Systems Infrastructure for Data Science

Web Science Group
Uni Freiburg
WS 2012/13
Data Stream Processing
Topics

• Model Issues
• System Issues
• Distributed Processing
• Web-Scale Streaming
Data Streams

• Continuous sequences of data elements that are typically:
 – **Push-based** (data flow controlled by sources)
 – **Ordered** (e.g., by arrival time, or by explicit timestamps)
 – **Rapid** (e.g., ~ 100K messages/second in market data)
 – **Potentially unbounded** (may have no end)
 – **Time-sensitive** (usually representing real-time events)
 – **Time-varying** (in content and speed)
 – **Unpredictable** (autonomous data sources)
Example Applications

• Financial Services

Example:
- Trades(time, symbol, price, volume)

Typical Applications:
- Algorithmic Trading
- Foreign Exchange
- Fraud Detection
- Compliance Checking
Financial Services: Skyrocketing Data Rates

OPRA Message Traffic Projections

[Source: Options Price Reporting Authority, http://www.opradata.com]

Some more up-to-date rates from http://www.marketdatapeaks.com/:
- 4 M mps on January 25, 2013
- 6.65 M mps on October 7, 2011

Low response time critical (think high frequency trading)!
Example Applications

• System and Network Monitoring

Example:

- Connections(time, srcIP, destIP, destPort, status)

Typical Applications:

- Server load monitoring
- Network traffic monitoring
- Detecting security attacks
 - Denial of Service
 - Intrusion
Network Monitoring: Bursty Data Rates

Example Applications

• Sensor-based Monitoring

Example:
- CarPositions(time, id, speed, position)

Typical Applications:
- Monitoring congested roads
- Route planning
- Rule violations
- Tolling
Historical Background

• 1990s: Various extensions to traditional database systems
 – Triggers in Active DB’s, Sequence DB’s, Continuous Queries, Pub/Sub, etc.
• Early 2000s: Data Stream Management Systems
 – Aurora [Brandeis-Brown-MIT]
 – STREAM [Stanford]
 – TelegraphCQ [UC Berkeley]
 – Many others (NiagaraCQ, Gigascope, Nile, PIPES, …)
• 2003: Start-ups
 – Aurora -> StreamBase, Inc.
 -> Borealis (= distributed Aurora)
 – STREAM -> Coral8, Inc.
• 2005: More Start-ups
 – TelegraphCQ -> Truviso, Inc.
• Today: Growing industry interest and standardization efforts
A Paradigm Shift in Data Processing Model

Traditional Data Management

DBMS

Query → Answer

Data Base

Data Stream Management

DSMS

Data → Answer

Query Base

Uni Freiburg, WS2012/13
Systems Infrastructure for Data Science
<table>
<thead>
<tr>
<th>DBMS</th>
<th>vs.</th>
<th>DSMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent relations</td>
<td></td>
<td>Transient streams</td>
</tr>
<tr>
<td>Read-intensive</td>
<td></td>
<td>Update-intensive</td>
</tr>
<tr>
<td>One-time queries</td>
<td></td>
<td>Continuous queries (a.k.a., long-running, standing, or persistent queries)</td>
</tr>
<tr>
<td>Random access</td>
<td></td>
<td>Sequential access</td>
</tr>
<tr>
<td>Access plan determined by query processor and physical DB design</td>
<td></td>
<td>Unpredictable data characteristics and arrival patterns</td>
</tr>
</tbody>
</table>
Model Issues

• Data models
 – Relational-based vs. XML-based vs Object-based
 – Time and Order

• Query models
 – Declarative vs. Procedural
 – Window-based Processing
Example Models

• STREAM / CQL [*Stanford*]
 – Relational-based data model
 – Declarative query language (SQL extensions)

• Aurora / SQuAl [*Brandeis-Brown-MIT*]
 – Relational-based data model
 – Procedural query language (Relational algebra extensions)

• MXQuery [*ETH Zurich*]
 – XML-based data model
 – Declarative query language (XQuery extensions)
Window-based Processing

- Windows are finite excerpts of a potentially unbounded stream.
- Most streaming applications are interested in the readings of the recent past.
- Windows help us unblock operators such as aggregates.
- Windows help us bound the memory usage for operators such as joins.
Window Example

- Two basic parameters: size and slide
- Example: Trades(time, symbol, price, volume)

```
(10:00, "IBM", 20, 100)
(10:00, "INTC", 15, 200)
(10:00, "MSFT", 22, 100)
(10:05, "IBM", 18, 300)
(10:05, "MSFT", 21, 100)
(10:10, "IBM", 18, 200)
(10:10, "MSFT", 20, 100)
(10:15, "IBM", 20, 100)
(10:15, "INTC", 20, 200)
(10:15, "MSFT", 20, 200)

size = 10 min
slide by 5 min
```
Windows: Unblocking Aggregate Operation

• Problem:
 No results can be produced until the stream ends.
 ➢ Average is "blocked".

• Solution:
 Average can be computed on sliding windows.
 ➢ Average is "unblocked".
Windows: Bounding Join State

- *Problem:* Join must buffer its inputs until both streams end. ➢ Join state is “unbounded”.

- *Solution:* Join must only buffer the latest window on its inputs. ➢ Join state is “bounded”.

![Diagram showing the join operation with bounded state size]
STREAM CQL: Continuous Query Language

- SQL for Relation-to-Relation operations
- Additionally:
 - “Stream” as a new data type (in addition to “Relation”)
 - Continuous instead of one-time query semantics
 - Stream-to-Relation operations:
 - Window specifications derived from SQL-99
 - Relation-to-Stream operations:
 - Three special operators: Istream, Dstream, Rstream
 - Simple sampling operations on streams
CQL: Streams vs. Relations

• T: discrete, ordered time domain

• A stream S is a possibly infinite bag of elements <s, t>, where s is a tuple with the schema of S and t ∈ T is the timestamp of the element.
 – Note: Timestamp is not part of the tuple schema!

• A relation R is a mapping from each time instant in T to a finite but unbounded bag of tuples with the schema of R.
CQL: Continuous Query Semantics

• Time “advances” from t-1 to t, when all inputs up to t-1 have been processed.

• For a query producing a stream:
 – At time $t \in T$, all inputs up to t are processed and the continuous query emits any new stream result elements with timestamp t.

• For a query producing a relation:
 – At time $t \in T$, all inputs up to t are processed and the continuous query updates the output relation to state $R(t)$.
CQL: Mappings between Streams and Relations

Stream-to-Relation

Relation-to-Stream

Stream-to-Stream = Stream-to-Relation + Relation-to-Stream
CQL: Stream-to-Relation Operators

• Time-based sliding windows
 – FROM S[RANGE T]

• Tuple-based sliding windows
 – FROM S[ROWS N]

• Partitioned windows
 – FROM S[PARTITION BY A_1, ..., A_k RANGE T]
 – FROM S[PARTITION BY A_1, ..., A_k ROWS N]

• Windows with a “slide” parameter
 – FROM S[RANGE T SLIDE L]
 – FROM S[ROWS N SLIDE L]
 – FROM S[PARTITION BY A_1, ..., A_k RANGE T SLIDE L]
 – FROM S[PARTITION BY A_1, ..., A_k ROWS N SLIDE L]
CQL: Relation-to-Stream Operators

• Insert stream

\[\text{Istream}(R) = \bigcup_{t \geq 0} ((R(t) - R(t - 1)) \times \{t\}) \]

• Delete stream

\[\text{Dstream}(R) = \bigcup_{t > 0} ((R(t - 1) - R(t)) \times \{t\}) \]

• Relation stream

\[\text{Rstream}(R) = \bigcup_{t \geq 0} (R(t) \times \{t\}) \]

• SELECT Istream(..), SELECT Dstream(..), SELECT Rstream(..)
CQL: Example Queries

Trades (time, symbol, price, volume)
NYSE_Trades (time, symbol, price, volume)
SWX_Trades (time, symbol, price, volume)

- **Streaming Filter**

  ```
  SELECT Istream(*)
  FROM Trades[RANGE Unbounded]
  WHERE price > 20
  ```

- **Streaming Aggregation**

  ```
  SELECT Istream(Count(*)
  FROM Trades[PARTITION BY symbol
  RANGE 10 Minutes
  SLIDE 1 Minute]
  ```

- **Sliding-window Join**

  ```
  SELECT Istream(*)
  FROM NYSE_Trades[RANGE 10 Minutes], SWX_Trades[RANGE 10 Minutes]
  WHERE NYSE_Trades.symbol = SWX_Trades.symbol
  ```
CQL: Example Query Execution

- **Stream:** $S(A)$

- **Query:**
  ```
  SELECT Istream(*)
  FROM S[ROWS 1]
  WHERE <Filter>
  ```

- **Operations:**
 - LastRow: S-to-R
 - Filter: R-to-R
 - Istream: R-to-S

- **Assumption:**
 $(a_0), (a_2), (a_4)$ satisfy the filter.

<table>
<thead>
<tr>
<th>Time</th>
<th>S</th>
<th>LastRow</th>
<th>Filter</th>
<th>Istream</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\langle (a_0), 0 \rangle$</td>
<td>a_0</td>
<td>(a_0)</td>
<td>$\langle (a_0), 0 \rangle$</td>
</tr>
<tr>
<td>1</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_1), 1 \rangle$</td>
<td>a_1</td>
<td>ϕ</td>
<td>$\langle (a_0), 0 \rangle$</td>
</tr>
<tr>
<td>2</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_1), 1 \rangle$ $\langle (a_2), 2 \rangle$</td>
<td>a_2</td>
<td>(a_2)</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_2), 2 \rangle$</td>
</tr>
<tr>
<td>3</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_1), 1 \rangle$ $\langle (a_2), 2 \rangle$ $\langle (a_3), 3 \rangle$</td>
<td>a_3</td>
<td>ϕ</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_2), 2 \rangle$</td>
</tr>
<tr>
<td>4</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_1), 1 \rangle$ $\langle (a_2), 2 \rangle$ $\langle (a_3), 3 \rangle$ $\langle (a_4), 4 \rangle$</td>
<td>a_4</td>
<td>(a_4)</td>
<td>$\langle (a_0), 0 \rangle$ $\langle (a_2), 2 \rangle$ $\langle (a_4), 4 \rangle$</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Aurora SQuAl: Stream Query Algebra

- A stream is an append-only sequence of tuples with a uniform schema.
- The system stamps each tuple with its time of arrival.
- Disorder is allowed.
- Queries are represented with data-flow diagrams consisting of operators.
 - Order-agnostic operators:
 - Filter, Map, Union
 - Order-sensitive operators:
 - BSort, Aggregate, Join, Resample
SQuAl: Operators

- **Filter** applies a predicate on each stream tuple.
- **Map** applies a function on each stream tuple. (*extensibility*)
 - e.g., projection
- **Union** merges two or more streams into one.
 - “order-preserving” version also exists.
- **BSort** is a buffer-based approximate sort.
 - equivalent to n-pass bubble sort
- **Aggregate** applies window functions to sliding windows over its input. (*extensibility*)
- **Join** applies a predicate to pairs of tuples from two input streams that are within a certain window distance from each other.
- **Resample** applies an interpolation function on a stream to align it with another stream.
SQuAl: Example Query

- Filter: symbol="IBM"
 - size = 5 min
 - slide = 5 min
 - diff = high-low

- Aggregate: diff > 5
 - size = 60 min
 - slide = 60 min
 - count

- Filter: count > 0

User-Defined Function (UDF) (provides extensibility)

- Boxes and arrows data-flow diagram instead of a declarative specification.
- Same query can also be written in STREAM CQL as a nested query.
SQuAl: Slack & Timeout Parameters

- **Slack** is a stream parameter to specify the degree of disorder in that stream.
 - Out of order tuples beyond the slack parameter are simply discarded.

- **Timeout** is a parameter for sliding window operators to specify the maximum time period that a window is allowed to remain open.
 - Delayed tuples beyond the timeout parameter are simply discarded.
Streaming XQuery

- Extend existing turing-complete processing language
- Benefit: Data Model already sequence-based, no mapping needed
- Extend for infinite sequences, define formal semantics for existing operators
- Define predicate-based window operator to produce finite sequences, can be fully nested
- Time not part of data model, operate on item values
- No implicit constraints
- Limitation: FLWOR semantics difficult for join
Streaming XQuery Example

Most valuable customer per day

declare variable $seq external;
forseq $w in $seq/sequence/* sliding window
start curlItem $cur, prevItem $prev when day-from-date(xs:dateTime($cur/@date)) ne day-from-date(xs:dateTime($prev/@date)) or empty($prev)
end when newstart
return
<mostValuableCustomer endOfDay="{xs:dateTime($cur/@date)}">{
let $companies :=
for $x in distinct-values($w/@billTo)
return
<amount company="{$x}">{sum($w[/@billTo eq $x]/@total)}</amount>
let $max := max($companies)
for $company in $companies
where $company eq xs:untypedAtomic($max)
return $company
}
</mostValuableCustomer>
Common Window Types

• Sliding window
 – A window that slides (i.e., both of its end-points move) as new stream tuples arrive.

• Tumbling window
 – A sliding window for which window size = window slide (i.e., consecutive windows do not overlap).

• Landmark window
 – A window which is moving only on one of its end-points (usually the forward end-point).
Common Window Types

• Time-based window
 – A window whose size and content is determined by tuples that arrived within a “time period”.
 – Note: The actual size of such a window may depend on the stream arrival rate.

• Tuple-based window (a.k.a., count-based window)
 – A window whose size and content is determined by the number of tuples arrived.
 – Note: The actual size is always fixed.

• Semantic window (a.k.a., predicate-based window)
 – A window whose size and content is determined by the tuple contents.
 – Note: Time-based window is a very simple form of semantic window when the time field carried in the tuple is used for windowing.
A Final Note on Window Execution Semantics

• Currently, there is no standard model for defining and executing stream windows.
 – Example: Even “time-based window” works differently in different systems, producing different query results.

• Example differentiators:
 – What triggers window state change? (e.g., time in STREAM vs. tuple arrival in Aurora)
 – When is a window result reported? (e.g., at window close in Aurora vs. at each window state change in Coral8)
 – ...

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 35
Time in DSMS

• „A window of 30 seconds, starting every 5 seconds“
• What is the precise meaning of these time values?
• Two main approaches to handle time:
 – System Time: take 30 seconds of execution time
 – Application Time: 30 seconds of data time fields
• System Time leads to non-deterministic results
• Application Time might cause system-time delays
=> Heartbeats to synchronize
• Application Time desirable, in practice often system time
• Other time aspects:
 – Point in Time or Time Period
 – Start, End, ...
Stream Constraints

• Metadata about streams that can be used for their optimized processing, in particular:
 – to reduce, bound, eliminate memory state
 – could be an alternative to windowing
• Metadata can be affect to static and dynamic parts of stream processing
• Schema-level constraints
 – Clustering (e.g., contiguous duplicates)
 – Ordering (e.g., slack parameter in SQuAl)
 – Referential integrity (e.g., timestamp synchronization)
 – In relaxed form: k-constraints (k: adherence parameter)
• Data-level constraints
 – Punctuations
 – Partitions
 – Pattern
Punctuations

• Punctuations are special annotations embedded in data streams to specify the end of a subset of data.
 ➢ No more tuples will follow that match the punctuation.
• A punctuation is represented as an ordered set of patterns, where each pattern corresponds to an attribute of a tuple.
 ➢ Patterns: *, constants, ranges [a, b] or (a b), lists {a, b, ..}, Ø
 ➢ Example: < item_id, buyer_id, bid >
 < {10, 20}, *, * > => all bids on items 10 and 20.