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Overview of this Lecture Module 

• Background 
• Google MapReduce 
• The Hadoop Ecosystem 

– Core components: 
• Hadoop MapReduce 
• Hadoop Distributed File System (HDFS) 

– Other selected Hadoop projects: 
• Pig 
• Hive 
• Hbase (separate lecture) 
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The Computational Setting 
• Computations that need the power of many computers 

– large datasets 
– use of thousands of CPUs in parallel 

• Big data management, storage, and analytics 
– cluster as a computer 
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MapReduce & Hadoop: Historical Background 
• 2003: Google publishes about its cluster architecture & distributed file 

system (GFS) 
• 2004: Google publishes about its MapReduce programming model used 

on top of GFS 
– both GFS and MapReduce are written in C++ and are closed-source, with 

Python and Java APIs available to Google programmers only 
• 2006: Apache & Yahoo! -> Hadoop & HDFS  

– open-source, Java implementations of Google MapReduce and GFS with a 
diverse set of APIs available to public 

– evolved from Apache Lucene/Nutch open-source web search engine (Nutch 
MapReduce and NDFS) 

• 2008: Hadoop becomes an independent Apache project 
– Yahoo! uses Hadoop in production 

• Today: Hadoop is used as a general-purpose storage and analysis 
platform for big data 
– other Hadoop distributions from several vendors including EMC, IBM, 

Microsoft, Oracle, Cloudera, etc. 
– many users (http://wiki.apache.org/hadoop/PoweredBy) 
– research and development actively continues… 
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Google: The Data Challenge 
• Jeffrey Dean, Google Fellow, PACT’06 keynote speech: 

– 20+ billion web pages x 20KB = 400 TB 
– One computer can read 30-35 MB/sec from disk 

• ~ 4 months to read the web 
– ~ 1,000 hard drives just to store the web 
– Even more to “do” something with the data 
– But: Same problem with 1,000 machines < 3 hours 

 
• MapReduce CACM’08 article: 

– 100,000 MapReduce jobs executed in Google every day 
– Total data processed > 20 PB of data per day  
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Google Cluster Architecture: Key Ideas 
• Single-thread performance doesn’t matter 

– For large problems, total throughput/$ is more important than peak 
performance. 

• Stuff breaks 
– If you have 1 server, it may stay up three years (1,000 days). 
– If you have 10,000 servers, expect to lose 10 per day. 

• “Ultra-reliable” hardware doesn’t really help 
– At large scales, the most reliable hardware still fails, albeit less often 

• Software still needs to be fault-tolerant 
• Commodity machines without fancy hardware give better performance/$ 

 
 Have a reliable computing infrastructure from clusters of unreliable 

commodity PCs. 
 Replicate services across many machines to increase request throughput 

and availability. 
 Favor price/performance over peak performance. 
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Google File System (GFS) Architecture 
• Files divided into fixed-sized chunks (64 MB) 

– Each chunk gets a chunk handle from the master 
– Stored as Linux files 

• One master 
– Maintains all file system metadata 
– Talks to each chunkserver periodically 

• Multiple chunkservers 
– Store chunks on local disks 
– No caching of chunks (not worth it) 

• Multiple clients 
– Clients talk to the master for metadata operations 
– Metadata can be cached at the clients 
– Read / write data from chunkservers 
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• Single master, multiple chunkservers 
 
 
 
 
 
 
 
 

• To overcome single-point of failure & scalability bottleneck: 
– Use shadow masters 
– Minimize master involvement (large chunks; use only for metadata) 

 

GFS Architecture 
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Overview of this Lecture Module 

• Background 
• Google MapReduce 
• The Hadoop Ecosystem 

– Core components: 
• Hadoop MapReduce 
• Hadoop Distributed File System (HDFS) 

– Other selected Hadoop projects: 
• Pig 
• Hive 
• HBase (separate lecture) 
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MapReduce 

• a software framework first introduced by 
Google in 2004 to support parallel and fault-
tolerant computations over large data sets on 
clusters of computers 
 

• based on the map/reduce functions commonly 
used in the functional programming world 
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MapReduce in a Nutshell 
• Given: 

– a very large dataset 
– a well-defined computation task to be performed on elements of 

this dataset (preferably, in a parallel fashion on a large cluster) 
 

• MapReduce framework: 
– Just express what you want to compute (map() & reduce()). 
– Don’t worry about parallelization, fault tolerance, data 

distribution, load balancing (MapReduce takes care of these). 
– What changes from one application to another is the actual 

computation; the programming structure stays similar. 
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MapReduce in a Nutshell 

• Here is the framework in simple terms: 
– Read lots of data. 
– Map: extract something that you care about from each record. 
– Shuffle and sort. 
– Reduce: aggregate, summarize, filter, or transform. 
– Write the results. 

 

• One can use as many Maps and Reduces as needed to 
model a given problem. 
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MapReduce vs. Traditional RDBMS 

 
MapReduce 

 
Traditional RDBMS 

Data size Petabytes Gigabytes 

Access Batch Interactive and batch 
Updates Write once, read many 

times 
Read and write many 
times 

Structure Dynamic schema Static schema 
Integrity Low High (normalized data) 
Scaling Linear Non-linear (general SQL) 
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Functional Programming Foundations 

• map in MapReduce     ↔ map in FP 
• reduce in MapReduce ↔ fold in FP 

 
• Note: There is no precise 1-1 correspondence, 

but the general idea is similar. 
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map() in Haskell 
• Create a new list by applying f to each element of the input list. 

 
 
 
 
 

• Definition of map: 
 map :: (a → b) → [a] → [b] -- type of map 
 map f [] = []  -- the empty list case 
 map f (x:xs) = f x : map f xs -- the non-empty list case 

 

• Example: Double all numbers in a list. 
 Haskell-prompt > map ((*) 2) [1, 2, 3] 
 [2, 4, 6] 

f f f f f f
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Implicit Parallelism in map() 

• In a purely functional setting, an element of a list being 
computed by map cannot see the effects of the 
computations on other elements. 
 

• If the order of application of a function f to elements in 
a list is commutative, then we can reorder or parallelize 
execution. 
 

• This is the “secret” that MapReduce exploits. 
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fold() in Haskell 
• Move across a list, applying a function f to each 

element plus an accumulator. f returns the next 
accumulator value, which is combined with the next 
element of the list. 
 
 
 
 
 

• Two versions: fold left & fold right 

f f f f f returned

initial

accumulators 
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fold() in Haskell 
• Definition of fold left: 
 foldl :: (b → a → b) → b → [a] → b -- type of foldl 
 foldl f y []    = y     -- the empty list case 
 foldl f y (x:xs) = foldl f (f y x) xs    -- the non-empty list case 
• Definition of fold right: 
 foldr :: (a → b → b) → b → [a] → b -- type of foldr 
 foldr f y []    = y      -- the empty list case 
 foldr f y (x:xs) = f x (foldr f y xs)     -- the non-empty list case 
• Example: Compute the sum of all numbers in a list. 
 Haskell-prompt > foldl (+) 0 [1, 2, 3]  foldl (+) 0 [1, 2, 3] 
 6              ⇒ (((0 + 1) + 2) + 3) 
               ⇒ 6 
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reduce() in Haskell 

• reduce is a type-specialized version of fold. 
 

• Definition of reduce: 
 reduce :: (a → a → a) → a → [a] → a   -- type of reduce 
 reduce = foldl      -- definition of reduce 
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MapReduce Basic Programming Model 

• Transform a set of input key-value pairs to a 
set of output values: 
– Map: (k1, v1) → list(k2, v2) 
– MapReduce library groups all intermediate pairs 

with same key together. 
– Reduce: (k2, list(v2)) → list(v2) 

 

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 



MapReduce Canonical Example 
“Count word occurrences in a set of documents.” 

map (String key, String value): 
 // key: document name 
 // value: document contents 
 for each word w in value: 
  EmitIntermediate(w, "1"); 

 

reduce (String key, Iterator values): 
 // key: a word 
 // values: a list of counts 
 int result = 0; 
 for each v in values: 
  result += ParseInt(v); 
 Emit(AsString(result)); 

map(k1, v1) → list(k2, v2) reduce(k2, list(v2)) → list(v2) 

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 



MapReduce Parallelization 
• Multiple map() functions run in parallel, creating 

different intermediate values from different input 
data sets. 
 

• Multiple reduce() functions also run in parallel, each 
working on a different output key. 
 

• All values are processed independently. 
 

• Bottleneck: The reduce phase can’t start until the 
map phase is completely finished. 
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MapReduce Parallel Processing Model 
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MapReduce Execution Overview 

Map 
phase 

Reduce 
phase 

Input 
files 

Output 
files 

Intermediate files 
(on local disks) 
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MapReduce Scheduling 
• One master, many workers 

– Input data split into M map tasks (typically 64 MB (~ chunk size in GFS)) 
– Reduce phase partitioned into R reduce tasks (hash(k) mod R) 
– Tasks are assigned to workers dynamically 

 
• Master assigns each map task to a free worker 

– Considers locality of data to worker when assigning a task 
– Worker reads task input (often from local disk) 
– Worker produces R local files containing intermediate k/v pairs 

 
• Master assigns each reduce task to a free worker 

– Worker reads intermediate k/v pairs from map workers 
– Worker sorts & applies user’s reduce operation to produce the output 
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Choosing M and R 
• M = number of map tasks, R = number of reduce tasks 
• Larger M, R: creates smaller tasks, enabling easier load 

balancing and faster recovery (many small tasks from 
failed machine) 

• Limitation: O(M+R) scheduling decisions and O(M*R) 
in-memory state at master 
– Very small tasks not worth the startup cost 

• Recommendation: 
– Choose M so that split size is approximately 64 MB 
– Choose R a small multiple of the number of workers; 

alternatively choose R a little smaller than #workers to 
finish reduce phase in one “wave” 
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MapReduce Fault Tolerance 
• On worker failure: 

– Master detects failure via periodic heartbeats. 
– Both completed and in-progress map tasks on that worker should 

be re-executed (→ output stored on local disk). 
– Only in-progress reduce tasks on that worker should be re-

executed (→ output stored in global file system). 
– All reduce workers will be notified about any map re-executions. 

• On master failure: 
– State is check-pointed to GFS: new master recovers & continues. 

• Robustness: 
– Example: Lost 1600 of 1800 machines once, but finished fine. 

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 



MapReduce Data Locality 
• Goal: To conserve network bandwidth. 
• In GFS, data files are divided into 64 MB blocks and 3 

copies of each are stored on different machines. 
• Master program schedules map() tasks based on the 

location of these replicas: 
– Put map() tasks physically on the same machine as one of 

the input replicas (or, at least on the same rack / network 
switch). 

• This way, thousands of machines can read input at 
local disk speed. Otherwise, rack switches would 
limit read rate. 
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Stragglers & Backup Tasks 
• Problem: “Stragglers” (i.e., slow workers) significantly 

lengthen the completion time. 
• Solution: Close to completion, spawn backup copies of 

the remaining in-progress tasks. 
– Whichever one finishes first, “wins”. 

• Additional cost: a few percent more resource usage. 
• Example: A sort program without backup = 44% longer. 
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Other Practical Extensions 
• User-specified combiner functions for partial combination 

within a map task can save network bandwidth (~ mini-reduce) 
– Example: Word Count? 

• User-specified partitioning functions for mapping intermediate 
key values to reduce workers (by default: hash(key) mod R) 
– Example: hash(Hostname(urlkey)) mod R 

• Ordering guarantees: Processing intermediate k/v pairs in 
increasing order 
– Example: reduce of Word Count outputs ordered results. 

• Custom input and output format handlers 
• Single-machine execution option for testing & debugging 
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Basic MapReduce Program Design 

• Tasks that can be performed independently on a data 
object, large number of them: Map 

• Tasks that require combining of multiple data 
objects: Reduce 

• Sometimes it is easier to start program design with 
Map, sometimes with Reduce 

• Select keys and values such that the right objects end 
up together in the same Reduce invocation 

• Might have to partition a complex task into multiple 
MapReduce sub-tasks 
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Overview of this Lecture Module 

• Background 
• Google MapReduce 
• The Hadoop Ecosystem 

– Core components: 
• Hadoop MapReduce 
• Hadoop Distributed File System (HDFS) 

– Other selected Hadoop projects: 
• Pig 
• Hive 
• HBase (separate lecture) 
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What is Hadoop? 

• Hadoop is an ecosystem of tools for processing 
“Big Data”. 

• Hadoop is an open source project. 
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The Hadoop Family 
MapReduce Distributed computation framework (data processing model 

and execution environment) 
HDFS Distributed file system 
HBase Distributed, column-oriented database 
Hive Distributed data warehouse 
Pig Higher-level data flow language and parallel execution 

framework 
ZooKeeper Distributed coordination service 
Avro Data serialization system (RPC and persistent data storage) 
Sqoop Tool for bulk data transfer between structured data stores 

(e.g., RDBMS) and HDFS 
Oozie Complex job workflow service 
Chukwa System for collecting management data 
Mahout Machine learning and data mining library 
BigTop Packaging and testing Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 



Hadoop: Architectural Design Principles 
• Linear scalability 

– More nodes can do more work within the same time 
– Linear on data size, linear on compute resources 

• Move computation to data 
– Minimize expensive data transfers  
– Data is large, programs are small  

• Reliability and Availability: Failures are common  
• Simple computational model (MapReduce) 

– Hides complexity in efficient execution framework 

• Streaming data access (avoid random reads) 
– More efficient than seek-based data access 
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A Typical Hadoop Cluster Architecture 

cluster 
switch 

rack 
switch 

… 

~ 30-40 servers per rack 

1 GB 

3-4 GB 
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Hadoop Main Cluster Components 
• HDFS daemons 

– NameNode: namespace and block management (~ master in GFS)  
– DataNodes: block replica container (~ chunkserver in GFS) 

• MapReduce daemons 
– JobTracker: client communication, job scheduling, resource 

management, lifecycle coordination (~ master in Google MR) 
– TaskTrackers: task execution module (~ worker in Google MR) 

 NameNode JobTracker 

TaskTracker TaskTracker TaskTracker 

DataNode DataNode DataNode 
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MapReduce Job Execution in Hadoop 
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Job Submission (1-4) 

• Client submits MapReduce job through 
Job.submit() call 

• Job submission process 
– Get new job ID from JobTracker 
– Determine input splits for job 
– Copy job resources (job JAR file, configuration file, 

computed input splits) to HDFS into directory named 
after the job ID 

– Inform JobTracker that job is ready for execution 
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Job Initialization (5-6) 

• JobTracker puts ready job into internal queue 
• Job scheduler picks job from queue 

– Initializes it by creating job object 
– Creates list of tasks 

• One map task for each input split 
• Number of reduce tasks determined by 

mapred.reduce.tasks property in Job, which is set by 
setNumReduceTasks() 

• Tasks need to be assigned to worker nodes 
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Task Assignment (7) 

• TaskTrackers send heartbeats to JobTracker 
– Indicate if ready to run new tasks 
– Number of “slots” for tasks depends on number of 

cores and memory size 
• JobTracker replies with new task 

– Chooses task from first job in priority-queue 
• Chooses map tasks before reduce tasks 
• Chooses map task whose input split location is closest to 

machine running the TaskTracker instance (data-local < rack-
local < off-rack; data locality optimization) 

– Could also use other scheduling policy 
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Task Execution (8-10) 

• TaskTracker copies job JAR and other 
configuration data from HDFS to local disk 

• Creates local working directory 
• Creates TaskRunner instance 
• TaskRunner launches new JVM (or reuses one 

from another task) to execute the JAR 
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Monitoring Job Progress 

• Tasks report progress to TaskTracker 
• TaskTracker includes task progress in 

heartbeat message to JobTracker 
• JobTracker computes global status of job 

progress 
• JobClient polls JobTracker regularly for status 
• Visible on console and web UI 
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Handling Task Failures 

• Error reported to TaskTracker and logged 
• Hanging task detected through timeout 
• JobTracker will automatically re-schedule 

failed tasks 
– Tries up to mapred.map.max.attempts many times 

(similar for reduce) 
– Job is aborted when task failure rate exceeds 

mapred.max.map.failures.percent (similar for 
reduce) 
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Handling TaskTracker & JobTracker Failures 

• TaskTracker failure detected by JobTracker 
from missing heartbeat messages 
– JobTracker re-schedules map tasks and not 

completed reduce tasks from that TaskTracker 

• Hadoop cannot deal with JobTracker failure 
– Could use Google’s proposed JobTracker take-over 

idea, using ZooKeeper to make sure there is at 
most one JobTracker 

– Improvements in progress in newer releases… 
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Moving Data from Mappers to Reducers 

• “Shuffle & Sort” phase 
– synchronization barrier between map and reduce phase 
– one of the most expensive parts of a MapReduce 

execution 

• Mappers need to separate output intended for 
different reducers 

• Reducers need to collect their data from all 
mappers and group it by key 
– keys at each reducer are processed in order 
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Shuffle & Sort Overview 

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 



Combiner Functions 

• Pre-reduces mapper output before transfer to 
reducers (to minimize data transferred) 

• Does not change program semantics 
• Usually same as reduce function, but has to 

have same output type as Map 
• Works only for certain types of reduce 

functions (commutative and associative (a.k.a. 
distributive)) 
– E.g.: max(5, 4, 1, 2) = max(max(5, 1), max(4, 2)) 
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Partitioner Functions 

• Partitioner determines which keys are assigned 
to which reduce task 

• Default HashPartitioner essentially assigns keys 
randomly 

• Create custom partitioner by implementing your 
own getPartition() method of Partitioner in 
org.apache.hadoop.mapreduce 
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MapReduce Development Steps 

• Write Map and Reduce functions 
– Create unit tests 

• Write driver program to run a job 
– Can run from IDE with small data subset for testing 
– If test fails, use IDE for debugging 
– Update unit tests and Map/Reduce if necessary 

• Once program works on small test set, run it on 
full data set 
– If there are problems, update tests and code 

accordingly 
• Fine-tune code, do some profiling 
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Local (Standalone) Mode 

• Runs same MapReduce user program as cluster 
version, but does it sequentially on a single 
machine 

• Does not use any of the Hadoop daemons 
• Works directly with local file system 

– No HDFS, hence no need to copy data to/from HDFS 

• Great for development, testing, initial debugging 
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Pseudo-Distributed Mode 

• Still runs on a single machine, but simulating a real 
Hadoop cluster 
– Simulates multiple nodes 
– Runs all daemons 
– Uses HDFS 

• For more advanced testing and debugging 
• You can also set this up on your laptop 
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Programming Language Support 

• Java API (native) 
• Hadoop Streaming API 

– allows writing map and reduce functions in any 
programming language that can read from standard 
input and write to standard output 

– Examples: Ruby, Python 

• Hadoop Pipes API 
– allows map and reduce functions written in C++ using 

sockets to communicate with Hadoop’s TaskTrackers 
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Overview of this Lecture Module 

• Motivation 
• Google MapReduce 
• The Hadoop Ecosystem 

– Core components: 
• Hadoop MapReduce 
• Hadoop Distributed File System (HDFS) 

– Other selected Hadoop projects: 
• Pig 
• Hive 
• HBase (separate lecture) 
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Hadoop Distributed File System (HDFS) 

• Distributed file systems manage the storage 
across a network of machines. 
 

• Hadoop has a general-purpose file system 
abstraction (i.e., can integrate with several 
storage systems such as the local file system, 
HDFS, Amazon S3, etc.). 
 

• HDFS is Hadoop’s flagship file system. 
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HDFS Design 
• Very large files 
• Streaming data access 

– write-once, read-many-times pattern 
– time to read the whole dataset is more important 

• Commodity hardware 
– fault-tolerance 

• HDFS is not a good fit for 
– low-latency data access 
– lots of small files 
– multiple writers, arbitrary file modifications 
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Blocks 

• HDFS files are broken into block-sized chunks 
(64 MB by default) 

• With the (large) block abstraction: 
– a file can be larger than any single disk in  the 

network 
– storage subsystem is simplified (e.g., metadata 

bookkeeping) 
– replication for fault-tolerance and availability is 

facilitated 
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Namenodes and Datanodes 
• Two types of HDFS nodes: 

– one Namenode (the master) 
– multiple Datanodes (workers) 

• Namenode manages the filesystem namespace. 
– file system tree and metadata, stored persistently 
– block locations, stored transiently 

• Datanodes store and retrieve data blocks when they 
are told to by clients or the Namenode. 

• Datanodes report back to the Namenode periodically 
with lists of blocks that they are storing. 
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HDFS Federation & High-Availability 

• In latest releases of Hadoop: 
– HDFS Federation allows multiple Namenodes, each 

of which manages a portion of the file system 
namespace; the goal is to enhance the scalability of 
the Namenode on very large clusters with many 
files and blocks. 

– HDFS High-Availability provides faster recovery 
from Namenode failures using a pair of namenodes 
in an active standby configuration. 
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Reading from HDFS 
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Writing to HDFS 
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Network Distance in Hadoop 
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Replica Placement 
• Issues to consider: reliability, 

write bandwidth, read 
bandwidth, block distribution. 

• Hadoop’s default strategy: 
– First replica: on the client 

node (or randomly chosen if 
client is outside the cluster) 

– Second replica: random, off-
rack. 

– Third replica: same rack as 
second, different node. 

– More replicas: randomly 
chosen. 

Example Replica Pipeline: 
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Coherency Model 
• Coherency model describes the data visibility of 

reads and writes for a file. 
• In HDFS: 

– The metadata for a newly created file is visible in the file 
system namespace. 

– The current data block being written is not guaranteed 
to be visible to other readers. 

• To force all buffers to be synchronized to all relevant 
datanodes, you can use the sync() method. 

• Without sync(), you may lose up to a block of 
(newly written) data in the event of client or system 
failure. 
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Tools for Ingesting Data into HDFS 

• Apache Flume 
– to move large quantities of streaming data into 

HDFS (e.g., log data from a system) 
 

• Apache Sqoop 
– to perform bulk imports of data into HDFS from 

structured data stores, such as relational databases 
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