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Lecture VII: Introduction to
Distributed Databases



Why do we distribute?

Applications are inherently distributed.
A distributed system is more reliable.
A distributed system performs better.

A distributed system scales better.



Distributed Database Systems

Union of two technologies:
— Database Systems + Computer Networks

Database systems provide

— data independence (physical & logical)
— centralized and controlled data access
— integration

Computer networks provide distribution.
integration # centralization
integration + distribution
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Distributed Database Systems
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Database systems provide

— data independence (physical & logical)
— centralized and controlled data access
— integration

Computer networks provide distribution.
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integration + distribution



Distributed Systems

e Tanenbaum et al:

“a collection of independent computers that appears
to its users as a single coherent system”

e Coulouris et al:

“a system in which hardware and software
components located at networked computers
communicate and coordinate their actions only by
passing messages”




Distributed Systems

e Ozsu et al:

“a number of autonomous processing elements (not
necessarily homogeneous) that are interconnected by
a computer network and that cooperate in
performing their assigned tasks”




What is being distributed?

Processing logic
~unction

Data

Control

For distributed DBMSs, all are required.



Centralized DBMS on a Network

Site 1

Site 5

Communication

Metwork

Site 4 Site 3

What is being distributed here?
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Distributed DBMS
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Distributed DBMS Promises

. Transparent management of distributed and
replicated data

. Reliability/availability through distributed
transactions

. Improved performance

4. Easier and more economical system expansion



Promise #1: Transparency

 Hiding implementation details from users
* Providing data independence in the distributed environment
e Different transparency types, related:

e Full transparency is neither always possible nor desirable!
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Transparency Example

* Employee (eno, ename, title)

e Project (pno, pname, budget)

e Salary (title, amount)

* Assignment (eno, pno, responsibility, duration)

SELECT ename, amount

FROM Employee, Assignment, Salary
WHERE Assigment.duration > 12

AND Employee.eno = Assignment.eno
AND Salary.title = Employee.title



Transparency Example

Boston employees, Paris employees, Paris employees, Boston employees,
Boston projects Paris projects, Bostan projects
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What types of transparencies are provided here?
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Promise #2: Reliability & Availability

e Distribution of replicated components
 When sites or links between sites fail

— No single point of failure
e Distributed transaction protocols keep
database consistent via
— Concurrency transparency
— Failure atomicity



Promise #3: Improved Performance

* Place data fragments closer to their users
— less contention for CPU and I/O at a given site
— reduced remote access delay

e Exploit parallelism in execution
— inter-query parallelism
— intra-query parallelism



Promise #4: Easy Expansion

e |t is easier to scale a distributed collection of
smaller systems than one big centralized
system.



How do we distribute?

e Basic distributed architectures:

— Shared-Memory
— Shared-Disk
— Shared-Nothing




Shared-Memory

e Fast interconnect
e Single OS

()

Interconnect

 Advantages:
— Simplicity

Shared memory

— Easy load balancing

e Problems:
y — High cost (the interconnect)

— Limited extensibility (~ 10)
— Low availability
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Shared-Disk

e Separate OS per P-M

 Advantages:

— No distributed database design -
easy migration/evolution

— Load balancing
— Availability
e Problems:

— Limited extensibility (~ 20) -
disk/interconnect bottleneck

Interconneact

S .o
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Shared-Cache

e QOracle RAC

* |nterconnect is used to
communicate between
nodes and disk:
if data are missing in the
local buffer, they are first
qgueried in buffers on other
nodes and then on the disk

Interconneact

S .o

 The same pros/cons, just
faster
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Shared-Nothing

 Separate OS per P-M-D

 E.g. DB2 Parallel Edition,
Teradata

Interconnect

 Advantages:
— Extensibility and scalability
— Lower cost

— High availability
e Problems:

— Distributed database design for
particular queries/workload
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Retrospective summary

e Shared-cache (disk) won in enterprise
because:

— enterprises usually do not requires extreme
scalability

— it was easy to migrate from non-distributed
database

e Shared-Nothing is now popular because of the
Web applications require extreme scalability



Basic Shared-Nothing Techniques

e Data Partitioning
e Data Replication
e Query Decomposition and Function Shipping



Shared-Nothing Techniques: Partitioning

Each relation is divided into n partitions that are
mapped onto different disks.

Provides storing large amounts of data and
Improved performance

By key - values of a column(s):
— Range

e e.g. using B-tree index

e Supports range gueries but index required
— Hashing

e Hash function

e Only exact-match queries but no index

Provides storing large amounts of data and
Improved performance



Shared-Nothing Techniques:
Replication

e Storing copies of data on different nodes
* Provides high availability and reliability

e Requires distributed transactions to keep
replicas consistent:

— Two phase commit - data always consistent but
the system is fragile

— Eventually consistency - eventually becomes
consistent but always writable



Shared-Nothing Techniques:
Query Decomposition and Shipping

e Query operations are performed where the data
resides.

— Query is decomposed into subtasks according to the data
placement (partitioning and replication).

— Subtasks are executed at the corresponding nodes.
e Data placement is always good only for some queries
=>
— hard to design database
— need to redesign when queries change



Classes of shared-nothing databases

e Two broad classes of shared-nothing systems
we will talk about:

— SQL DBMS - DB2 Parallel Edition (Enterprise apps)
— Key-value store - Cassandra (Web apps)



Distributed DBMS Major Design Issues

e Distributed DB design (Data storage)

— partition vs. replicate

— full vs. partial replicas

— optimal fragmentation and distribution is NP-hard
e Distributed metadata management

— where to place directory data

e Distributed query processing
— cost-efficient query execution over the network
— guery optimization is NP-hard



Distributed DBMS Major Design Issues

e Distributed transaction management
— Synchronizing concurrent access
— Consistency of multiple copies of data
— Detecting and recovering from failures
— Deadlock management
— Providing ACID properties in general

=> Distributed Systems Lecture
(Schindelhauer/Lausen)
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Important Architectural Dimensions
for Distributed DBMSs
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Client/Server DBMS Architecture
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Three-tier Client/Server Architecture
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Extensions to Client/Server Architectures

 Multiple clients

 Multiple application servers

e Multiple database servers



Peer-to-Peer DBMS Systems

e Classical (same functionality at each site)

e Modern (as in P2P data sharing systems)
— Large scale
— Massive distribution
— High heterogeneity
— High autonomy



Classical Peer-to-Peer DBMS Architecture
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Multi-database System Architecture

USER

responses requeslts

Multi-DBMS N
Layer a Middleware layer

DEMS DEMS

System T User

Peer

machines ] | |

* Full autonomy
* Potential heterogeneity

Uni Freiburg, WS2012/13 Systems Infrastructure for Data Science 39



What is a Distributed DBMS?

e Distributed database:

— “a collection of multiple, logically interrelated
databases distributed over a computer network”

e Distributed DBMS:

— “the software system that permits the management
of the distributed database and makes the distribution
transparent to the users”

 This definition is relaxed for modern networked
information systems (e.g., web).
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