
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture VI: Performance Tuning and
Benchmarking in Databases

Performance Tuning

• Performance tuning involves adjusting various
parameters and design choices to improve a
system’s performance for a specific application.

• Tuning is best done by
1. identifying bottlenecks, and
2. eliminating them.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 3

Performance Tuning
• A database system can be tuned at 3 levels:

– Hardware: Examples: adding disks to speed up I/O, adding

memory to increase buffer hits, moving to a faster
processor.

– Database system parameters: Examples: setting buffer size
to avoid paging of buffer, setting checkpointing intervals to
limit log size. (System may have automatic tuning.)

– Higher level database design: Examples: tuning the
schema, indices, and transactions.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 4

Bottlenecks
• Performance of most systems (at least before they are

tuned) is usually limited by the performance of one or
a few components: these are called “bottlenecks”.
– Example: 80% of the code may take up 20% of the time,

while 20% of the code taking up 80% of the time.
• It is worth spending most time on 20% of the code that take 80% of

the time.

• Bottlenecks may be in hardware (e.g., disks are very
busy, CPU is idle), or in software.

• Removing one bottleneck often exposes another.
• “De-bottlenecking” consists of repeatedly finding

bottlenecks and removing them.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 5

Identifying Bottlenecks
• Transactions request a sequence of services from a

database system.
– Examples: CPU cycles, Disk I/O, locks for concurrency control.

• With concurrent transactions, transactions may have to

wait for a requested service while other transactions
are being served.

• We can model a database system as a queueing system
with a queue for each service.
– Transactions repeatedly do the following:

• Request a service; Wait in queue for the service; Get serviced.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 6

Queues in a Database System

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 7

Identifying Bottlenecks (Cont’d)
• Bottlenecks in a database system typically show up as

very high utilizations (and correspondingly, very long
queues) of a particular service.
– Example: Disk vs. CPU utilization.

• 100% utilization leads to very long waiting time.

– Rule of thumb: Design the system for about 70% utilization at
peak load.

– Utilizations over 90% should be avoided.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 8

Tunable Parameters

• Database administrators can tune a system at three levels:
– Hardware level (lowest level)
– Database system parameters level (system-dependent)

• Provided in manuals or via automatic tools

– Database design level (system-independent) (highest level)
• Tuning of schema
• Tuning of indices
• Tuning of materialized views
• Tuning of transactions

• There is interaction across the levels, and tuning at a
higher level may change the bottleneck and affect tuning
at the lower levels.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 9

Tuning of Hardware
• Even well-tuned transactions typically require a few I/O

operations.
– Example: Consider a disk that supports about 100 random

I/O operations per second of 4KB each.
– Suppose each transaction requires just 2 random I/O

operations. Then to support n transactions per second, we
need to stripe data across n/50 disks. (n=50 => 1 disk)

• Number of I/O operations per transaction can be
reduced by keeping more data in memory.
– If all data is in memory, I/O is needed only for writes.
– Keeping frequently used data in memory reduces disk

accesses, reducing number of disks required, but has a
memory cost.

– Memory is much more expensive than disk.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 10

Hardware Tuning: Five-Minute Rule
• Question: Which data to keep in memory?

– If a page is accessed n times per second, keeping it in memory saves:

– Cost of keeping page in memory:

– Break-even point: value of n for which above costs are equal.
• If accesses are more, then saving is greater than cost.

– Solving above equation with current disk and memory prices leads to:
5-Minute Rule: If a page that is randomly accessed is used more

frequently than once in 5 minutes, it should be kept in memory (by
buying sufficient memory!).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 11

price-per-disk-drive
accesses-per-second-per-disk

n∗

price-per-MB-of-memory
pages-per-MB-of-memory

Hardware Tuning: One-Minute Rule

• For sequentially accessed data, more pages can be
read per second. Assuming sequential reads of 1MB
of data at a time:
– 1-Minute Rule: Sequentially accessed data that is accessed

once or more in a minute should be kept in memory.

• Prices of disk and memory have changed greatly over
the years, but the ratios have not changed much.
– So, the rules still remain as 5-Minute and 1-Minute rules,

not 1-Hour or 1-Second rules!

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 12

Hardware Tuning: References

• J. Gray, G. F. Putzolu, “The Five-Minute Rule for Trading Memory for Disk
Accesses, and the 10 Byte Rule for Trading Memory for CPU Time”, ACM
SIGMOD Conference, June 1987.

• J. Gray, G. Graefe, “The Five-Minute Rule Ten Years Later, and Other Computer
Storage Rules of Thumb”, ACM SIGMOD Record 26:4, December 1997.

• G. Graefe, “The Five-Minute Rule 20 Years Later, and How Flash Memory
Changes the Rules”, ACM Queue 6:4, July/August 2008.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 13

Hardware Tuning: Choice of RAID Level
• To use RAID 1 (disk mirroring) or RAID 5 (disk striping with

parity)?

• Depends on ratio of reads and writes.
– RAID 5 requires 2 block reads and 2 block writes to write out 1

data block (Note that this is required for parity handling: read old
data block + read old parity block + write new data block + write
new parity block. Old blocks are needed to compare with the new
write request for determining the change in the parity block.).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 14

Hardware Tuning: Choice of RAID Level

• If an application requires r reads and w writes per second:
– RAID 1 requires: r + 2w I/O operations per second.
– RAID 5 requires: r + 4w I/O operations per second.

• For reasonably large r and w, this requires lots of disks to

handle workload
– RAID 5 may require more disks than RAID 1 to handle load!
– Apparent saving of number of disks by RAID 5 (by using parity, as

opposed to the mirroring done by RAID 1) may be illusory!

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 15

Hardware Tuning: Choice of RAID Level

• Rule of Thumb: RAID 5 is fine when writes are rare and
data is very large, but RAID 1 is preferable otherwise.

• If you need more disks to handle I/O load, just mirror
them, since disk capacities these days are enormous!

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 16

Tuning the Database Design: Schema Tuning

• Schema Tuning
1. Vertically partition relations to isolate the data that

is accessed more often (i.e., only fetch needed
information).
• Example: account(account-number, branch-name, balance)
• Split account into two relations:

• account-branch(account-number, branch-name)
• account-balance(account-number, balance)
• branch-name need not be fetched unless required.

• Normal forms are kept.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 17

Tuning the Database Design: Schema Tuning

• Schema Tuning
2. Improve performance by storing a denormalized

relation.
• Example: Store join of account and depositor.

• account(account-number, branch-name, balance)
• depositor(customer-name, account-number)
• depositor-account(customer-name, account-number, branch-name,

balance)
• branch-name and balance information is repeated for each holder

of an account, but join need not be computed repeatedly.
• Price paid: More space and more work for programmer to keep

relation consistent on updates.
• Better to use “materialized views”, where the database would

maintain the consistency automatically.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 18

Tuning the Database Design: Schema Tuning

• Schema Tuning
3. Cluster together on the same disk page records

that would match in a frequently required join
(“multi-table clustering file organization”).
• Compute join very efficiently when required.
• This would be an alternative to (2).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 19

Tuning the Database Design: Index Tuning

• Index Tuning
– Create appropriate indices to speed up slow queries/updates.
– Speed up slow updates by removing excess indices (tradeoff

between queries and updates).
– Choose type of index (B-tree/hash) appropriate for most

frequent types of queries.
– Choose which index to make clustered (only one per relation).
– Index tuning wizards look at past history of queries and

updates (the workload) and recommend which indices would
be best for the workload.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 20

Tuning the Database Design: Materialized Views

• Materialized Views
– Views are virtual relations. A database normally

stores only the query defining the view.
– A materialized view is one whose contents are

computed and stored in the database.
– Materialized views constitute redundant data, but it is

useful when we can directly access their contents
without recomputing them.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 21

Tuning the Database Design: Materialized Views

• Materialized Views
– Materialized views can help speed up certain queries

(aggregate queries in particular).
– Overheads

• Space + Time (for view maintenance):
– Immediate view maintenance (done as part of update transaction)
– Deferred view maintenance (done only when required)

» until updated, the view may be out-of-date.

– Preferable to denormalized schema, since view
maintenance is system’s responsibility, not
programmer’s.

• Avoids inconsistencies caused by errors in update programs.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 22

Tuning the Database Design: Materialized Views

• Materialized Views
– How to choose the set of materialized views?

• Helping one transaction type by introducing a materialized
view may hurt others.

• Choice of materialized views depends on costs.
– Users often have no idea of actual cost of operations.

• Overall, manual selection of materialized views is tedious.

– Some database systems provide tools to help DBA
choose views to materialize.

• “Materialized view selection wizards”

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 23

Tuning of Transactions
• Two basic approaches for improving transaction performance:

1. Improve set orientation
2. Reduce lock contention

• Improving set orientation:

– In client-server systems, communication overhead and query handling
overheads are significant parts of cost of each call.

– Combine multiple embedded SQL/ODBC/JDBC queries into a single
set-oriented query (which leads to fewer calls to the database).

– Example: Given a relation expenses(date, employee, department,
amount), find total expenses of a given department. Repeat this for a
given list of departments.
 Instead of repeating the same query for each department one by one, use a

single GROUP-BY query (single scan).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 24

Tuning of Transactions

• Reducing lock contention
– Long transactions (typically read-only) that examine large parts

of a relation result in lock contention with update transactions.
– Example: Large query to compute bank statistics and regular

bank transactions.
– To reduce contention:

• Use multi-version concurrency control.
– Example: Oracle “snapshots” which support multi-version 2PL.

• Use degree-two consistency (read-committed/cursor-stability) for
long transactions.

– Drawback: result may be approximate.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 25

Tuning of Transactions
• Long update transactions cause several problems:

– Exhaust lock space
– Exhaust log space
– Increase recovery time after a crash

• Use “mini-batch transactions” to limit number of updates that a

single transaction can carry out (e.g., if a single large transaction
updates every record of a very large relation, log may grow too big).
– Split large transaction into batch of mini-transactions, each performing part of

the updates.
– Hold locks across transactions in a mini-batch to ensure serializability.
– If lock table size is a problem can release locks, but at the cost of serializability.
– In case of failure during a mini-batch, must complete its remaining portion on

recovery, to ensure atomicity.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 26

Performance Simulation
• Performance simulation using a queueing model is

useful to predict bottlenecks as well as the effects of
tuning changes, even without access to a real system.

• The queuing model that we saw earlier models the
activities that go on in parallel.

• Simulation model is quite detailed, but usually omits
some low level of details.
– Model service time, but disregard details of service, e.g.,

approximate disk read time by using an average disk read
time.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 27

Performance Simulation
• Experiments can be run on the model, and provide an

estimate of measures such as average throughput/
response time.

• Service times can be varied to see how sensitive the
performance is to each of them.

• Parameters can be tuned in model and then replicated
in real system (e.g., number of disks, memory,
algorithms, etc.).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 28

Performance Benchmarks

• Benchmarks are suites of standardized tasks used to
characterize and quantify the performance of software
systems.

• They are useful to get a rough idea of the hardware and
software requirements of an application, even before the
application is built.

• They are important in comparing database systems,
especially as systems become more standards compliant.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 29

Performance Benchmarks

• Commonly used performance measures:
– Throughput (transactions per second, or tps)
– Response time (delay from submission of transaction to

return of result)
– Availability or mean time to failure

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 30

Performance Benchmarks
• Beware when computing average throughput of different

transaction types.
– Example: Suppose a system runs transaction type A at 99 tps

and transaction type B at 1 tps.
– Given an equal mixture of types A and B, throughput is not

(99+1)/2 = 50 tps.
– Running one transaction of each type takes time 1+.01 seconds,

giving a throughput of 1.98 tps.
– To compute average throughput, use “harmonic mean” of n

throughputs t1, .., tn as follows:

– Use the above only if the transactions do not interfere with each
other (due to lock contention).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 31

1 2 n1/t + 1/t + ... + 1/t
n

Database Application Classes
• OnLine Transaction Processing (OLTP) applications

– require high concurrency and clever techniques to speed up
commit processing, to support a high rate of update
transactions.

• Decision support applications
– including OnLine Analytical Processing (OLAP) applications.
– require good query evaluation algorithms and query

optimization.
• The architecture of some database systems has been

tuned to one of the two classes.
– Example: Teradata has been tuned to decision support.

• Others try to balance the two requirements.
– Example: Oracle, with snapshot support for long read-only

transactions.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 32

TPC Benchmark Suites
• The Transaction Processing Performance Council (TPC)

benchmark suites are widely used.

– TPC-A and TPC-B: Simple OLTP application modeling a bank
teller application with and without communication.

• Not used anymore.

– TPC-C: Complex OLTP application modeling an inventory system.

• Current standard for OLTP benchmarking.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 33

TPC Benchmark Suites

• TPC benchmarks

– TPC-D: Complex decision support application.
• Superseded by TPC-H and TPC-R.

– TPC-E: Newer benchmark simulating the OLTP workload of a

brokerage firm.
• Models a central database that executes transactions related to the

firm’s customer accounts.
• More read intensive compared to TPC-C.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 34

TPC Benchmark Suites

• TPC benchmarks

– TPC-H: (H for ad hoc) Based on TPC-D with some extra queries.

• Models ad hoc queries which are not known beforehand (a total of 22
queries with emphasis on aggregation).

• Prohibits materialized views.
• Permits indices only on primary and foreign keys.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 35

TPC Benchmark Suites

• TPC benchmarks

– TPC-R: (R for reporting) Same as TPC-H, but without any
restrictions on materialized views and indices.

• Not used any more.

– TPC-W: (W for web) End-to-end web service benchmark

modeling a web bookstore, with combination of static and
dynamically generated pages.

• Not used any more.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 36

TPC Performance Measures

• TPC performance measures
– transactions-per-second with specified constraints on response

time (TPC-W: web interactions per second (WIPS)).
– transactions-per-second-per-dollar accounts for cost of owning

a system (TPC-W: price per WIPS).
• TPC benchmark requires database sizes to be scaled up

with increasing transactions-per-second.
– Reflects real world applications where more customers means

more database size and more transactions-per-second.
• External audit of TPC performance numbers mandatory.

– TPC performance claims can be trusted.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 37

TPC Performance Measures

• Two types of tests for TPC-H and TPC-R
– Power test: Runs queries and updates sequentially, then

takes mean to find queries per hour.
– Throughput test: Runs queries and updates concurrently.

• Multiple streams running in parallel each generates queries, with
one parallel update stream.

– Composite query per hour metric: Square root of product
of power and throughput metrics.

– Composite price/performance metric

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 38

Other Benchmarks

• Object-oriented databases (OODB) transactions require a
different set of benchmarks.
– OO7 benchmark has several different operations, and provides a

separate benchmark number for each kind of operation.
– Reason: Hard to define what is a typical OODB application.

• Other benchmarks under discussion for:
– XML databases
– Stream data management
– Cloud data management

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 39

Summary

• Performance tuning
– Identify bottlenecks and remove them.
– At 3 levels: Hardware (5-minute rule), Database system

parameters (system-dependent, automatic tools), Higher-level
design (schema, indices, transactions)

– Performance simulation

• Performance benchmarking
– OLTP vs. OLAP workloads
– TPC benchmark suites

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 40

	Systems Infrastructure for Data Science
	Lecture VI: Performance Tuning and Benchmarking in Databases
	Performance Tuning
	Performance Tuning
	Bottlenecks
	Identifying Bottlenecks
	Queues in a Database System
	Identifying Bottlenecks (Cont’d)
	Tunable Parameters
	Tuning of Hardware
	Hardware Tuning: Five-Minute Rule
	Hardware Tuning: One-Minute Rule
	Hardware Tuning: References
	Hardware Tuning: Choice of RAID Level
	Hardware Tuning: Choice of RAID Level
	Hardware Tuning: Choice of RAID Level
	Tuning the Database Design: Schema Tuning
	Tuning the Database Design: Schema Tuning
	Tuning the Database Design: Schema Tuning
	Tuning the Database Design: Index Tuning
	Tuning the Database Design: Materialized Views
	Tuning the Database Design: Materialized Views
	Tuning the Database Design: Materialized Views
	Tuning of Transactions
	Tuning of Transactions
	Tuning of Transactions
	Performance Simulation
	Performance Simulation
	Performance Benchmarks
	Performance Benchmarks
	Performance Benchmarks
	Database Application Classes
	TPC Benchmark Suites
	TPC Benchmark Suites
	TPC Benchmark Suites
	TPC Benchmark Suites
	TPC Performance Measures
	TPC Performance Measures
	Other Benchmarks
	Summary

