Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture IX:
Distributed query processing
and optimization

Roadmap

Overview

(Query Decomposition)
Data Localization
Query Optimization

Query Processing Recap

Declarative Quer' Procedural
query specification |:> Y |:> query execution plan
Q Processor Q

saL Relational Algebra
SELECT ENAME
FROM EMP, ASG L1 ENAME(EMP><l e\ (o RESP="“Manager” (ASG)))

WHERE EMP.ENO = ASG.ENO
AND RESP = “Manager”

Two important requirements:
1. Correctness: Q" must be semantically equivalent to Q.
2. Efficiency: Q" must have the smallest execution cost.

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 4

Cost Metrics

e Total cost

— processing time at all sites (CPU + |/0)
— communication time between sites

* |n WANSs, communication cost usually dominates.

e Query response time

— time elapsed for executing the query

What is the difference between total cost and query response time?

Does it change in distributed/parallel settings?

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 5

Complexity of Relational Algebra Operators

Operation Complexity
Select
| . . o Qi
FProject (without duplicate elimination)
Froject (with duplicate elimination) _
Oin*log m
Group by
Jain
Semijoin
O r*lag n)
Divisian

Sel Operators

Cartesian Product

EJ[HE')

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

n: relation cardinality

To reduce costs:

A The most selective
operations should be
performed first.

1 Operations should be
ordered by increasing
complexity.

Query Processing in a Centralized System

Given:
EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)
Query:
Find the names of employees who are managing a project.

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO
AND RESP = “Manager”

Two equivalent G IT ename (O resp=manager” anp emp.eno=as.eno (EMP X ASG))
execution plans.

Which one to use? e IT cyame (EMPD>< g (O pespomanager” (ASG) [/

Query Processing in a Distributed System

¢ Query: EMPP>J ENO (Y RESP=“Manager” (ASG))

e Data fragments and their allocation to sites:
— Sitel : ASG1 = 0 g < <3 (ASG))
— Site2 : ASG2 = 0 g » <3 (ASG))
— Site3 : EMP1 =0 ¢yg < g5 (EMP))
— Site4 : EMP2 = G g » «c5 (EMP))
— Site5 : Result

e Assumptions:
— size(EMP) = 400, size(ASG) = 1000, size(0 gesp-«pianager (ASG) = 20
— tuple access cost = 1, tuple transfer cost = 10

— EMP locally indexed on ENO, ASG locally indexed on RESP
— uniform data distribution across sites

Query Processing in a Distributed System

@ join-400*20*1= 8000

‘ selection = 1000 * 1 = 1000

|
N v

result = (EMP, ' EMP)M, . © RESP="Wanager (ASG

P-.SG/ ASG/ &MF‘ \EMF‘

Site 1 Site 2 Site 3 Site 4

Site 5

| UASG,)

I

transfer = 1000 * 10 = 10000 Tmnsfe'“ - 400 * 10 = 4000

total cost = 10000 + 4000 + 1000 + 8000 = 23000

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 9

Query Processing in a Distributed System

e Site 5

| result = EMP', _ EMP', |

transfer = 10 * 10 = 100 transfer = 10 * 10 = 100
EMP'/ ‘NMP'E
Site 3 — join=10*1%*2=20 Site4 join=10*1*2=20
EMP', =EMP, M _, ASG'1‘ EMP', = EMP, M _, _ ASG,
transfer = 10 * 10 = 100
**%4 transfer = 10 * 10 = 100 552
Site: 1 transter = - Site 2
ASCY = Ogeap.manager = ASC', = Ogeapmtanager o0,
selection=10*1=10 selection=10*1=10

total cost = 10 + 10 + 100 + 100 + 20 + 20 + 100 + 100 = 460 [l

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 10

General Query Optimization Issues

Algorithmic approach:

— Cost-based vs. Heuristics-based
Granularity:

— Single query at a time vs. Multi-query optimization
Timing:

— Static vs. Dynamic vs. Hybrid

Statistics:

— what to collect, accuracy, independence, uniformity

Decision mechanism:

— Centralized vs. Distributed vs. Hybrid Specific to

— distributed

Network topology: query processing

— WANSs vs. LANs

Distributed Query Processing

CALCULUS QUERY ON GLOBAL

RELATIONS
QUERY GLOBAL
DECOMPOSITION SCHEMA

ALGEBRAIC QUERY ON GLOBAL

RELATIONS
DATA, FRAGMENT
LOCALIZATION SCHEMA

ALGEBRAIC QUERY ON FRAGMENTS

!

GLOBAL ALLOCATION
|\ OPTIMIZATION SCHEMA *

DISTRIBUTED QUERY EXECUTION PLAN

LOCAL DISTRIBUTED
SITES EXECUTION

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

CONTROL
SITE <

12

Query Decomposition

 Goal: To convert global declarative query into a correct
and efficient global procedural query

e Query decomposition consists of 4 steps:
1. Normalization
» Transformation of query predicates into normal form
2. Semantic Analysis
» Detection and rejection of semantically incorrect queries
3. Simplification
» Elimination of redundant predicates
4. Restructuring
» Transformation of the query into algebraic form

 No distribution-related processing.

Sample Query

 Transformation of the query into algebraic form
Given: EMP(ENO, ENAME, TITLE) .
ENAME

Query:

SELECT

FROM

WHERE
AND
AND
AND
AND

ASG(ENO, PNO, RESP, DUR) A
PROJ(PNO, PNAME, BUDGET, LOC) -

. DUR=12 - DUR=24
Find the names of employees N
other than J. Doe who worked
on the CAD/CAM project
for either 1 or 2 years. T

q Oename.y. Doer

M PNO

l:ﬂ';;:lEri.I':l?-

VAN

FPROJ ASG EMP

I:_]F’ri.lﬂ«h-'l E="CADICAM®

ENAME

EMP, ASG, PROJ

ASG.ENO = EMP.ENO
ASG.PNO = PROJ.PNO
ENAME # “). Doe”
PROJ.PNAME = “CAD/CAM”
(DUR =12 OR DUR = 24)

} project

.>' select

» join

Data Localization

 Goal: To convert an algebraic query on global relations
into an algebraic query on physical fragments

 General approach:

1. Generate a localized query by substituting each
global relation in the leaves of the operator tree
by the appropriate subtree on fragments.

e Union for horizontal fragments
e Join for vertical fragments

2. Apply reduction techniques on the localized query
to generate a simpler and an optimized operator
tree.

Data Localization

Example
Query plan on global relations

EMAME

T e EMP is fragmented as follows:

I:_]IZJLI R=12 - DUR=24

T EMP, =G gno <3 (EMP)
EMP, = G 3 < eno < g6 (EMP)
PFHAME="CADNCAM"
EMP;= G gy e (EMP)

I

]

Tename.) Dost e ASG is fragmented as follows:
T ASG = G gyo <37 (ASG)
Meno ASG, =G o > <37 (ASG)
I::"JEI'-I-:}

Uni Freiburg, WS2012/13 err’s Infrastructure for Data Science

Data Localization

xample
Query plan on global r'ela’rll;'ons pLocalized query plan

1 Fp

1 Fp T
T O burs12 . DUR=24

O burs12 . DUR=24 T
T O pname=canicam

O pname="cADicam® ‘ T

T O enamE). Doe"
O EnNAME). Doe” T

T M FNOD

M FHO ‘\
N Mens

HEM:} /..r’ \

K, PROJ U),
PROJ @ AR RN N
Uni Freiburg, WS2012/13 wstems Infrastructure for Data Sel

P, EMP, EMP, ASG, AS

Data Localization
Reduction for Primary Horizontal Fragmentation
e Reduction with Selection

— Given relation Rand Fz={Ry, Ry, ..., R} where R;= Gpj(R) :

G, (R) = ¢, if ¥xin R: ~(p; (x) A pj (x))

SELECT *
FROM EMP
WHERE ENO = “E5”

— Example: EMP is fragmented as before.

Localized query Reduced query
I:_]E MNO="ES5" I:_]E NO="ES"
»} A

EMP, EMP,, EMPs EMP,

Data Localization

* EMP is fragmented as follows: Horizontal Fragmentation
EMP, =G gno <3 (EMP)
EMP, =G .3 ceno < k67 (EMP)

EMP; =G gyo 5 «ee» (EMP) {R,, Ry, ..., R} where Rj= Gpj(R) :
* ASG is fragmented as follows: p;(x) A P, (x))
ASG, =G o<z (ASG) SELECT *
y ted as before.
ASG,= G o 3 (ASG) FROM EMP
WHERE ENO = “E5”
Localized query Reduced query
I:_]Er-.l-:li-=“Eq'5" ﬁEm-:}:"EE"
»f A

EMP, EMP,, EMPs EMP,

Data Localization
Reduction for Primary Horizontal Fragmentation
 Reduction with Join

— Apply when fragmentation is done on the join attribute
— Distribute Joins over Unions
(R{UR,)<S &< (Rp<S) U (Rp<S)
— Eliminate useless Joins
Ri >R, = ¢, if Vxin R, Vyin R;: =(p;(x) A p;(y))
e Example:
— EMP and ASG are fragmented as before.
SELECT *

FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

Data Localization
Reduction for Primary Horizontal Fragmentation
e Reduction with Join Example (cont’d):
Localized query

/ - \

/’/ﬂ‘rx‘

EMP EMP5 EMP5 ASG ASGE
Reduced query
MEH-I} I::M::IEI'-J-I} I::M::IEI'-J-I}
AN 7N 7N

EMP ; ASG EMP5 ASGy EMP+ ASGy

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 21

Data Localization

* EMP is fragmented as follows: Horizontal Fragmentation
EMP, = G gyo < g3 (EMP)

EMP,= G 3 < eno <6’ (EMP)
EMP3= G gy ¢ (EMP) ed query

NEI'-.IG-
* ASG is fragmented as follows: \

ASG, = O gno < ¢3 (ASG) =

mple (cont’d):

ASG,= G cyo s vy (ASG AN
2= O o ey (ASC) ASG: ASGo
Reduced query
MEHG HEH'I} I::M:IEP-.I':'}
N s AN N
EMP - ASG EMP- ASG, EMP ASGo

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 22

Data Localization
Reduction for Vertical Fragmentation

 Reduction with Projection

— Given a relation R defined over attributes A={A,, ..., A }and
vertically fragmented as R, = I1,. (R) where A'c A:

L1, ¢ (R;) is useless, if the set of projection attributes D is not in A’

e Example:

— EMP is vertically fragmented as follows:

EMP1=HENO,ENAME(EMP) L | d 5 d d
EMP, =11 enomimie (EMP) ocaliZed query educed query

]]EN.IU.'E

SELECT ENAME T
FROM EMP M., ‘
/ \

EI".-1F*. EI".-1F’E EI".-1F*-

J]Er-.l.ﬁ!.'E

>

Data Localization
Reduction for Derived Horizontal Fragmentation

e Example:
ASG,: ASG <\, EMP, SELECT *
ASG,: ASG < o EMP, FROM EMP, ASG

» (EMP) WHERE ASG.ENO = EMP.ENO

EMP: G e - p
rogTammer AND EMPTITLE = “Mech. Eng.”

EMPZ: O Ti7LE # “Programmer” (EMP)

Localized query

HEI'-.I-S#.,__H_‘_
.r”//,' I:'_JTITLE="M&~:!'1. Eng."

ASG, ASG, EMP, EMP,

Data Localization
Reduction for Derived Horizontal Fragmentation

e Example cont’d:

//,' H ENO 1|'I"""----.._
I:'_:lT|TLE="H-E-d'1. Eng.”

ASG, ASG, EMP. EMP,,

!

/ \J
/ “\._\ T fmem e

ASG, ASGo EMP,

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 25

Data Localization

Reduction for Derived Horizontal Fragmentation

e Example cont’d:

/\

TITLE"'I'.-'I-E{ﬂ Eng.”

/ ™~ t

AS Gy EMP,,

!
/\

I::"E:IEI'-J-I}

‘-‘-"l-h-‘-‘-‘-
/ ':_TITIJE “Mach. Eng.” / O rTLE="Mech. Eng "
i r

ASG 4 EMP, ASGy EMP,,

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

26

Data Localization
Reduction for Derived Horizontal Fragmentation

e Example cont’d:

EHG'“E

H EMCH
—
I:_]TI'I'$="II.-'I-51:!'1. Eng." I:_IT I'I"Ii"E="II.-'Iem. Eng."
ASG 4 EMP, ASGy EMP,,
b4 ERC
¥

"ITLE="Mach. Eng "

ASGy EM PE

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 27

Data Localization
Reduction for Hybrid Fragmentation

e Combine all the reduction rules:

— Remove empty relations generated by contradicting
Selections on horizontal fragments.

— Remove useless relations generated by Projections on
vertical fragments.

— Distribute Joins over Unions in order to isolate and remove
useless Joins.

Data Localization
Reduction for Hybrid Fragmentation

e Example:

EMP, =G gno < vear (IT eno, ename (EMP)) - SELECT ENAME
EMP, =G gno > vear (T eno, ename (EMP)) - FROM EMP

EMP; = IT ¢\o, 7irie (EMP) GHlAlERE N0 = TlEs
Localized query Reduced query
| IEhI.ﬁ.I'.-'IE I Il:x-u.n:

Meno EMPs
EMP, EMP EMPs

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 29

Query Optimization Recap

 Goal: To convert an algebraic query on physical
fragments into an optimized query execution plan

Uni Freiburg, WS2012/13

INPUT QUERY

l

SEARCH SPACE
TRANSFORMATION
GENERATION RULES

l

EQUIVALENT QEP

l

SEARCH
STRATEGY

l

BEST QEP

Systems Infrastructure for Data Science 30

Query Optimization
Search Space

Search space characterized by G <] P
alternative execution plans A '\

Focus on Join trees B<leno PROJ
For N relations, there are O(N!) Er:;;x Y\ASG
equivalent Join trees that can <)

be obtained by applying e o ENO
commutativity and associativity <] t\\EI'-JF'
rules /, ,F'Q[i

Restrict the space w/ heuristics ASG PROU
Example: e P<leno pno

SELECT ENAME, RESP AR
FROM EMP, ASG, PRO) X ASG
WHERE EMP.ENO = ASG.ENO AN

AND ASG.PNO =PROJ.PNO
ns Infrastructure for Data PR EMP

31

Query Optimization
Search Strategy

e How to explore the plans in the search space

e Deterministic strategies

— Start from base relations and build plans by adding one relation at
each step

— Dynamic programming (breadth-first approach) -> Best plan is
guaranteed

— Greedy (depth-first approach)

e Randomized strategies
— Search for optimalities around a particular starting point
— Trade optimization time for execution time
— Best planis not guaranteed
— Simulated annealing
— Iterative improvement

Query Optimization
Cost Model

e Cost metrics (i.e., what to optimize?)
— Total time
— Response time

e Database statistics (i.e., what needs to be known?)
— Several statistics about relations, fragments, attributes
need to be maintained.

— Intermediate relation sizes/cardinalities need to be
computed.

* size(R) = cardinality(R) * length(R)

Cost Model

Metrics
e Total cost = CPU cost + I/O cost + Communication cost

= Unit instruction cost * # of instructions
+ Unit disk 1/O cost * # of disk I/Os

+ Message initiation + Transmission
* WANSs: Communication cost dominates.
e LANSs: All cost are equally important.
e To reduce total cost, cost of each component should be reduced.

e Response time is similar except that parallel components
should be counted only once.

e To reduce response time, process as many things in parallel as
possible (which may actually result in higher total cost).

Centralized Query Optimization
Overview

e Static query optimization

— Query optimization takes place at compile time, based on a
cost model.

— Example: System R [Selinger et al, IBM Almaden, 1970s]
e Dynamic query optimization

— Query optimization and execution steps are interleaved.

— Example: INGRES [Stonebraker et al, UC Berkeley, 1970s]
e Static-Dynamic hybrid

— Optimized plans generated at compile time are later
reoptimized at run time.

Centralized Query Optimization
System R Algorithm (Recap)

e Two main steps:
1. For each relation R, determine the best access path.
2. For each relation R, determine the best join ordering.

e ForJoins, there are two alternative algorithms:
1. Nested-Loop

For each tuple of external relation R (cardinality n,)
For each tuple of internal relation S (cardinality n,)
Join two tuples if the join predicate is true

2. Sort-Merge

SortRand S
Merge Rand S

System R Algorithm

Example (cont’d)
e Step 1: Determine the best access path for EMP, ASG, PROJ.

— EMP: sequential scan (no selection)
— ASG: sequential scan (no selection)
— PROIJ: use the index on PNAME (selection on PNAME)

e Step 2: Determine the best join ordering.
— EMP>MASG™> PROJ
— ASG ™ PROJ><EMP
— PROJ > ASG > EMP
— ASG <t EMP™ PROJ
— EMP x PROJ><ASG
— PROJ x EMP™> ASG

Centralized Query Optimization
INGRES Algorithm

Heuristic: Try to minimize the intermediate result sizes

Decompose an n-variable query g into a series of queries
q;, —> 9, = ... >4,

where g, uses the result of q, ;.

Detachment

— Decompose query q intoq' — g", where q' and q" have a
common variable which is the result of g'.

Tuple substitution

— Replace the value of each tuple with actual values and simplify
the query:
q(Vy, V,, ...V.)—>(a' (t, V,, V,, ..., V), t; € R)

INGRES Algorithm
Example

e Find the names of employees working on the CAD/CAM project.

SELECT EMP.ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO = PROJ.PNO
AND PROJ.PNAME = "CAD/CAM"

l Detachment

qll: SELECT PROJ.PNO INTO JVAR
FROM PROJ
WHERE PNAME ="CAD/CAM"

gl:

».. SELECT EMP.ENAME
" FROM EMP, ASG, JVAR
WHERE EMP.ENO = ASG.ENO
AND ASG.PNO =JVAR.PNO

INGRES Algorithm
Example (cont’d)

,. SELECT
' FROM

WHERE

AND

q12: SELECT
' FROM
WHERE

ql3: SELECT
FROM
WHERE

EMP.ENAME

EMP, ASG, JVAR
EMP.ENO = ASG.ENO
ASG.PNO = JVAR.PNO

l Detachment

ASG.ENO INTO GVAR
ASG, JVAR
ASG.PNO = JVAR.PNO

EMP.ENAME
EMP, GVAR
EMP.ENO = GVAR.ENO

ql31:

ql32:

INGRES Algorithm

Example (cont’d)

SELECT
FROM
WHERE

SELECT
FROM
WHERE

SELECT
FROM
WHERE

EMP.ENAME
EMP, GVAR
EMP.ENO = GVAR.ENO

lTuple substitution

EMP.ENAME
EMP
EMP.ENO = “E1”

EMP.ENAME
EMP
EMP.ENO = “E2”

Assuming GVAR has
two tuples: (E1), (E2)

Distributed Query Optimization
Overview

* New considerations
— Join ordering in a distributed setting
— Using Semijoin

e Distributed algorithms
— Distributed INGRES

— Distributed System R (i.e., System R*)
— SDD-1 based on Hill Climbing

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

44

Join Ordering in a Distributed Setting

 Simplest scenario:

— Re<' S, when R and S are at different sites

if size (R) < size (S)

Site 1 ®A @ Site 2

if size (R) > size (S)

e When there are more than two relations, we need to
worry about intermediate result sizes since these will
have to be shipped between sites.

Join Ordering in a Distributed Setting
Example

e Query:
— PROJ >, ASG>< EMP

e Join graph:
Site 2

ENO PNO

Site 1 @ @ Site 3

Join Ordering in a Distributed Setting
Example (cont’d)

Alternative execution plans:

1. EMP — Site 2 4. PROJ — Site 2
At Site 2: EMP’ = EMP <1 ASG At Site 2: PROJ = PROJ>< ASG
EMP’ — Site 3 PROJ — Site 1
At Site 3: EMP’ >< PROJ At Site 1: PROJ/><t EMP
2. ASG—Sitel 5. EMP — Site 2
At Site 1: EMP’ = EMP > ASG PROJ —> Site 2
EMP” — Site 3 At Site 2: EMP ><I PROJ><I ASG
At Site 3: EMP’ >< PRO) ,
. Site 2
3. ASG — Site 3
At Site 3: ASG’ = ASG ><PRO)J @

PNO

ENO
ASG’ — Site 1
At Site 1: ASG’ > EMP Site 1 @ Site 3

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 47

Using Semijoin
 Equivalence rules:
R><t, S<>(Rp<, S) 1, S
< RP, (S><,R)
< (Re<, S) <1y (S><, R)

e Example: R @ Sitel, S @ Site2. Assume size(R) < size(S).

O R>=,5=,s (2 JI

At Site2: S’ = TTA(S) R —> Site2

S’ —» Site 1 At Site2: R>9, S

At Site 1: R’ = Ro<, S . "
D e 1 is better than 2 if:

At Site 2: R" ><, S size(I1,(S)) + size(Rp<, §')) < size(R)

Distributed Query Optimization Algorithms

A Comparative Overview

. Opt. Objective Opt. Network .
Algorithms e . Semijoin | Stats | Fragments
Timing | Function | Factors | Topology
Resp.
Dist. . time or | Msg. Size, | General or .
D ’ N 1 H tal
INGRES ynamic Total Proc. Cost | Broadcast © orizonta
time
No. Msg.
Total ’ I N
R* Static ti(:;ae Msg. Size, Gerscrzl or No 1,2 °
10, CPU
Total 1,3,4
SDD-1 Static .Ota Msg. Size | General Yes S No
time 5

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor;
4:size of projection on each join attribute; 5: attribute size and tuple size

R* Algorithm
Architecture

e Master site
— QOverall coordination

— Inter-site decisions (execution sites, fragments,
data transfer methods, etc.)

 Apprentice sites

— Local decisions (local join ordering, local access
plans, etc.)

R* Algorithm
Data Transfer Alternatives

e Ship-whole
— larger data transfer
— smaller number of messages
— better if relations are small

e Fetch-as-needed

— number of messages = O(cardinality of external
relation)

— data transfer per message is minimal
— better if relations are large and the selectivity is good

R* Algorithm
Join Strategies for R >, S

1. Move outer relation tuples to the site of the inner relation
— Retrieve outer tuples
— Send them to the inner relation site
— Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ # of outer tuples fetched * cost(retrieving qualified inner tuples)
+ msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size

R* Algorithm
Join Strategies for R >, S

Move inner relation to the site of outer relation

— cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)
+ # of outer tuples fetched *
cost(retrieving matching inner tuples

from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples
in temporary storage)

+ msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size

R* Algorithm
Join Strategies for R >, S

3. Move both inner and outer relations to another site

Total Cost = cost(retrieving qualified outer tuples)
+ cost(retrieving qualified inner tuples)
+ cost(storing inner tuples in storage)
+ msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size
+ msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size

+ # of outer tuples fetched*cost(retrieving inner tuples from
temporary storage)

R* Algorithm
Join Strategies for R >, S

4. Fetch inner tuples as needed
— Retrieve qualified tuples at outer relation site

— Send request containing join column value(s) for outer tuples to inner
relation site

— Retrieve matching inner tuples at inner relation site
— Send the matching inner tuples to outer relation site
— Join as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost * (# of outer tuples fetched)
+ # of outer tuples fetched * (# of inner tuples fetched *
avg. inner tuple size * msg. cost/msg. size)

+ # of outer tuples fetched * cost(retrieving matching inner tuples
for one outer value)

Hill Climbing Algorithm

Assume join is between three relations.
Step 1: Do initial processing
Step 2: Select initial feasible solution (ESO)

e Determine the candidate result sites - sites where a relation referenced in
the query exist

e Compute the cost of transferring all the other referenced relations to each
candidate site

e ESO = candidate site with minimum cost

Step 3: Determine candidate splits of ESO into {ES1, ES2}

e ES1 consists of sending one of the relations to the other relation's site
e ES2 consists of sending the join of the relations to the final result site

Hill Climbing Algorithm (cont’d)

Step 4: Replace ESO with the split schedule which gives
cost(ES1) + cost(local join) + cost(ES2) < cost(ESO)
Step 5: Recursively apply steps 3—4 on ES1 and ES2
until no such plans can be found
Step 6: Check for redundant transmissions
in the final plan and eliminate them.
(see the example in [1])

Hill Climbing Algorithm
Problems

 Greedy algorithm => determines an initial feasible
solution and iteratively tries to improve it

e |f there are local minima, it may not find global
minima

e If the optimal schedule has a high initial cost, it won't
find it, since it won't choose it as the initial feasible
solution

SDD-1 Algorithm
Hill Climbing using Semijoin
Initialization

Step 1: In the execution strategy (call it ES), include all the
local processing

Step 2: Reflect the effects of local processing on the
database profile

Step 3: Construct a set of beneficial semijoin operations
(BS) as follows :

BS=0Q
For each semijoin SJ,
BS «— BS U SJ. if cost(SJ,) < benefit(SJ.)

SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)
Iterative Process

Step 4: Remove the most beneficial SJ. from BS and append
it to ES

Step 5: Modify the database profile accordingly
Step 6: Modify BS appropriately
— compute new benefit/cost values

— check if any new semijoin needs to be included in BS

Step 7: If BS # @, go back to Step 4.

SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)
Assembly Site Selection

Step 8: Find the site where the largest amount of data resides
and select it as the assembly site

Postprocessing

Step 9: For each R, at the assembly site, find the semijoins of
the type R;>R;
where the total cost of ES without this semijoin is

smaller than the cost with it and remove the semijoin
from ES.

Step 10: Permute the order of semijoins, if doing so would
improve the total cost of ES.

(see the example in [1])

Distributed Query Processing and Optimization
Summary

e Query decomposition

— Declarative form => Procedural form

— Normalization, Analysis, Simplification, Restructuring
e Data localization

— Localization and reduction for different types of fragmentations
e Query optimization

— Basic components: Search space, Search strategy, Cost model

— Centralized algorithms (INGRES, System R)
— Distributed algorithms (Dist. INGRES, System R*, SDD-1)

e Join ordering and Semijoins

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 62

	Systems Infrastructure for Data Science
	Lecture IX: �Distributed query processing �and optimization
	Roadmap
	Query Processing Recap
	Cost Metrics
	Complexity of Relational Algebra Operators
	Query Processing in a Centralized System
	Query Processing in a Distributed System
	Query Processing in a Distributed System
	Query Processing in a Distributed System
	General Query Optimization Issues
	Distributed Query Processing
	Query Decomposition
	Sample Query
	Data Localization
	Data Localization�Example
	Data Localization�Example
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Vertical Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Hybrid Fragmentation
	Data Localization�Reduction for Hybrid Fragmentation
	Query Optimization Recap
	Query Optimization�Search Space
	Query Optimization�Search Strategy
	Query Optimization�Cost Model
	Cost Model�Metrics
	Centralized Query Optimization�Overview
	Centralized Query Optimization�System R Algorithm (Recap)
	System R Algorithm�Example (cont’d)
	Centralized Query Optimization�INGRES Algorithm
	INGRES Algorithm�Example
	INGRES Algorithm�Example (cont’d)
	INGRES Algorithm�Example (cont’d)
	Distributed Query Optimization�Overview
	Join Ordering in a Distributed Setting
	Join Ordering in a Distributed Setting�Example
	Join Ordering in a Distributed Setting�Example (cont’d)
	Using Semijoin
	Distributed Query Optimization Algorithms�A Comparative Overview
	R* Algorithm�Architecture
	R* Algorithm�Data Transfer Alternatives
	R* Algorithm�Join Strategies for R A S
	R* Algorithm�Join Strategies for R A S
	R* Algorithm�Join Strategies for R A S
	R* Algorithm�Join Strategies for R A S
	Hill Climbing Algorithm
	Hill Climbing Algorithm (cont’d)
	Hill Climbing Algorithm�Problems
	SDD-1 Algorithm�Hill Climbing using Semijoin
	SDD-1 Algorithm�Hill Climbing using Semijoin (cont’d)
	SDD-1 Algorithm�Hill Climbing using Semijoin (cont’d)
	Distributed Query Processing and Optimization�Summary

