
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Data Stream Processing

Topics

• Model Issues
• System Issues
• Distributed Processing
• Web-Scale Streaming

Uni Freiburg, WS2012/13 3 Systems Infrastructure for Data Science

Data Streams

• Continuous sequences of data elements that are
typically:
– Push-based (data flow controlled by sources)
– Ordered (e.g., by arrival time, or by explicit timestamps)
– Rapid (e.g., ~ 100K messages/second in market data)
– Potentially unbounded (may have no end)
– Time-sensitive (usually representing real-time events)
– Time-varying (in content and speed)
– Unpredictable (autonomous data sources)

 Uni Freiburg, WS2012/13 4 Systems Infrastructure for Data Science

Example Applications

• Financial Services

Typical Applications:
 Algorithmic Trading
 Foreign Exchange
 Fraud Detection
 Compliance Checking

Example:
 Trades(time, symbol,
 price, volume)

Uni Freiburg, WS2012/13 5 Systems Infrastructure for Data Science

Financial Services: Skyrocketing Data Rates

[Source: Options Price Reporting Authority, http://www.opradata.com]

75.000
88.000

110.000

122.000
149.000

190.000
359.000

456.000
573.000

701.000

907.000

0
200.000
400.000
600.000
800.000

1.000.000
M

es
sa

ge
s p

er
 S

ec
on

d
(m

ps
)

Date

OPRA Message Traffic Projections

Uni Freiburg, WS2012/13 6 Systems Infrastructure for Data Science

Some more up-to-date rates from http://www.marketdatapeaks.com/:
• 4 M mps on January 25, 2013
• 6.65 M mps on October 7, 2011

Low response time critical (think high frequency trading)!

http://www.marketdatapeaks.com/
http://www.marketdatapeaks.com/

Example Applications
• System and Network Monitoring

Typical Applications:
 Server load monitoring
 Network traffic monitoring
 Detecting security attacks
 Denial of Service
 Intrusion

Example:
 Connections(time, srcIP, destIP,
 destPort, status)

Uni Freiburg, WS2012/13 7 Systems Infrastructure for Data Science

Network Monitoring: Bursty Data Rates

[Source: Internet Traffic Archive, http://ita.ee.lbl.gov/]
Uni Freiburg, WS2012/13 8 Systems Infrastructure for Data Science

Example Applications

• Sensor-based Monitoring
Example:
 CarPositions(time, id, speed,
 position)

Typical Applications:
 Monitoring congested roads
 Route planning
 Rule violations
 Tolling

Uni Freiburg, WS2012/13 9 Systems Infrastructure for Data Science

Historical Background
• 1990s: Various extensions to traditional database systems

– Triggers in Active DB’s, Sequence DB’s, Continuous Queries, Pub/Sub, etc.
• Early 2000s: Data Stream Management Systems

– Aurora [Brandeis-Brown-MIT]
– STREAM [Stanford]
– TelegraphCQ [UC Berkeley]
– Many others (NiagaraCQ, Gigascope, Nile, PIPES, …)

• 2003: Start-ups
– Aurora -> StreamBase, Inc.
 -> Borealis (= distributed Aurora)
– STREAM -> Coral8, Inc.

• 2005: More Start-ups
– TelegraphCQ -> Truviso, Inc.

• Today: Growing industry interest and standardization efforts

Uni Freiburg, WS2012/13 10 Systems Infrastructure for Data Science

A Paradigm Shift in Data Processing Model

Data
Base

DBMS Query Answer

Traditional Data Management

Query
Base

DSMS Data Answer

Data Stream Management

Uni Freiburg, WS2012/13 11 Systems Infrastructure for Data Science

DBMS vs. DSMS

• Persistent relations
• Read-intensive
• One-time queries

• Random access
• Access plan determined

by query processor and
physical DB design

• Transient streams
• Update-intensive
• Continuous queries (a.k.a.,

long-running, standing, or
persistent queries)

• Sequential access
• Unpredictable data

characteristics and arrival
patterns

Uni Freiburg, WS2012/13 12 Systems Infrastructure for Data Science

Model Issues

• Data models
– Relational-based vs. XML-based vs Object-based
– Time and Order

• Query models
– Declarative vs. Procedural
– Window-based Processing

Uni Freiburg, WS2012/13 13 Systems Infrastructure for Data Science

Example Models
• STREAM / CQL [Stanford]

– Relational-based data model
– Declarative query language (SQL extensions)

• Aurora / SQuAl [Brandeis-Brown-MIT]
– Relational-based data model
– Procedural query language (Relational algebra

extensions)
• MXQuery [ETH Zurich]

– XML-based data model
– Declarative query language (XQuery extensions)

Uni Freiburg, WS2012/13 14 Systems Infrastructure for Data Science

Window-based Processing

• Windows are finite excerpts of a potentially
unbounded stream.

• Most streaming applications are interested in
the readings of the recent past.

• Windows help us unblock operators such as
aggregates.

• Windows help us bound the memory usage
for operators such as joins.

Uni Freiburg, WS2012/13 15 Systems Infrastructure for Data Science

(10:00, “IBM”, 20, 100)
(10:00, “INTC”, 15, 200)
(10:00, “MSFT”, 22, 100)
(10:05, “IBM”, 18, 300)
(10:05, “MSFT”, 21, 100)
(10:10, “IBM”, 18, 200)
(10:10, “MSFT”, 20, 100)
(10:15, “IBM”, 20, 100)
(10:15, “INTC”, 20, 200)
(10:15, “MSFT”, 20, 200)
 .
 .

• Two basic parameters: size and slide
• Example: Trades(time, symbol, price, volume)

Window Example

size = 10 min

slide by 5 min

Uni Freiburg, WS2012/13 16 Systems Infrastructure for Data Science

Windows: Unblocking Aggregate Operation

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 17

Average
….. 30 15 30 20 10 30

Average
size = 3
slide = 3

.. 25 20 30 15 30 20 10 30

• Problem:
No results can be produced
until the stream ends.
Average is “blocked”.

• Solution:
Average can be computed
on sliding windows.
Average is “unblocked”.

Windows: Bounding Join State

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 18

Join
….. 20 10 30

….. 10 15 30

….. (10, 10) (30, 30)
• Problem:
Join must buffer its inputs
until both streams end.
Join state is “unbounded”.

Join
size = 2

….. 20 10 30

….. 10 15 30

….. (10, 10) (30, 30) • Solution:
Join must only buffer the
latest window on its inputs.
Join state is “bounded”.

STREAM CQL: Continuous Query Language

• SQL for Relation-to-Relation operations
• Additionally:

– “Stream” as a new data type (in addition to “Relation”)
– Continuous instead of one-time query semantics
– Stream-to-Relation operations:

• Window specifications derived from SQL-99

– Relation-to-Stream operations:
• Three special operators: Istream, Dstream, Rstream

– Simple sampling operations on streams

Uni Freiburg, WS2012/13 19 Systems Infrastructure for Data Science

CQL: Streams vs. Relations

• T: discrete, ordered time domain

• A stream S is a possibly infinite bag of elements <s,

t>, where s is a tuple with the schema of S and t є T is
the timestamp of the element.
– Note: Timestamp is not part of the tuple schema!

• A relation R is a mapping from each time instant in T

to a finite but unbounded bag of tuples with the
schema of R.

Uni Freiburg, WS2012/13 20 Systems Infrastructure for Data Science

CQL: Continuous Query Semantics

• Time “advances” from t-1 to t, when all inputs up to
t-1 have been processed.

• For a query producing a stream:
– At time t є T, all inputs up to t are processed and the

continuous query emits any new stream result elements
with timestamp t.

• For a query producing a relation:
– At time t є T, all inputs up to t are processed and the

continuous query updates the output relation to state R(t).

Uni Freiburg, WS2012/13 21 Systems Infrastructure for Data Science

CQL: Mappings between Streams and Relations

Streams Relations

Stream-to-Relation

Relation-to-Stream

Re
la

tio
n-

to
-R

el
at

io
n

 Stream-to-Stream = Stream-to-Relation + Relation-to-Stream
Uni Freiburg, WS2012/13 22 Systems Infrastructure for Data Science

CQL: Stream-to-Relation Operators
• Time-based sliding windows

– FROM S[RANGE T]
• Tuple-based sliding windows

– FROM S[ROWS N]
• Partitioned windows

– FROM S[PARTITION BY A1, …, Ak RANGE T]
– FROM S[PARTITION BY A1, …, Ak ROWS N]

• Windows with a “slide” parameter
– FROM S[RANGE T SLIDE L]
– FROM S[ROWS N SLIDE L]
– FROM S[PARTITION BY A1, …, Ak RANGE T SLIDE L]
– FROM S[PARTITION BY A1, …, Ak ROWS N SLIDE L]

Uni Freiburg, WS2012/13 23 Systems Infrastructure for Data Science

CQL: Relation-to-Stream Operators
• Insert stream

• Delete stream

• Relation stream

• SELECT Istream(..), SELECT Dstream(..), SELECT Rstream(..)

0

() ((() (1)) { })
t

Istream R R t R t t
≥

= − − ×

0

() (((1) ()) { })
t

Dstream R R t R t t
>

= − − ×

0

() (() { })
t

Rstream R R t t
≥

= ×

Uni Freiburg, WS2012/13 24 Systems Infrastructure for Data Science

CQL: Example Queries

 Streaming Filter
SELECT Istream(*)
FROM Trades[RANGE Unbounded]
WHERE price > 20

 Sliding-window Join
SELECT Istream(*)
FROM NYSE_Trades[RANGE 10 Minutes], SWX_Trades[RANGE 10 Minutes]
WHERE NYSE_Trades.symbol = SWX_Trades.symbol

 Streaming Aggregation
SELECT Istream(Count(*))
FROM Trades[PARTITION BY symbol
 RANGE 10 Minutes
 SLIDE 1 Minute]

Uni Freiburg, WS2012/13 25 Systems Infrastructure for Data Science

Trades (time, symbol, price, volume)
NYSE_Trades (time, symbol, price, volume)
SWX_Trades (time, symbol, price, volume)

CQL: Example Query Execution
 Stream: S(A)

 Query:
 SELECT Istream(*)
 FROM S[ROWS 1]
 WHERE <Filter>

 Operations:

LastRow: S-to-R
Filter: R-to-R

Istream: R-to-S

 Assumption:
 (a0), (a2), (a4)
 satisfy the filter.

Uni Freiburg, WS2012/13 26 Systems Infrastructure for Data Science

Aurora SQuAl: Stream Query Algebra

• A stream is an append-only sequence of tuples with
a uniform schema.

• The system stamps each tuple with its time of arrival.
• Disorder is allowed.
• Queries are represented with data-flow diagrams

consisting of operators.
• Order-agnostic operators:

– Filter, Map, Union
• Order-sensitive operators:

– BSort, Aggregate, Join, Resample

Uni Freiburg, WS2012/13 27 Systems Infrastructure for Data Science

SQuAl: Operators
• Filter applies a predicate on each stream tuple.
• Map applies a function on each stream tuple. (* extensibility)

– e.g., projection
• Union merges two or more streams into one.

– “order-preserving” version also exists.
• BSort is a buffer-based approximate sort.

– equivalent to n-pass bubble sort
• Aggregate applies window functions to sliding windows over

its input. (* extensibility)
• Join applies a predicate to pairs of tuples from two input

streams that are within a certain window distance from each
other.

• Resample applies an interpolation function on a stream to
align it with another stream.

Uni Freiburg, WS2012/13 28 Systems Infrastructure for Data Science

SQuAl: Example Query

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 29

Filter Aggregate

symbol=“IBM”

Filter

diff > 5 size = 5 min
slide = 5 min
diff = high-low

size = 60 min
slide = 60 min

count

Filter

count > 0

Aggregate

User-Defined Function (UDF)
(provides extensibility)

 Boxes and arrows data-flow diagram instead of a declarative specification.
 Same query can also be written in STREAM CQL as a nested query.

SQuAl: Slack & Timeout Parameters

• Slack is a stream parameter to specify the
degree of disorder in that stream.
– Out of order tuples beyond the slack parameter

are simply discarded.

• Timeout is a parameter for sliding window
operators to specify the maximum time period
that a window is allowed to remain open.
– Delayed tuples beyond the timeout parameter are

simply discarded.

Uni Freiburg, WS2012/13 30 Systems Infrastructure for Data Science

Streaming XQuery

• Extend existing turing-complete processing language
• Benefit: Data Model already sequence-based, no

mapping needed
• Extend for infinite sequences, define formal semantics

for existing operators
• Define predicate-based window operator to produce

finite sequences, can be fully nested
• Time not part of data model, operate on item values
• No implicit constraints
• Limitation: FLWOR semantics difficult for join

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 31

Streaming XQuery Example
Most valuable customer per day

declare variable $seq external;
forseq $w in $seq/sequence/* sliding window
start curItem $cur, prevItem $prev when day-from-date(xs:dateTime($cur/@date)) ne day-from-

date(xs:dateTime($prev/@date)) or empty($prev)
end when newstart
return
<mostValuableCustomer endOfDay="{xs:dateTime($cur/@date)}">{
let $companies :=
for $x in distinct-values($w/@billTo)
return
<amount company="{$x}">{sum($w[/@billTo eq $x]/@total)}</amount>
let $max := max($companies)
for $company in $companies
where $company eq xs:untypedAtomic($max)
return $company
 }
</mostValuableCustomer>

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 32

Common Window Types

• Sliding window
– A window that slides (i.e., both of its end-points

move) as new stream tuples arrive.

• Tumbling window
– A sliding window for which window size = window

slide (i.e., consecutive windows do not overlap).

• Landmark window
– A window which is moving only on one of its end-

points (usually the forward end-point).

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 33

Common Window Types
• Time-based window

– A window whose size and content is determined by tuples that arrived
within a “time period”.

– Note: The actual size of such a window may depend on the stream
arrival rate.

• Tuple-based window (a.k.a., count-based window)
– A window whose size and content is determined by the number of

tuples arrived.
– Note: The actual size is always fixed.

• Semantic window (a.k.a., predicate-based window)
– A window whose size and content is determined by the tuple contents.
– Note: Time-based window is a very simple form of semantic window

when the time field carried in the tuple is used for windowing.
 Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 34

A Final Note on Window Execution Semantics

• Currently, there is no standard model for defining
and executing stream windows.
– Example: Even “time-based window” works differently in

different systems, producing different query results.

• Example differentiators:
– What triggers window state change? (e.g., time in

STREAM vs. tuple arrival in Aurora)
– When is a window result reported? (e.g., at window

close in Aurora vs. at each window state change in
Coral8)

– …

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 35

Time in DSMS
• „A window of 30 seconds, starting every 5 seconds“
• What is the precise meaning of these time values?
• Two main approaches to handle time:

– System Time: take 30 seconds of execution time
– Application Time: 30 seconds of data time fields

• System Time leads to non-determistic results
• Application Time might cause system-time delays
=> Heartbeats to synchronize
• Application Time desirable, in practice often system time
• Other time aspects:

– Point in Time or Time Period
– Start, End, ...

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 36

Stream Constraints
• Metadata about streams that can be used for their optimized

processing, in particular:
– to reduce, bound, eliminate memory state
– could be an alternative to windowing

• Metadata can be affect to static and dynamic parts of stream
processing

• Schema-level constraints
– Clustering (e.g., contiguous duplicates)
– Ordering (e.g., slack parameter in SQuAl)
– Referential integrity (e.g., timestamp synchronization)
– In relaxed form: k-constraints (k: adherence parameter)

• Data-level constraints
– Punctuations
– Partitions
– Pattern

Uni Freiburg, WS2012/13 37 Systems Infrastructure for Data Science

Punctuations

• Punctuations are special annotations embedded in
data streams to specify the end of a subset of data.
No more tuples will follow that match the punctuation.

• A punctuation is represented as an ordered set of
patterns, where each pattern corresponds to an
attribute of a tuple.
Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø
 Example: < item_id, buyer_id, bid >
 < {10, 20}, *, * > => all bids on items 10 and 20.

Uni Freiburg, WS2012/13 38 Systems Infrastructure for Data Science

	Systems Infrastructure for Data Science
	Data Stream Processing
	Topics
	Data Streams
	Example Applications
	Financial Services: Skyrocketing Data Rates
	Example Applications
	Network Monitoring: Bursty Data Rates
	Example Applications
	Historical Background
	A Paradigm Shift in Data Processing Model
	DBMS vs. DSMS
	Model Issues
	Example Models
	Window-based Processing
	Window Example
	Windows: Unblocking Aggregate Operation
	Windows: Bounding Join State
	STREAM CQL: Continuous Query Language
	CQL: Streams vs. Relations
	CQL: Continuous Query Semantics
	CQL: Mappings between Streams and Relations
	CQL: Stream-to-Relation Operators
	CQL: Relation-to-Stream Operators
	CQL: Example Queries
	CQL: Example Query Execution
	Aurora SQuAl: Stream Query Algebra
	SQuAl: Operators
	SQuAl: Example Query
	SQuAl: Slack & Timeout Parameters
	Streaming XQuery
	Streaming XQuery Example
	Common Window Types
	Common Window Types
	A Final Note on Window Execution Semantics
	Time in DSMS
	Stream Constraints
	Punctuations

