Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture VII: Introduction to
Distributed Databases

Why do we distribute?

Applications are inherently distributed.
A distributed system is more reliable.
A distributed system performs better.

A distributed system scales better.

Distributed Database Systems

Union of two technologies:
— Database Systems + Computer Networks

Database systems provide

— data independence (physical & logical)
— centralized and controlled data access
— integration

Computer networks provide distribution.
integration # centralization
integration + distribution

DBMS Provides Data Independence

PROGRAM 1 —

Data -~ > FILE 1
Description <
N =
. FROGRAM 2 T =
Z
File Systems D | > e :
Description %
S -
PROGRAM 3 FLE 3 *

Data - >

Description \“ﬁah_ﬂ________'__,af*’f

PROGRAM 1]
Database \‘ Data Description
Management PROGRAM 2 |s——»| Data Manipulation "{_}' DATABASE
Systems
FROGRAM 3
S

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 5

Distributed Database Systems

Union of two technologies:
— Database Systems + Computer Networks

Database systems provide

— data independence (physical & logical)
— centralized and controlled data access
— integration

Computer networks provide distribution.
integration # centralization
integration + distribution

Distributed Systems

e Tanenbaum et al:

“a collection of independent computers that appears
to its users as a single coherent system”

e Coulouris et al:

“a system in which hardware and software
components located at networked computers
communicate and coordinate their actions only by
passing messages”

Distributed Systems

e Ozsu et al:

“a number of autonomous processing elements (not
necessarily homogeneous) that are interconnected by
a computer network and that cooperate in
performing their assigned tasks”

What is being distributed?

Processing logic
~unction

Data

Control

For distributed DBMSs, all are required.

Centralized DBMS on a Network

Site 1

Site 5

Communication

Metwork

Site 4 Site 3

What is being distributed here?

Uni Freiburg, WS2012/13

Systems Infrastructure for Data Science 10

Distributed DBMS

.
Site 1]
o

Communication
Metwaork

FE &

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 11

Distributed DBMS Promises

. Transparent management of distributed and
replicated data

. Reliability/availability through distributed
transactions

. Improved performance

4. Easier and more economical system expansion

Promise #1: Transparency

 Hiding implementation details from users
* Providing data independence in the distributed environment
e Different transparency types, related:

e Full transparency is neither always possible nor desirable!

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 13

Transparency Example

* Employee (eno, ename, title)

e Project (pno, pname, budget)

e Salary (title, amount)

* Assignment (eno, pno, responsibility, duration)

SELECT ename, amount

FROM Employee, Assignment, Salary
WHERE Assigment.duration > 12

AND Employee.eno = Assignment.eno
AND Salary.title = Employee.title

Transparency Example

Boston employees, Paris employees, Paris employees, Boston employees,
Boston projects Paris projects, Bostan projects
[___j r_ —

Faris

Boston

Communication
Metwork

— San o
Waterloo Francisco

- .
Waterloo employees, San Francisco employees,

Waterloo projects, Paris projects San Francisco projects

What types of transparencies are provided here?

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

Promise #2: Reliability & Availability

e Distribution of replicated components
 When sites or links between sites fail

— No single point of failure
e Distributed transaction protocols keep
database consistent via
— Concurrency transparency
— Failure atomicity

Promise #3: Improved Performance

* Place data fragments closer to their users
— less contention for CPU and I/O at a given site
— reduced remote access delay

e Exploit parallelism in execution
— inter-query parallelism
— intra-query parallelism

Promise #4: Easy Expansion

e |t is easier to scale a distributed collection of
smaller systems than one big centralized
system.

How do we distribute?

e Basic distributed architectures:

— Shared-Memory
— Shared-Disk
— Shared-Nothing

Shared-Memory

e Fast interconnect
e Single OS

()

Interconnect

 Advantages:
— Simplicity

Shared memory

— Easy load balancing

e Problems:
y — High cost (the interconnect)

— Limited extensibility (~ 10)
— Low availability

Bt FLeibang, Sysiza 2039 NeBysidcesl |hffosmationeSysizatesScience

Shared-Disk

e Separate OS per P-M

 Advantages:

— No distributed database design -
easy migration/evolution

— Load balancing
— Availability
e Problems:

— Limited extensibility (~ 20) -
disk/interconnect bottleneck

Interconneact

S .o

BHiHFLeibang, Sysiza 2039 NeBysidcesl |hffosmationeSysizatesScience

Shared-Cache

e QOracle RAC

* |nterconnect is used to
communicate between
nodes and disk:
if data are missing in the
local buffer, they are first
qgueried in buffers on other
nodes and then on the disk

Interconneact

S .o

 The same pros/cons, just
faster

BRtFLeibahng, Sysizag 2039 NeBysidcesl |hffosmationeSysizatesScience

Shared-Nothing

 Separate OS per P-M-D

 E.g. DB2 Parallel Edition,
Teradata

Interconnect

 Advantages:
— Extensibility and scalability
— Lower cost

— High availability
e Problems:

— Distributed database design for
particular queries/workload

BBt FLeibang, Sysiza] 2039 NeBysidcesl |hffosmationeSysizatesScience

Retrospective summary

e Shared-cache (disk) won in enterprise
because:

— enterprises usually do not requires extreme
scalability

— it was easy to migrate from non-distributed
database

e Shared-Nothing is now popular because of the
Web applications require extreme scalability

Basic Shared-Nothing Techniques

e Data Partitioning
e Data Replication
e Query Decomposition and Function Shipping

Shared-Nothing Techniques: Partitioning

Each relation is divided into n partitions that are
mapped onto different disks.

Provides storing large amounts of data and
Improved performance

By key - values of a column(s):
— Range

e e.g. using B-tree index

e Supports range gueries but index required
— Hashing

e Hash function

e Only exact-match queries but no index

Provides storing large amounts of data and
Improved performance

Shared-Nothing Techniques:
Replication

e Storing copies of data on different nodes
* Provides high availability and reliability

e Requires distributed transactions to keep
replicas consistent:

— Two phase commit - data always consistent but
the system is fragile

— Eventually consistency - eventually becomes
consistent but always writable

Shared-Nothing Techniques:
Query Decomposition and Shipping

e Query operations are performed where the data
resides.

— Query is decomposed into subtasks according to the data
placement (partitioning and replication).

— Subtasks are executed at the corresponding nodes.
e Data placement is always good only for some queries
=>
— hard to design database
— need to redesign when queries change

Classes of shared-nothing databases

e Two broad classes of shared-nothing systems
we will talk about:

— SQL DBMS - DB2 Parallel Edition (Enterprise apps)
— Key-value store - Cassandra (Web apps)

Distributed DBMS Major Design Issues

e Distributed DB design (Data storage)

— partition vs. replicate

— full vs. partial replicas

— optimal fragmentation and distribution is NP-hard
e Distributed metadata management

— where to place directory data

e Distributed query processing
— cost-efficient query execution over the network
— guery optimization is NP-hard

Distributed DBMS Major Design Issues

e Distributed transaction management
— Synchronizing concurrent access
— Consistency of multiple copies of data
— Detecting and recovering from failures
— Deadlock management
— Providing ACID properties in general

=> Distributed Systems Lecture
(Schindelhauer/Lausen)

naive Users
(tellers, agents
weh-users)

. sophisticated
application pusers detabaze
programmers (analysts) edministretor
write Ti=-] use

administration
loois

| yal

application
pragram
object code

anl:l prianizer

query evaluation

o

Enging

L J
EIJITIF"LET' and DML oueries O interpreter
||'| Er
k
ML compilar

qUErY Processor

- ff?“mh

buifer manager

file manager |

/

"\-Iq.‘_----

authorization
and integrity
manager

transactian
mianager

5|.J"EEE manager

/
=

NOICE:

data dictionary

data

== statistical data

Typical
Centralized

DBMS
Architecture

[Silberschatz et al]

Important Architectural Dimensions
for Distributed DBMSs

Distribution Fear-to-Peer

/ DDBSs

Multidatabase
-~ Systems
-

Client/Server i
Systems T

Autonamy

Heterogeneity
Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science

Client/Server DBMS Architecture

Ulzer Application
. = Interface | Program
Client $5 _
Cammunication Software
s0L Result
NeTWOt"k queries l relation
0) Communication Software
E Semantic Data Cortroller]
r Query Optimizer
Ser‘ver. tH Transaction Manager -
mGChine i Recovery Manager
; Runtime Support Processor _
System
<A
Database
=

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 34

Three-tier Client/Server Architecture

Client

Client ymeell User interface

‘ network

Application
sErver

netwark

Database
server

ol Data management

Uni Freiburg, WS2012/13

.

. 3

ystems Infrastructure for Data Science

ammml Application programs

35

Extensions to Client/Server Architectures

 Multiple clients

 Multiple application servers

e Multiple database servers

Peer-to-Peer DBMS Systems

e Classical (same functionality at each site)

e Modern (as in P2P data sharing systems)
— Large scale
— Massive distribution
— High heterogeneity
— High autonomy

Classical Peer-to-Peer DBMS Architecture

Peer
machine

—

{ USER)

- System 4 User
responses requests
USER ¥
FROCESSOR Uszer Interface External
Handler / Schema
Semantic Data
Caontraller Glabal
Conceptual
k,..-""" Schema
Glabal Query
Optimizer
Global Execution
Manitor
—_
DATA, Local Local
PROCESSOR Query Processor Conceptual
Schema
~—--
Local Sheat
Recovery Manager
Rurtime Support Local Internal
Processor Schema

Uni Freiburg, W

52012/13

Syste

tructure for Data Science

User view

Logical organization
of data at all sites

Logical organization
of data at local site

Transparency support

Physical organization
of data at local site

- >

38

Multi-database System Architecture

USER

responses requeslts

Multi-DBMS N
Layer a Middleware layer

DEMS DEMS

System T User

Peer

machines] | |

* Full autonomy
* Potential heterogeneity

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 39

What is a Distributed DBMS?

e Distributed database:

— “a collection of multiple, logically interrelated
databases distributed over a computer network”

e Distributed DBMS:

— “the software system that permits the management
of the distributed database and makes the distribution
transparent to the users”

 This definition is relaxed for modern networked
information systems (e.g., web).

	Systems Infrastructure for Data Science
	Lecture VII: Introduction to �Distributed Databases
	Why do we distribute?
	Distributed Database Systems
	DBMS Provides Data Independence
	Distributed Database Systems
	Distributed Systems
	Distributed Systems
	What is being distributed?
	Centralized DBMS on a Network
	Distributed DBMS
	Distributed DBMS Promises
	Promise #1: Transparency
	Transparency Example
	Transparency Example
	Promise #2: Reliability & Availability
	Promise #3: Improved Performance
	Promise #4: Easy Expansion
	How do we distribute?
	Shared-Memory
	Shared-Disk
	Shared-Cache
	Shared-Nothing
	Retrospective summary
	Basic Shared-Nothing Techniques
	Shared-Nothing Techniques: Partitioning
	Shared-Nothing Techniques:�Replication
	Shared-Nothing Techniques:�Query Decomposition and Shipping
	Classes of shared-nothing databases
	Distributed DBMS Major Design Issues
	Distributed DBMS Major Design Issues
	Foliennummer 32
	Important Architectural Dimensions for Distributed DBMSs
	Client/Server DBMS Architecture
	Three-tier Client/Server Architecture
	Extensions to Client/Server Architectures
	Peer-to-Peer DBMS Systems
	Classical Peer-to-Peer DBMS Architecture
	Multi-database System Architecture
	What is a Distributed DBMS?

