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Performance Tuning 

• Performance tuning involves adjusting various 
parameters and design choices to improve a 
system’s performance for a specific application. 
 

• Tuning is best done by  
1. identifying bottlenecks, and 
2. eliminating them. 
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Performance Tuning 
• A database system can be tuned at 3 levels: 

 
– Hardware: Examples: adding disks to speed up I/O, adding 

memory to increase buffer hits, moving to a faster 
processor. 
 

– Database system parameters: Examples: setting buffer size 
to avoid paging of buffer, setting checkpointing intervals to 
limit log size. (System may have automatic tuning.) 
 

– Higher level database design: Examples: tuning the 
schema, indices, and transactions. 
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Bottlenecks 
• Performance of most systems (at least before they are 

tuned) is usually limited by the performance of one or 
a few components: these are called “bottlenecks”. 
– Example: 80% of the code may take up 20% of the time, 

while 20% of the code taking up 80% of the time. 
• It is worth spending most time on 20% of the code that take 80% of 

the time. 

• Bottlenecks may be in hardware (e.g., disks are very 
busy, CPU is idle), or in software. 

• Removing one bottleneck often exposes another. 
• “De-bottlenecking” consists of repeatedly finding 

bottlenecks and removing them. 
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Identifying Bottlenecks 
• Transactions request a sequence of services from a 

database system. 
– Examples: CPU cycles, Disk I/O, locks for concurrency control. 

 
• With concurrent transactions, transactions may have to 

wait for a requested service while other transactions 
are being served. 
 

• We can model a database system as a queueing system 
with a queue for each service. 
–  Transactions repeatedly do the following: 

• Request a service; Wait in queue for the service; Get serviced. 
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Queues in a Database System 
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Identifying Bottlenecks (Cont’d) 
• Bottlenecks in a database system typically show up as 

very high utilizations (and correspondingly, very long 
queues) of a particular service. 
– Example: Disk vs. CPU utilization. 

 
• 100% utilization leads to very long waiting time. 

– Rule of thumb: Design the system for about 70% utilization at 
peak load. 

– Utilizations over 90% should be avoided. 
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Tunable Parameters 

• Database administrators can tune a system at three levels: 
– Hardware level           (lowest level) 
– Database system parameters level (system-dependent) 

• Provided in manuals or via automatic tools 

– Database design level (system-independent)      (highest level) 
• Tuning of schema 
• Tuning of indices 
• Tuning of materialized views 
• Tuning of transactions 

• There is interaction across the levels, and tuning at a 
higher level may change the bottleneck and affect tuning 
at the lower levels. 
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Tuning of Hardware 
• Even well-tuned transactions typically require a few I/O 

operations. 
– Example: Consider a disk that supports about 100 random 

I/O operations per second of 4KB each. 
– Suppose each transaction requires just 2 random I/O 

operations. Then to support n transactions per second, we 
need to stripe data across n/50 disks. (n=50 => 1 disk) 

• Number of I/O operations per transaction can be 
reduced by keeping more data in memory. 
– If all data is in memory, I/O is needed only for writes. 
– Keeping frequently used data in memory reduces disk 

accesses, reducing number of disks required, but has a 
memory cost. 

– Memory is much more expensive than disk. 
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Hardware Tuning: Five-Minute Rule 
• Question: Which data to keep in memory? 

– If a page is accessed n times per second, keeping it in memory saves:  
 
 

– Cost of keeping page in memory: 
 
 

– Break-even point: value of n for which above costs are equal. 
• If accesses are more, then saving is greater than cost. 

– Solving above equation with current disk and memory prices leads to: 
5-Minute Rule: If a page that is randomly accessed is used more 

frequently than once in 5 minutes, it should be kept in memory (by 
buying sufficient memory!). 
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Hardware Tuning: One-Minute Rule 

• For sequentially accessed data, more pages can be 
read per second. Assuming sequential reads of 1MB 
of data at a time:  
– 1-Minute Rule: Sequentially accessed data that is accessed 

once or more in a minute should be kept in memory. 
 

• Prices of disk and memory have changed greatly over 
the years, but the ratios have not changed much. 
– So, the rules still remain as 5-Minute and 1-Minute rules, 

not 1-Hour or 1-Second rules! 
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Hardware Tuning: References 
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Hardware Tuning: Choice of RAID Level 
• To use RAID 1 (disk mirroring) or RAID 5 (disk striping with 

parity)? 
 
 
 
 

•  Depends on ratio of reads and writes. 
– RAID 5 requires 2 block reads and 2 block writes to write out 1 

data block (Note that this is required for parity handling: read old 
data block + read old parity block + write new data block + write 
new parity block. Old blocks are needed to compare with the new 
write request for determining the change in the parity block.). 
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Hardware Tuning: Choice of RAID Level 

• If an application requires r reads and w writes per second: 
– RAID 1 requires: r + 2w I/O operations per second. 
– RAID 5 requires: r + 4w I/O operations per second. 

 
• For reasonably large r and w, this requires lots of disks to 

handle workload 
– RAID 5 may require more disks than RAID 1 to handle load!   
– Apparent saving of number of disks by RAID 5 (by using parity, as 

opposed to the mirroring done by RAID 1) may be illusory! 
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Hardware Tuning: Choice of RAID Level 

• Rule of Thumb: RAID 5 is fine when writes are rare and 
data is very large, but RAID 1 is preferable otherwise. 
 

• If you need more disks to handle I/O load, just mirror 
them, since disk capacities these days are enormous! 
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Tuning the Database Design: Schema Tuning 

• Schema Tuning 
1. Vertically partition relations to isolate the data that 

is accessed more often (i.e., only fetch needed 
information). 
• Example: account(account-number, branch-name, balance) 
• Split account into two relations: 

• account-branch(account-number, branch-name) 
• account-balance(account-number, balance) 
• branch-name need not be fetched unless required. 

• Normal forms are kept. 
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Tuning the Database Design: Schema Tuning 

• Schema Tuning 
2. Improve performance by storing a denormalized 

relation. 
• Example: Store join of account and depositor. 

• account(account-number, branch-name, balance) 
• depositor(customer-name, account-number) 
• depositor-account(customer-name, account-number, branch-name, 

balance) 
• branch-name and balance information is repeated for each holder 

of an account, but join need not be computed repeatedly. 
• Price paid: More space and more work for programmer to keep 

relation consistent on updates. 
• Better to use “materialized views”, where the database would 

maintain the consistency automatically. 
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Tuning the Database Design: Schema Tuning 

• Schema Tuning 
3. Cluster together on the same disk page records 

that would match in a frequently required join 
(“multi-table clustering file organization”). 
• Compute join very efficiently when required. 
• This would be an alternative to (2). 
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Tuning the Database Design: Index Tuning 

• Index Tuning 
– Create appropriate indices to speed up slow queries/updates. 
– Speed up slow updates by removing excess indices (tradeoff 

between queries and updates). 
– Choose type of index (B-tree/hash) appropriate for most 

frequent types of queries. 
– Choose which index to make clustered (only one per relation). 
– Index tuning wizards look at past history of queries and 

updates  (the workload) and recommend which indices would 
be best for the workload. 
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Tuning the Database Design: Materialized Views 

• Materialized Views 
– Views are virtual relations. A database normally 

stores only the query defining the view. 
– A materialized view is one whose contents are 

computed and stored in the database. 
– Materialized views constitute redundant data, but it is 

useful when we can directly access their contents 
without recomputing them. 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 21 



Tuning the Database Design: Materialized Views 

• Materialized Views 
– Materialized views can help speed up certain queries 

(aggregate queries in particular). 
– Overheads 

• Space + Time (for view maintenance): 
– Immediate view maintenance (done as part of update transaction) 
– Deferred view maintenance (done only when required) 

» until updated, the view may be out-of-date. 

– Preferable to denormalized schema, since view 
maintenance is system’s responsibility, not 
programmer’s. 

• Avoids inconsistencies caused by errors in update programs. 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 22 



Tuning the Database Design: Materialized Views 

• Materialized Views 
– How to choose the set of materialized views? 

• Helping one transaction type by introducing a materialized 
view may hurt others. 

• Choice of materialized views depends on costs. 
– Users often have no idea of actual cost of operations. 

• Overall, manual selection of materialized views is tedious. 

– Some database systems provide tools to help DBA 
choose views to materialize. 

• “Materialized view selection wizards” 
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Tuning of Transactions 
• Two basic approaches for improving transaction performance: 

1. Improve set orientation 
2. Reduce lock contention 

 
• Improving set orientation: 

– In client-server systems, communication overhead and query handling 
overheads are significant parts of cost of each call. 

– Combine multiple embedded SQL/ODBC/JDBC queries into a single 
set-oriented query (which leads to fewer calls to the database). 

– Example: Given a relation expenses(date, employee, department, 
amount), find total expenses of a given department. Repeat this for a 
given list of departments. 
 Instead of repeating the same query for each department one by one, use a 

single GROUP-BY query (single scan).  
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Tuning of Transactions 

• Reducing lock contention 
– Long transactions (typically read-only) that examine large parts 

of a relation result in lock contention with update transactions. 
– Example: Large query to compute bank statistics and regular 

bank transactions. 
– To reduce contention: 

• Use multi-version concurrency control. 
– Example: Oracle “snapshots” which support multi-version 2PL. 

• Use degree-two consistency (read-committed/cursor-stability) for 
long transactions. 

– Drawback: result may be approximate. 
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Tuning of Transactions 
• Long update transactions cause several problems: 

– Exhaust lock space 
– Exhaust log space 
– Increase recovery time after a crash 

 
• Use “mini-batch transactions” to limit number of updates that a 

single transaction can carry out (e.g., if a single large transaction 
updates every record of a very large relation, log may grow too big). 
– Split large transaction into batch of mini-transactions, each performing part of 

the updates. 
– Hold locks across transactions in a mini-batch to ensure serializability. 
– If lock table size is a problem can release locks, but at the cost of serializability. 
– In case of failure during a mini-batch,  must complete its remaining portion on 

recovery, to ensure atomicity. 
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Performance Simulation 
• Performance simulation using a queueing model is 

useful to predict bottlenecks as well as the effects of 
tuning changes, even without access to a real system. 
 

• The queuing model that we saw earlier models the 
activities that go on in parallel. 
 

• Simulation model is quite detailed, but usually omits 
some low level of details. 
– Model service time, but disregard details of service, e.g., 

approximate disk read time by using an average disk read 
time. 
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Performance Simulation 
• Experiments can be run on the model, and provide an 

estimate of measures such as average throughput/ 
response time. 
 

• Service times can be varied to see how sensitive the 
performance is to each of them. 
 

• Parameters can be tuned in model and then replicated 
in real system (e.g., number of disks, memory, 
algorithms, etc.). 
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Performance Benchmarks 

• Benchmarks are suites of standardized tasks used to 
characterize and quantify the performance of software 
systems. 
 

• They are useful to get a rough idea of the hardware and 
software requirements of an application, even before the 
application is built. 
 

• They are important in comparing database systems, 
especially as systems become more standards compliant. 
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Performance Benchmarks 

• Commonly used performance measures: 
– Throughput (transactions per second, or tps) 
– Response time (delay from submission of transaction to 

return of result) 
– Availability or mean time to failure 
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Performance Benchmarks 
• Beware when computing average throughput of different 

transaction types. 
– Example: Suppose a system runs transaction type A at 99 tps 

and transaction type B at 1 tps.  
– Given an equal mixture of types A and B, throughput is not 

(99+1)/2 = 50 tps. 
– Running one transaction of each type takes time 1+.01 seconds, 

giving a throughput of 1.98 tps. 
– To compute average throughput, use “harmonic mean” of n 

throughputs t1, .., tn as follows: 
 
 
 

– Use the above only if the transactions do not interfere with each 
other (due to lock contention). 
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Database Application Classes 
• OnLine Transaction Processing (OLTP) applications  

– require high concurrency and clever techniques to speed up 
commit processing, to support a high rate of update 
transactions. 

• Decision support applications 
– including OnLine Analytical Processing (OLAP) applications. 
– require good query evaluation algorithms and query 

optimization. 
• The architecture of some database systems has been 

tuned to one of the two classes. 
– Example: Teradata has been tuned to decision support. 

• Others try to balance the two requirements. 
– Example: Oracle, with snapshot support for long read-only 

transactions. 
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TPC Benchmark Suites 
• The Transaction Processing Performance Council (TPC) 

benchmark suites are widely used.  
 

– TPC-A and TPC-B: Simple OLTP application modeling a bank 
teller application with and without communication. 

• Not used anymore. 

 
– TPC-C: Complex OLTP application modeling an inventory system. 

• Current standard for OLTP benchmarking. 
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TPC Benchmark Suites 

• TPC benchmarks 
 

– TPC-D: Complex decision support application. 
• Superseded by TPC-H and TPC-R. 

 
– TPC-E: Newer benchmark simulating the OLTP workload of a 

brokerage firm. 
• Models a central database that executes transactions related to the 

firm’s customer accounts. 
• More read intensive compared to TPC-C. 
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TPC Benchmark Suites 

• TPC benchmarks 
 
– TPC-H: (H for ad hoc) Based on TPC-D with some extra queries. 

• Models ad hoc queries which are not known beforehand (a total of 22 
queries with emphasis on aggregation). 

• Prohibits materialized views. 
• Permits indices only on primary and foreign keys. 
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TPC Benchmark Suites 

• TPC benchmarks 
 

– TPC-R: (R for reporting) Same as TPC-H, but without any 
restrictions on materialized views and indices. 

• Not used any more. 

 
– TPC-W: (W for web) End-to-end web service benchmark 

modeling a web bookstore, with combination of static and 
dynamically generated pages. 

• Not used any more. 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 36 



TPC Performance Measures 

• TPC performance measures 
– transactions-per-second with specified constraints on response 

time (TPC-W: web interactions per second (WIPS)). 
– transactions-per-second-per-dollar accounts for cost of owning 

a system (TPC-W: price per WIPS). 
• TPC benchmark requires database sizes to be scaled up 

with increasing transactions-per-second. 
– Reflects real world applications where more customers means 

more database size and more transactions-per-second. 
• External audit of TPC performance numbers mandatory. 

– TPC performance claims can be trusted. 
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TPC Performance Measures 

• Two types of tests for TPC-H and TPC-R 
– Power test: Runs queries and updates sequentially, then 

takes mean to find queries per hour. 
– Throughput test: Runs queries and updates concurrently. 

• Multiple streams running in parallel each generates queries, with 
one parallel update stream. 

– Composite query per hour metric: Square root of product 
of power and throughput metrics. 

– Composite price/performance metric 
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Other Benchmarks 

• Object-oriented databases (OODB) transactions require a 
different set of benchmarks. 
– OO7 benchmark has several different operations, and provides a 

separate benchmark number for each kind of operation. 
– Reason: Hard to define what is a typical OODB application. 

 

• Other benchmarks under discussion for: 
– XML databases 
– Stream data management 
– Cloud data management 
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Summary 

• Performance tuning 
– Identify bottlenecks and remove them. 
– At 3 levels: Hardware (5-minute rule), Database system 

parameters (system-dependent, automatic tools), Higher-level 
design (schema, indices, transactions) 

– Performance simulation 
 

• Performance benchmarking 
– OLTP vs. OLAP workloads 
– TPC benchmark suites 
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