Systems Infrastructure for Data Science

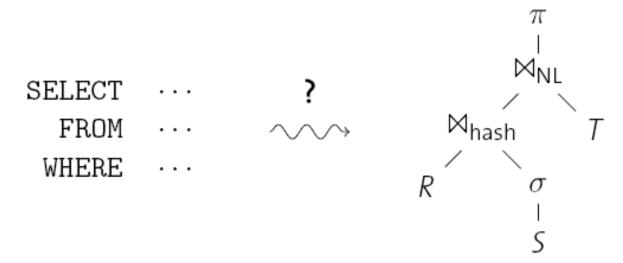
Web Science Group

Uni Freiburg

WS 2012/13

Lecture V: Query Optimization

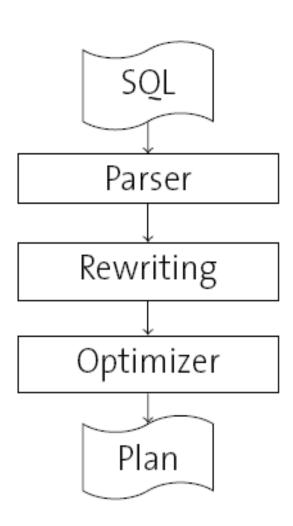
Finding the "Best" Query Plan



- We already saw that there may be more than one way to answer a given query.
 - Which one of the join operators should we pick? With which parameters (block size, buffer allocation, ...)?
- The task of finding the best execution plan is, in fact, the "holy grail" of any database implementation.

Query Plan Generation Process

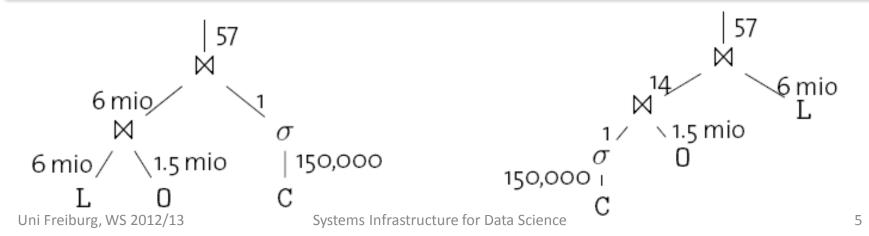
- Parser: syntactical/semantical analysis
- Rewriting: optimizations independent of the current database state (table sizes, availability of indexes, etc.)
- Optimizer: optimizations that rely on a cost model and information about the current database state
- The resulting plan is then evaluated by the system's **execution engine**.



Impact on Performance

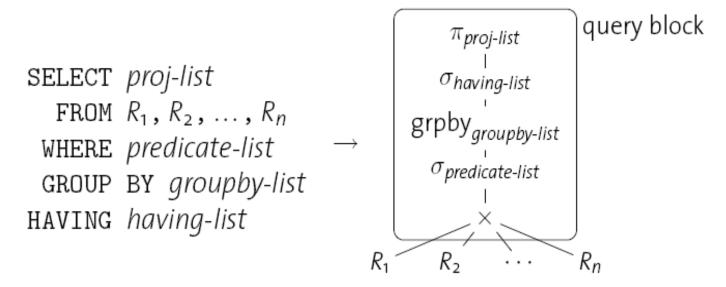
- Finding the right plan can dramatically impact performance.
- In terms of execution times, these differences can easily mean "seconds vs. days".

```
SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM LINEITEM L, ORDERS O, CUSTOMER C
WHERE L.L_ORDERKEY = O.O_ORDERKEY
AND O.O_CUSTKEY = C.C_CUSTKEY
AND C.C_NAME = 'IBM Corp.'
```



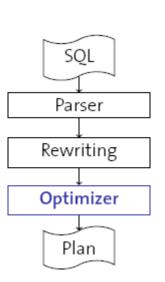
The SQL Parser

- Besides some analyses regarding the syntactical and semantical correctness of the input query, the parser creates an internal representation of the input query.
- This representation still resembles the original query:
 - Each SELECT-FROM-WHERE clause is translated into a query block.
 - Each R_i can be a base relation or another query block.



Finding the "Best" Execution Plan

- The parser output is fed into a rewrite engine which, again, yields a tree of query blocks.
- It is then the optimizer's task to come up with the **optimal execution plan** for the given query.
- Essentially, the optimizer
 - enumerates all possible execution plans,
 - 2. determines the quality (cost) of each plan, then
 - 3. chooses the best one as the final execution plan.
- Before we can do so, we need to answer the question:
 - What is a "good" execution plan?

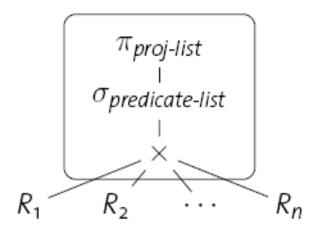


Cost Metrics

- Database systems judge the quality of an execution plan based on a number of cost factors, e.g.,
 - the number of disk I/Os required to evaluate the plan,
 - the plan's CPU cost,
 - the overall response time observable by the user as well as the total execution time.
- A cost-based optimizer tries to anticipate these costs and find the cheapest plan before actually running it.
 - All of the above factors depend on one critical piece of information: the size of (intermediate) query results.
 - Database systems, therefore, spend considerable effort into accurate result size estimates.

Result Size Estimation

 Consider a query block corresponding to a simple SELECT-FROM-WHERE query Q.



- We can estimate the result size of Q based on
 - the size of the input tables, $|R_1|$, ..., $|R_n|$, and
 - the **selectivity** *sel()* of the predicate *predicate-list*.

$$|Q| \approx |R_1| \cdot |R_2| \cdot \cdot \cdot |R_n| \cdot sel(predicate-list)$$

Table Cardinalities

- If not coming from another query block, the size |R| of an input table R is available in the DBMS's **system catalogs**.
- E.g., IBM DB2:

<pre>db2 => SELECT TABNAME, CARD, NPAGES db2 (cont.) => FROM SYSCAT.TABLES db2 (cont.) => WHERE TABSCHEMA = 'TPCH';</pre>			
TABNAME	CARD NP	AGES	
ORDERS	1500000	44331	
CUSTOMER	150000	6747	
NATION	25	2	
REGION	5	1	
PART	200000	7578	
SUPPLIER	10000	406	
PARTSUPP	800000	31679	
LINEITEM	6001215	207888	
8 record(s) selected.			

Selectivity Estimation

- General selectivity rules make a fair amount of assumptions:
 - uniform distribution of data values within a column,
 - independence between individual predicates.
- Since these assumptions aren't generally met, systems try to improve selectivity estimation by gathering data statistics.
 - These statistics are collected offline and stored in the system catalog.
 - Example: IBM DB2: RUNSTATS ON TABLE ...
 - The most popular type of statistics are histograms.

Describing Value Distribution

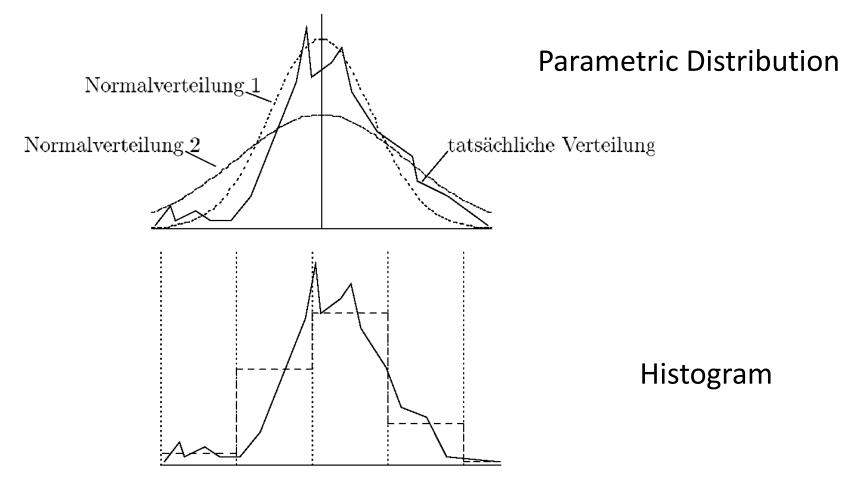


Figure © A. Kemper

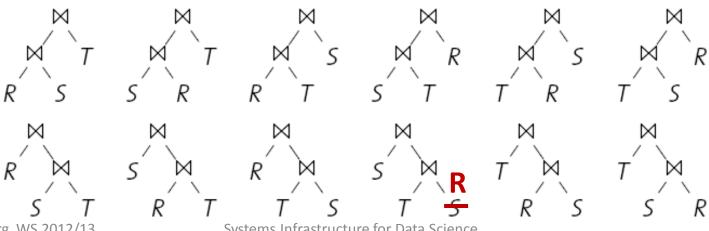
Example: Histograms in IBM DB2

- SYSCAT.COLDIST also contains information like:
 - the n most frequent values and their frequency,
 - the number of distinct values in each histogram bucket.
- Some explanation:
 - SEQNO: Frequency rank
 - COLVALUE is a single value
 - VALCOUNT with TYPE=Q shows the number of colums with value <= COLVALUE (Why?)

```
SELECT SEQNO, COLVALUE, VALCOUNT
 FROM SYSCAT.COLDIST
 WHERE TABNAME = 'LINEITEM'
   AND COLNAME = 'L_EXTENDEDPRICE'
   AND TYPE = 'Q':
SEQNO COLVALUE
                         VALCOUNT
    1 +0000000000996.01
                             3001
    2 +0000000004513.26
                           315064
    3 +0000000007367.60
                           633128
    4 +0000000011861.82
                           948192
    5 +0000000015921.28
                          1263256
    6 +0000000019922.76
                          1578320
    7 +0000000024103.20
                          1896384
    8 +0000000027733.58
                          2211448
     +0000000031961.80
                          2526512
   10 +0000000035584.72
                          2841576
   11 +0000000039772.92
                          3159640
   12 +0000000043395.75
                          3474704
   13 +0000000047013.98
                          3789768
```

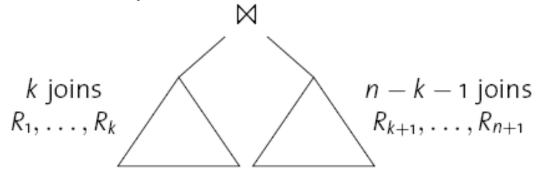
Join Optimization (R ⋈ S ⋈ T)

- We've now translated the query into a graph of query blocks.
 - Query blocks essentially are multi-way Cartesian products with a number of selection predicates on top.
- We can estimate the cost of a given execution plan.
 - Use result size estimates in combination with the cost for individual join algorithms that we saw in the previous lecture.
- We are now ready to enumerate all possible execution plans,
 i.e., all possible 3-way join combinations for each query block.



How Many Combinations Are there?

- A join over n+1 relations R_1 , ..., R_{n+1} requires n binary joins.
- Its **root-level operator** joins sub-plans of k and n-k-1 join operators $(0 \le k \le n-1)$:



 Let C_i be the number of possibilities to construct a binary tree of i inner nodes (join operators):

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}$$

Catalan Numbers

 This recurrence relation is satisfied by Catalan numbers describing the number of ordered binary trees with n+1 leaves:

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!}$$

• For each of these trees, we can **permute** the input relations $R_1, ..., R_{n+1}$, leading to:

$$\frac{(2n)!}{(n+1)!n!} \cdot (n+1)! = \frac{(2n)!}{n!}$$

possibilities to evaluate an (n+1)-way join.

Search Space

• The resulting search space is **enormous**:

number of relations <i>n</i>	C_{n-1}	join trees
2	1	2
3	5	12
4	14	120
5	42	1,680
6	132	30,240
7	429	665,280
8	1,430	17,297,280
10	16,796	17,643,225,600

• And we haven't yet even considered the use of k different join algorithms (yielding another factor of $k^{(n-1)}$)!

Dynamic Programming

 The traditional approach to master this search space is the use of dynamic programming.

• Idea:

- Find the cheapest plan for an n-way join in n passes.
- In each pass k, find the best plans for all k-relation sub-queries.
- Construct the plans in pass k from best i-relation and (k-i)-relation sub-plans found in earlier passes $(1 \le i < k)$.

Assumption:

 To find the optimal global plan, it is sufficient to only consider the optimal plans of its sub-queries.

Example: Four-relation Join

- Pass 1: (best 1-relation plans)
 - Find the best access path to each of the R_i individually.
- Pass 2: (best 2-relation plans)
 - For each **pair** of tables R_i and R_i , determine the best order to join R_i and R_i ($R_i \bowtie R_i$ or $R_i \bowtie R_i$?):

```
optPlan(\{R_i,R_i\}) \leftarrow best of R_i \bowtie R_i and R_i \bowtie R_i
                                                                                12 plans
                                                                                to consider
```

- Pass 3: (best 3-relation plans)
 - For each **triple** of tables R_i , R_i , and R_k , determine the best threetable join plan, using sub-plans obtained so far:

```
optPlan(\{R_i, R_j, R_k\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k\}),
   optPlan(\{R_i, R_k\}) \bowtie R_i, R_i \bowtie optPlan(\{R_i, R_k\}), \dots
                                                                              24 plans
                                                                              to consider
```

Example: Four-relation Join (cont'd)

- Pass 4: (best 4-relation plans)
 - For each set of **four** tables R_i , R_j , R_k , and R_l , determine the best four-table join plan, using sub-plans obtained so far:

```
optPlan(\{R_i, R_j, R_k, R_l\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k, R_l\}), 14 plans optPlan(\{R_j, R_k, R_l\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k, R_l\}), ..., to consider optPlan(\{R_i, R_j\}) \bowtie optPlan(\{R_k, R_l\}), ...
```

- ➤ Overall, we looked at only **50** (sub-)plans (12+24+14=50 instead of the possible **120** four-way join plans shown in slide # 16).
- ➤ All decisions required the evaluation of **simple sub-plans** only (no need to re-evaluate the interior of *optPlan()*).

Dynamic Programming Algorithm

```
1 Function: find_join_tree_dp (q(R_1, ..., R_n))
 2 for i = 1 to n do
        optPlan(\{R_i\}) \leftarrow access\_plans(R_i);
    prune_plans (optPlan(\{R_i\}));
 5 for i = 2 to n do
        foreach S \subseteq \{R_1, \ldots, R_n\} such that |S| = i do
            optPlan(S) \leftarrow \emptyset;
            foreach O \subset S do
8
                 optPlan(S) \leftarrow optPlan(S) \cup
9
                       possible_joins (optPlan(O), optPlan(S \setminus O));
10
            prune_plans (optPlan(S));
11
12 return optPlan(\{R_1,\ldots,R_n\});
```

- possible_joins(R, S) enumerates the possible joins between R and S (nested loops join, merge join, etc.).
- > prune_plans(set) discards all but the best plan from set.

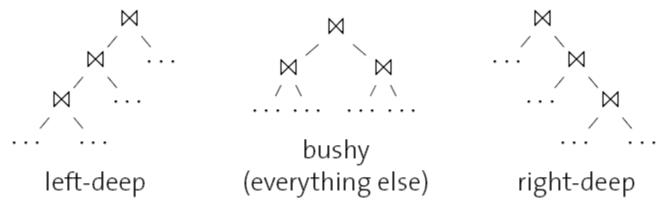
Dynamic Programming: Discussion

- find_join_tree_dp() draws its advantage from filtering plan candidates early in the process.
 - In our example, pruning in Pass 2 reduced the search space by a factor of 2, and another factor of 6 in Pass 3.
- Some **heuristics** can be used to prune even more plans:
 - Try to avoid Cartesian products.
 - Produce left-deep plans only (see the next slides).
- Such heuristics can be used as a handle to balance plan quality and optimizer runtime.
 - Example: IBM DB2:

SET CURRENT QUERY OPTIMIZATION = n

Left/Right-Deep vs. Bushy Join Trees

 The dynamic programming algorithm explores all possible shapes a join tree could take:



- Actual systems often prefer left-deep join trees (e.g., the seminal IBM System R prototype considered only left-deep plans).
 - The inner relation is always a base relation.
 - Allows the use of index nested loops join.
 - Easier to implement in a pipelined fashion.

Joining Many Relations

- Dynamic programming still has exponential resource requirements:
 - time complexity: $O(3^n)$
 - space complexity: $O(2^n)$
- This may still be too expensive
 - for joins involving many relations (~ 10 20 and more),
 - for simple queries over well-indexed data (where the right plan choice should be easy to make).
- The greedy join enumeration algorithm targets solving this case.

Greedy Join Enumeration

```
1 Function: find_join_tree_greedy (q(R_1, ..., R_n))
 2 worklist \leftarrow \emptyset;
 3 for i = 1 to n do
4 worklist \leftarrow worklist \cup best_access_plan(R_i);
 5 for i = n downto 2 do
        // worklist = \{P_1, \ldots, P_i\}
find P_j, P_k \in worklist and \bowtie_{...} such that cost(P_j \bowtie_{...} P_k) is minimal; worklist \leftarrow worklist \setminus \{P_j, P_k\} \cup \{(P_j \bowtie_{...} P_k)\};
    // worklist = \{P_1\}
8 return single plan left in worklist;
```

In each iteration, choose the **cheapest** join that can be made over the remaining sub-plans.

Greedy Join Enumeration: Discussion

- Greedy join enumeration:
 - The greedy algorithm has $O(n^3)$ time complexity.
 - The loop has *O*(*n*) iterations.
 - Each iteration looks at all remaining pairs of plans in worklist: an $O(n^2)$ task.
- Other join enumeration techniques:
 - Randomized algorithms: randomly rewrite the join tree one rewrite at a time; use hill-climbing or simulated annealing strategy to find optimal plan.
 - Genetic algorithms: explore plan space by combining plans ("creating offspring") and altering some plans randomly ("mutations").

Physical Plan Properties

Consider the query:

```
SELECT O.O_ORDERKEY, L.L_EXTENDEDPRICE
FROM ORDERS O, LINEITEM L
WHERE O.O_ORDERKEY = L.L_ORDERKEY
```

where table **ORDERS** is indexed with a clustered index **OK_IDX** on column **O_ORDERKEY**.

Possible table access plans are:

```
    ORDERS : full table scan: estimated I/Os: N<sub>ORDERS</sub>
    index scan: estimated I/Os: N<sub>OK IDX</sub> + N<sub>ORDERS</sub>
```

► LINEITEM : full table scan: estimated I/Os: N_{LINEITEM}

Physical Plan Properties

- Since the full table scan is the cheapest access method for both tables, our join algorithms will select them as the best 1-relation plans in Pass 1 (in both DP and GJE).
- To join the two scan outputs, we now have the following choices:
 - nested loops join, or
 - hash join, or
 - sort both inputs, then use merge join.
- Hash join or sort-merge join are probably the preferable candidates here, incurring a cost of $\sim 2(N_{ORDERS} + N_{IINEITEM})$.
 - Overall cost: $N_{ORDERS} + N_{LINEITEM} + 2(N_{ORDERS} + N_{LINEITEM})$.

A Better Plan

- It is easy to see, however, that there is a better way to evaluate the query:
 - 1. Use an **index scan** to access **ORDERS**. This guarantees that the scan output is already **in O_ORDERKEY order**.
 - Then only sort LINEITEM, and
 - 3. join using merge join.
 - Overall cost: $(N_{OK_IDX} + N_{ORDERS}) + 2 * N_{LINEITEM}$ 1 2+3
- Although more expensive as a standalone table access plan, the use of the index pays off in the overall plan.

Interesting Orders

- The advantage of the index-based access to **ORDERS** is that it provides beneficial **physical properties**.
- Optimizers, therefore, keep track of such properties by annotating candidate plans.
- IBM System R introduced the concept of interesting orders, determined by
 - ORDER BY or GROUP BY clauses in the input query, or
 - join attributes of subsequent joins (merge join).
- In prune_plans(), retain
 - the cheapest "unordered" plan and
 - the cheapest plan for each interesting order.

Query Rewriting

- Join optimization essentially takes a set of relations and a set of join predicates to find the best join order.
- By rewriting query graphs beforehand, we can improve the effectiveness of this procedure.
- The query rewriter applies (heuristic) rules, without looking into the actual database state (no information about cardinalities, indexes, etc.). In particular, it
 - Pushes predicates and projections
 - rewrites predicates, and
 - unnests queries.

Predicate/Projection Pushdown

- Applies heuristics to exploits equivalence transformations in relational algebra
- Some examples:

1.
$$\sigma_{c_1 \wedge c_2 \wedge ... \wedge c_n}(R) \equiv \sigma_{c_1}(\sigma_{c_2}(...(\sigma_{c_n}(R))))$$

2.
$$\sigma_{c_1}(\sigma_{c_2}(R)) \equiv \sigma_{c_2}(\sigma_{c_1}(R))$$

3. If
$$L_1 \subseteq L_2 \subseteq ... \subseteq L_n$$
:
 $\pi_{L_1}(\pi_{L_2}(...(\pi_{L_n}(R)))...)) \equiv \pi_{L_1}(R)$

4. If selection only refers to attributes A_1 , ..., A_n

$$\pi_{A_1,\ldots,A_n}\left(\sigma_c(R)\right) \equiv \sigma_c\left(\pi_{A_1,\ldots,A_n}(R)\right)$$

5. ', \cup , \cap und \bowtie are commutative $R\bowtie_c S\equiv S\bowtie_c R$ (we already used this)

More equivalence rules

- 1. If c only accesses attributes in R $\sigma_c(R \bowtie_i S) \equiv \sigma_c(R) \bowtie_i S$
- 2. If c is a conjunction,, $c_1 \wedge c_2$ ", c_1 only accesses attribues in R, c_2 in S $\sigma_c(R \bowtie_j S) \equiv \sigma_c(R) \bowtie_j (\sigma_{c_2}(S))$
- 3. Similar rules exist for projection

Heuristics:

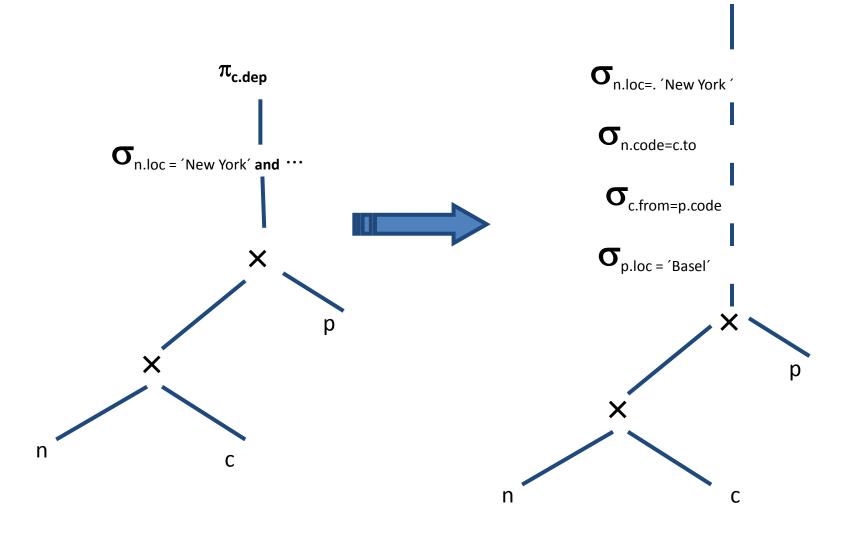
- Push down predicates
- Push down projection

Example

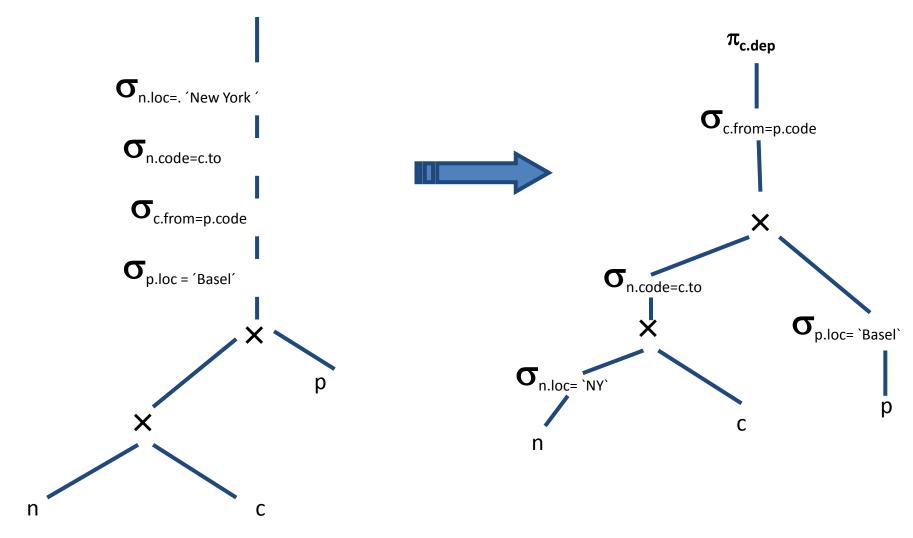
Direct flights from Basel to New York

```
Select c.dep
                                                      \pi_{\text{c.dep}}
from Airport n, Connection c,
      Airport p
where n.loc = "New York" and
                                              O<sub>n.loc = 'New York' and ...</sub>
       n.code = c.to and
       c.from = p.code and
       p.loc = "Basel"
```

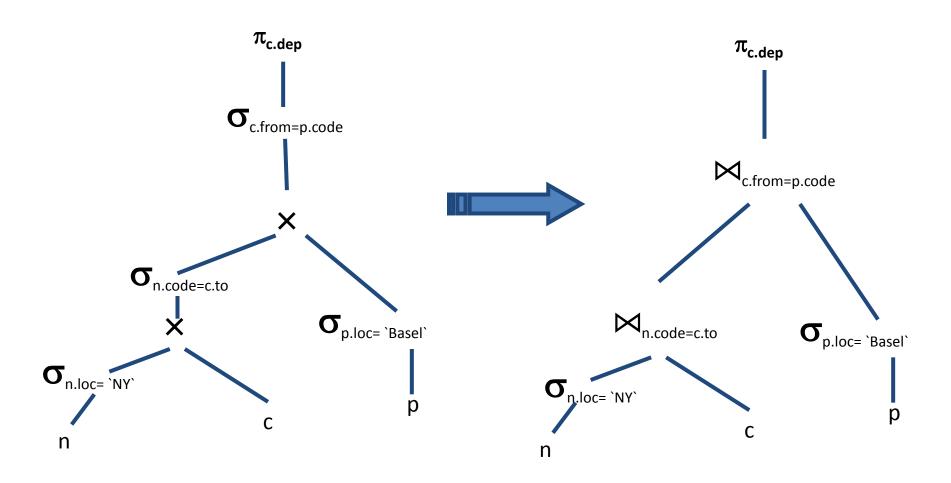
Splitting Predicates



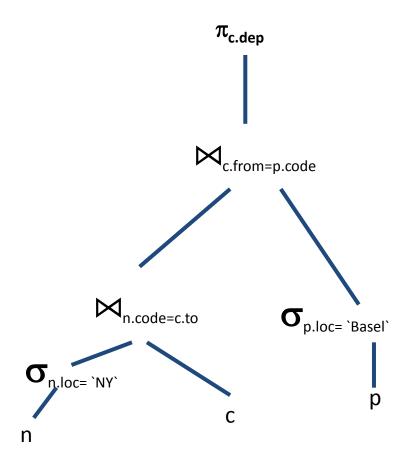
Selection Pushing



Introducing Joins



What about projections?



Predicate Simplification

Example: Rewrite the following query

```
SELECT *
FROM LINEITEM L
WHERE L.L_TAX * 100 < 5
```

into the following:

```
SELECT *
FROM LINEITEM L
WHERE L.L_TAX < 0.05
```

 Predicate simplification may enable the use of indexes and simplify the detection of opportunities for join algorithms.

Additional Join Predicates

Implicit join predicates as in

```
SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c
```

can be turned into explicit ones:

```
SELECT *

FROM A, B, C

WHERE A.a = B.b AND B.b = C.c

AND A.a = C.c
```

- This enables plans like: (A ⋈ C) ⋈ B
 - Otherwise, we would have a Cartesian product between A and C.

Nested Queries

- SQL provides a number of ways to write nested queries.
 - Uncorrelated sub-query:

```
SELECT *
FROM ORDERS O
WHERE O_CUSTKEY IN (SELECT C_CUSTKEY
FROM CUSTOMER
WHERE C_NAME = 'IBM Corp.')
```

— Correlated sub-query:

```
SELECT *
FROM ORDERS O
WHERE O.O_CUSTKEY IN

(SELECT C.C_CUSTKEY
FROM CUSTOMER C

WHERE C.C_ACCTBAL < O.O_TOTALPRICE)
```

Query Unnesting

- Taking query nesting literally might be expensive.
 - An uncorrelated query, e.g., need not be re-evaluated for every tuple in the outer query.
- Often times, sub-queries are only used as a syntactical way to express a join (or a semi-join).
- The query rewriter tries to detect such situations and make the join explicit.
- This way, the sub-query can become part of the regular join order optimization.
- Won Kim, "On Optimizing an SQL-like Nested Query", ACM TODS 7:3, 1982.

Summary

Query Parser

Translates input query into (SFW-like) query blocks.

Query Rewriter

- Logical (database state-independent) optimizations
 - predicate/projection pushdown
 - predicate simplification
 - query unnesting

Query Optimizer (join optimization)

- Find "best" query execution plan based on
 - a cost model (considering I/O cost, CPU cost, ...)
 - data statistics (histograms)
 - dynamic programming, greedy join enumeration
 - physical plan properties (interesting orders)