com/


Example Applications 
• System and Network Monitoring 

Typical Applications: 
 Server load monitoring  
 Network traffic monitoring 
 Detecting security attacks 
 Denial of Service 
 Intrusion 

Example: 
 Connections(time, srcIP, destIP, 
      destPort, status) 
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Network Monitoring: Bursty Data Rates 

[ Source: Internet Traffic Archive, http://ita.ee.lbl.gov/ ] 
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Example Applications 

• Sensor-based Monitoring 
Example: 
 CarPositions(time, id, speed, 
  position) 

Typical Applications: 
 Monitoring congested roads 
 Route planning 
 Rule violations 
 Tolling 
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Historical Background 
• 1990s: Various extensions to traditional database systems 

– Triggers in Active DB’s, Sequence DB’s, Continuous Queries, Pub/Sub, etc.  
• Early 2000s: Data Stream Management Systems 

– Aurora [Brandeis-Brown-MIT] 
– STREAM [Stanford] 
– TelegraphCQ [UC Berkeley] 
– Many others (NiagaraCQ, Gigascope, Nile, PIPES, …) 

• 2003: Start-ups 
– Aurora -> StreamBase, Inc. 
             -> Borealis (= distributed Aurora) 
– STREAM -> Coral8, Inc. 

• 2005: More Start-ups 
– TelegraphCQ -> Truviso, Inc. 

• Today: Growing industry interest and standardization efforts 
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A Paradigm Shift in Data Processing Model 

Data 
Base 

DBMS Query Answer 

Traditional Data Management 

Query 
Base 

DSMS Data Answer 

Data Stream Management 
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DBMS          vs.          DSMS 

• Persistent relations 
• Read-intensive 
• One-time queries 

 
 

• Random access 
• Access plan determined 

by query processor and 
physical DB design 

• Transient streams 
• Update-intensive 
• Continuous queries (a.k.a., 

long-running, standing, or 
persistent queries) 

• Sequential access 
• Unpredictable data 

characteristics and arrival 
patterns 
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Model Issues 

• Data models 
– Relational-based vs. XML-based vs Object-based 
– Time and Order 

• Query models 
– Declarative vs. Procedural 
– Window-based Processing 
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Example Models 
• STREAM / CQL [Stanford] 

– Relational-based data model 
– Declarative query language (SQL extensions) 

• Aurora / SQuAl [Brandeis-Brown-MIT] 
– Relational-based data model 
– Procedural query language (Relational algebra 

extensions) 
• MXQuery [ETH Zurich] 

– XML-based data model 
– Declarative query language (XQuery extensions) 
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Window-based Processing 

• Windows are finite excerpts of a potentially 
unbounded stream. 

• Most streaming applications are interested in 
the readings of the recent past. 

• Windows help us unblock operators such as 
aggregates. 

• Windows help us bound the memory usage 
for operators such as joins. 
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(10:00, “IBM”,  20, 100) 
(10:00, “INTC”, 15, 200) 
(10:00, “MSFT”, 22, 100) 
(10:05, “IBM”,  18, 300) 
(10:05, “MSFT”, 21, 100) 
(10:10, “IBM”,  18, 200) 
(10:10, “MSFT”, 20, 100) 
(10:15, “IBM”,  20, 100) 
(10:15, “INTC”, 20, 200) 
(10:15, “MSFT”, 20, 200) 
  . 
  .  

• Two basic parameters: size and slide 
• Example: Trades(time, symbol, price, volume) 
 

 

 

 

 

Window Example 

size = 10 min 

slide by 5 min 
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Windows: Unblocking Aggregate Operation 
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Average 
….. 30 15 30 20 10 30 

Average 
size = 3 
slide = 3 

.. 25 20 ..... 30 15 30 20 10 30 

• Problem: 
No results can be produced 
until the stream ends. 
Average is “blocked”. 

• Solution: 
Average can be computed 
on sliding windows. 
Average is “unblocked”. 



Windows: Bounding Join State  
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Join 
….. 20 10 30 

….. 10 15 30 

….. (10, 10) (30, 30) 
• Problem: 
Join must buffer its inputs 
until both streams end. 
Join state is “unbounded”. 

Join 
size = 2 

….. 20 10 30 

….. 10 15 30 

….. (10, 10) (30, 30) • Solution: 
Join must only buffer the 
latest window on its inputs. 
Join state is “bounded”. 



STREAM CQL: Continuous Query Language 

• SQL for Relation-to-Relation operations 
• Additionally: 

– “Stream” as a new data type (in addition to “Relation”) 
– Continuous instead of one-time query semantics 
– Stream-to-Relation operations: 

• Window specifications derived from SQL-99 

– Relation-to-Stream operations: 
• Three special operators: Istream, Dstream, Rstream 

– Simple sampling operations on streams 
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CQL: Streams vs. Relations 

• T: discrete, ordered time domain 
 
• A stream S is a possibly infinite bag of elements <s, 

t>, where s is a tuple with the schema of S and t є T is 
the timestamp of the element. 
– Note: Timestamp is not part of the tuple schema! 

 
• A relation R is a mapping from each time instant in T 

to a finite but unbounded bag of tuples with the 
schema of R. 
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CQL: Continuous Query Semantics 

• Time “advances” from t-1 to t, when all inputs up to 
t-1 have been processed. 

• For a query producing a stream: 
– At time t є T, all inputs up to t are processed and the 

continuous query emits any new stream result elements 
with timestamp t. 

• For a query producing a relation: 
– At time t є T, all inputs up to t are processed and the 

continuous query updates the output relation to state R(t). 
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CQL: Mappings between Streams and Relations 

Streams Relations 

Stream-to-Relation 

Relation-to-Stream 

Re
la

tio
n-

to
-R

el
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 Stream-to-Stream = Stream-to-Relation + Relation-to-Stream 
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CQL: Stream-to-Relation Operators 
• Time-based sliding windows 

– FROM S[RANGE T] 
• Tuple-based sliding windows 

– FROM S[ROWS N] 
• Partitioned windows 

– FROM S[PARTITION BY A1, …, Ak RANGE T] 
– FROM S[PARTITION BY A1, …, Ak ROWS N] 

• Windows with a “slide” parameter 
– FROM S[RANGE T SLIDE L] 
– FROM S[ROWS N SLIDE L] 
– FROM S[PARTITION BY A1, …, Ak RANGE T SLIDE L] 
– FROM S[PARTITION BY A1, …, Ak ROWS N SLIDE L] 
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CQL: Relation-to-Stream Operators 
• Insert stream 
 
• Delete stream 

 
• Relation stream 

 
 

• SELECT Istream(..), SELECT Dstream(..), SELECT Rstream(..) 

0

( ) (( ( ) ( 1)) { })
t

Istream R R t R t t
≥

= − − ×

0

( ) (( ( 1) ( )) { })
t

Dstream R R t R t t
>

= − − ×

0

( ) ( ( ) { })
t

Rstream R R t t
≥

= ×
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CQL: Example Queries 

 Streaming Filter 
SELECT Istream(*) 
FROM Trades[RANGE Unbounded] 
WHERE price > 20 
 

 Sliding-window Join 
SELECT Istream(*) 
FROM NYSE_Trades[RANGE 10 Minutes], SWX_Trades[RANGE 10 Minutes] 
WHERE NYSE_Trades.symbol = SWX_Trades.symbol 

 Streaming Aggregation 
SELECT Istream(Count(*)) 
FROM Trades[PARTITION BY symbol 
               RANGE 10 Minutes 
               SLIDE 1 Minute] 
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Trades (time, symbol, price, volume) 
NYSE_Trades (time, symbol, price, volume) 
SWX_Trades (time, symbol, price, volume) 



CQL: Example Query Execution 
 Stream: S(A) 
 
 Query: 
 SELECT Istream(*) 
 FROM S[ROWS 1] 
 WHERE <Filter> 
 
 Operations: 

LastRow: S-to-R 
Filter: R-to-R 

Istream: R-to-S 
 
 Assumption: 
 (a0), (a2), (a4) 
 satisfy the filter. 
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Aurora SQuAl: Stream Query Algebra 

• A stream is an append-only sequence of tuples with 
a uniform schema. 

• The system stamps each tuple with its time of arrival. 
• Disorder is allowed. 
• Queries are represented with data-flow diagrams 

consisting of operators. 
• Order-agnostic operators: 

– Filter, Map, Union 
• Order-sensitive operators: 

– BSort, Aggregate, Join, Resample 
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SQuAl: Operators  
• Filter applies a predicate on each stream tuple. 
• Map applies a function on each stream tuple. (* extensibility) 

– e.g., projection 
• Union merges two or more streams into one. 

– “order-preserving” version also exists. 
• BSort is a buffer-based approximate sort. 

– equivalent to n-pass bubble sort 
• Aggregate applies window functions to sliding windows over 

its input. (* extensibility) 
• Join applies a predicate to pairs of tuples from two input 

streams that are within a certain window distance from each 
other. 

• Resample applies an interpolation function on a stream to 
align it with another stream. 

Uni Freiburg, WS2012/13 28 Systems Infrastructure for Data Science 



SQuAl: Example Query 
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Filter Aggregate 

symbol=“IBM” 

Filter 

diff > 5 size = 5 min 
slide = 5 min 
diff = high-low 

size = 60 min 
slide = 60 min 

count 

Filter 

count > 0 

Aggregate 

User-Defined Function (UDF) 
(provides extensibility) 

 Boxes and arrows data-flow diagram instead of a declarative specification. 
 Same query can also be written in STREAM CQL as a nested query. 



SQuAl: Slack & Timeout Parameters 

• Slack is a stream parameter to specify the 
degree of disorder in that stream. 
– Out of order tuples beyond the slack parameter 

are simply discarded. 

• Timeout is a parameter for sliding window 
operators to specify the maximum time period 
that a window is allowed to remain open. 
– Delayed tuples beyond the timeout parameter are 

simply discarded. 
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Streaming XQuery 

• Extend existing turing-complete processing language 
• Benefit: Data Model already sequence-based, no 

mapping needed 
• Extend for infinite sequences, define formal semantics 

for existing operators 
• Define predicate-based window operator to produce 

finite sequences, can be fully nested 
• Time not part of data model, operate on item values 
• No implicit constraints 
• Limitation: FLWOR semantics difficult for join 
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Streaming XQuery Example 
Most valuable customer per day 
 
declare variable $seq external; 
forseq $w in $seq/sequence/* sliding window  
start curItem $cur, prevItem $prev when day-from-date(xs:dateTime($cur/@date)) ne day-from-

date(xs:dateTime($prev/@date)) or empty($prev) 
end when newstart 
return 
<mostValuableCustomer endOfDay="{xs:dateTime($cur/@date)}">{ 
let $companies := 
for $x in distinct-values($w/@billTo )  
return  
<amount company="{$x}">{sum($w[/@billTo eq $x]/@total)}</amount> 
let $max := max($companies) 
for $company in $companies 
where $company eq xs:untypedAtomic($max) 
return $company 
 } 
</mostValuableCustomer> 
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Common Window Types 

• Sliding window 
– A window that slides (i.e., both of its end-points 

move) as new stream tuples arrive. 

• Tumbling window 
– A sliding window for which window size = window 

slide (i.e., consecutive windows do not overlap). 

• Landmark window 
– A window which is moving only on one of its end-

points (usually the forward end-point). 
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Common Window Types 
• Time-based window 

– A window whose size and content is determined by tuples that arrived 
within a “time period”. 

– Note: The actual size of such a window may depend on the stream 
arrival rate. 

• Tuple-based window (a.k.a., count-based window) 
– A window whose size and content is determined by the number of 

tuples arrived. 
– Note: The actual size is always fixed. 

• Semantic window (a.k.a., predicate-based window) 
– A window whose size and content is determined by the tuple contents. 
– Note: Time-based window is a very simple form of semantic window 

when the time field carried in the tuple is used for windowing. 
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A Final Note on Window Execution Semantics 

• Currently, there is no standard model for defining 
and executing stream windows. 
– Example: Even “time-based window” works differently in 

different systems, producing different query results. 
 

• Example differentiators: 
– What triggers window state change? (e.g., time in 

STREAM vs. tuple arrival in Aurora) 
– When is a window result reported? (e.g., at window 

close in Aurora vs. at each window state change in 
Coral8) 

– … 
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Time in DSMS 
• „A window of 30 seconds, starting every 5 seconds“ 
• What is the precise meaning of these time values? 
• Two main approaches to handle time: 

– System Time: take 30 seconds of execution time 
– Application Time: 30 seconds of data time fields 

• System Time leads to non-determistic results 
• Application Time might cause system-time delays 
=> Heartbeats to synchronize 
• Application Time desirable, in practice often system time 
• Other time aspects: 

– Point in Time or Time Period 
– Start, End, ... 
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Stream Constraints 
• Metadata about streams that can be used for their optimized 

processing, in particular: 
– to reduce, bound, eliminate memory state 
– could be an alternative to windowing 

• Metadata can be affect to static and dynamic parts of stream 
processing 

• Schema-level constraints 
– Clustering (e.g., contiguous duplicates) 
– Ordering (e.g., slack parameter in SQuAl) 
– Referential integrity (e.g., timestamp synchronization) 
– In relaxed form: k-constraints (k: adherence parameter) 

• Data-level constraints 
– Punctuations 
– Partitions 
– Pattern 
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Punctuations 

• Punctuations are special annotations embedded in 
data streams to specify the end of a subset of data. 
No more tuples will follow that match the punctuation. 

• A punctuation is represented as an ordered set of 
patterns, where each pattern corresponds to an 
attribute of a tuple. 
Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø 
 Example: < item_id, buyer_id, bid > 
     < {10, 20}, *, * >    => all bids on items 10 and 20. 
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