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Lecture IV: Query Processing 



Query Processing 

• A DBMS needs to perform a number of tasks 
– with limited memory resources, 
– over large amounts of data, 
– yet, as fast as possible. 
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Query Processing 
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Query Processing: Our Agenda 

• Efficient algorithms for implementing the main relational 
operators 
– Sorting 
– Join 
– Selection 
– Projection 
– Set Operators, Aggregate Operators 

• Efficient techniques for executing compositions of 
operators in a query plan 
– Pipelining 
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Sorting 
• Sorting is a core database operation with numerous 

applications: 
– An SQL query may explicitly request sorted output: 

SELECT A,B,C FROM R ORDER BY A 
– Bulk-loading a B+-tree pre-supposes sorted data. 
– Duplicate elimination is particularly easy over sorted input: 

SELECT DISTINCT A,B,C FROM R 
– Some database operators rely on their input files being 

already sorted (some of which we will see later in this course 
such as sort-merge join). 

• How can we sort a file that exceeds the available main 
memory size by far (let alone the available buffer 
manager space)? 
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Two-Way Merge Sort 
• We start with two-way merge sort, which can sort files of 

arbitrary size with only three pages of buffer space. 
• Two-way merge sort sorts a file with N = 2k pages in multiple 

passes, each of them producing a certain number of sorted sub-
files called “runs”. 
– Pass 0 sorts each of the 2k input pages individually and in main memory, 

resulting in 2k sorted runs. 
– Pass n merges 2k-n pairs of runs into 2k-n sorted runs. 
– Pass k leaves only one sorted run left (i.e., the overall sorted result). 

• During each pass, we read/write every page in the file. Hence, 
(k+1)*N page reads and (k+1)*N page writes are required to 
sort the file. 
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Two-Way Merge Sort: Why 3 Buffer Pages?  
• Pass 0: Read a page, sort it, write it. 

– Only one buffer page is used. 

• Pass 1, 2, …, k: Merge pairs of runs. 
– Three buffer pages are used. 
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Multiple Passes of Two-Way Merge Sort 
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Two-Way Merge Sort Example 
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Two-Way Merge Sort: I/O Behavior 

• To sort a file of N pages, we need to read and write N 
pages during each pass. 

• Number of I/O operations per pass: 
        2 . N 
• Number of passes: 

 
 

• Total number of I/O operations: 
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General External Merge Sort 

• So far, we “voluntarily” used only three pages of buffer 
space. 

• How could we make effective use of a significantly 
larger buffer pool (of, say, B memory frames)? 

• There are basically two knobs that we can turn: 
– Reduce the number of initial runs by using the full buffer 

space during the in-memory sort. 
– Reduce the number of passes by merging more than 2 runs at 

a time. 
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Reducing the Number of Initial Runs 
• With B frames available in the buffer pool, we can read B 

pages at a time during Pass 0 and sort them in memory: 
 
 
 
 

• The number of initial runs determines the number of 
passes we need to make. 
– Total number of I/O operations: 
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Reducing the Number of Passes 
• With B frames available in the buffer pool, we can merge B-1 

pages at a time (leaving one frame as a write buffer). 
 
 
 
 
 

• With B pages of buffer space, we can do a (B-1)-way merge. 
– Total number of I/O operations: 
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General (“(B-1)-Way”) External Merge Sort: Recap 

• To sort a file with N pages using B buffer pages: 
– Pass 0: Use B buffer pages. Produce sorted runs of B pages 

each. 
– Pass 1, 2, …,  etc.: Merge B-1 runs.  
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External Sorting: I/O Behavior 
• Number of I/O operations required for sorting N 

pages with B buffer frames: 
 
 
 
 
 
 

 
What is the access pattern of these I/O operations? 
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Blocked I/O 

• We could improve the I/O pattern by reading blocks of, 
say, b pages sequentially at once during the merge 
phases. 
– Allocate b pages for each input (instead of just 1). In other 

words, make each buffer  (input/output) be a block of b pages. 
– This reduces per-page I/O cost by a factor of ~ b. 
– The price we pay is a decreased fan-in during merges (resulting 

in an increased number of passes and more I/O operations). 
– In practice, main memory sizes are typically large enough to 

sort files with just 1 merge pass (even with blocked I/O). 
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External Sorting: Discussion 
• External sorting follows the principle of divide and conquer. 

– This leads to a number of independent tasks. 
– These tasks could be executed in parallel (think of multi-processor 

machines or distributed databases). 

• External sorting makes sorting very efficient. In most 
practical cases, two passes suffice to sort even huge files. 

• There are a number of tweaks to tune sorting even further: 
– Replacement sort: Re-load new pages while writing out initial 

runs in Pass 0, thus increasing the initial run length. 
– Double buffering: Interleave page loading and input processing in 

order to hide disk latency. 
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Double Buffering 

• To reduce wait time for I/O request to complete, we 
can prefetch into a “shadow block”.  
– Potentially, more passes; in practice, most files still sorted 

in 2-3 passes. 
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Query Plans 
• External sorting is one 

instance of a (physical) 
database operator. 

• Operators can be assembled 
into a query execution plan. 

• Each plan operator performs 
one sub-task of a given query. 
Together, the operators of a 
plan evaluate the full query. 
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• An example IBM DB2 
  query execution plan: 

 We’ll have a deeper look into join operators next. 



The Join Operator  
• The join operator      is actually a short-hand for a 

combination of cross product x and selection σp. 
 
 
 
 
 

• One way to implement      is to follow this equivalence: 
1. Enumerate all records in the cross product of R and S. 
2. Then pick those that satisfy p. 

• More advanced algorithms try to avoid the obvious 
inefficiency in Step 1 (the size of the intermediate 
result is |R|*|S|). 
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Nested Loops Join 
• The nested loops join is the straight forward implementation 

of the x-σ combination: 
 
 
 
 

• Let NR and NS the number of pages in R and S; let pR and pS be 
the number of records per page in R and S. The total number 
of disk reads is then: 
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Nested Loops Join: I/O Behavior 
• The good news about nljoin() is that it needs only 

three pages of buffer space (two to read R and S, one 
to write the result). 

• The bad news is its enormous I/O cost: 
– Assuming pR = pS = 100, NR = 1000, NS = 500, we need to 

read 1000 + (100*1000*500) disk pages. 
– With an access time of 10 ms for each page, this join would 

take 140 hours! 
– Switching the role of R and S to make S (the smaller one) the 

outer relation does not bring any significant advantage (disk 
pages = 500 + (100*500*1000)). 
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Block Nested Loops Join 
• Again we can save random access cost by reading R 

and S in blocks of, say, bR and bS pages. 
 
 
 
 
 

• R is still read once, but now with only            disk seeks. 
• S is scanned only            times now, and we need to 

perform                         disk seeks to do this. 
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Choosing bR and bS 
• E.g., buffer pool with B = 100 frames, NR = 1000, NS = 500 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 25 

bR + bS ~ 100 



In-Memory Join Performance 
• Line 4 in block_nljoin(R,S,p) implies an in-memory 

join between the R- and S-blocks currently in memory. 
• Building a hash table over the R-block can speed up this join 

considerably. 
 
 
 
 
 
 

• Note that this optimization only helps equi-joins. 
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Using a Hash Table in 
Block Nested Loops Join 
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Index Nested Loops Join 
• The index nested loops join takes advantage of an index 

on the inner relation (swap outer and inner if necessary): 
 
 
 
 

• The index must be compatible with the join condition p. 
– Hash indexes, e.g., only support equality predicates. 
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I/O Behavior 
• For each record in R, we use the index to find matching 

S-tuples. While searching for matching S-tuples, we 
incur the following I/O costs for each tuple in R: 
1. Access the index to find its first matching entry: Nidx I/Os. 
2. Scan the index to retrieve all n matching rids. The I/O cost 

for this is typically negligible. 
3. Fetch the n matching S-tuples from their data pages. 

• For an unclustered index, this requires n I/Os. 
• For a clustered index, this only requires               I/Os. 

• Note that (due to 2 and 3), the cost of an index nested 
loops join becomes dependent on the size of the join 
result. 
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Index Access Cost 
• If the index is a B+-tree index: 

– A single index access requires the inspection of h pages (h: 
B+-tree height). 

– If we repeatedly probe the index, however, most of these 
are cached by the buffer manager. 

– The effective value for Nidx is around 1–3 I/Os. 
• If the index is a hash index: 

– Caching doesn’t help us here (no locality in accesses to hash 
table). 

– A typical value for Nidx is 1-2 I/Os (due to overflow pages). 
• Overall, the use of an index (over, e.g., a block nested 

loops join) pays off if the join picks out only few tuples 
from a big table. 
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Sort-Merge Join 
• Join computation becomes particularly simple if both 

inputs are sorted with respect to the join attribute(s). 
– The merge join essentially merges both input tables, much like 

we did for sorting. 
– In contrast to sorting, however, we need to be careful 

whenever a tuple has multiple matches in the other relation: 

 
 
 
 

• Merge join is typically used for equi-joins only. 
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Merge Join 
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Sort-Merge Join: I/O Behavior 
• If both inputs are already sorted and there are no 

exceptionally long sequences of identical key values, the 
I/O cost of a merge join is NR + NS (which is optimal). 

• By using blocked I/O, these I/O operations can be done 
almost entirely as sequential reads. 

• Sometimes, it pays off to explicitly sort a (unsorted) 
relation first, then apply merge join. This is particularly 
the case if a sorted output is beneficial later in the 
execution plan. 

• The final sort pass can also be combined with merge join, 
avoiding one round-trip to disk and back. 
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Hash Join 
• Sorting effectively brought related tuples into spatial proximity, 

which we exploited in the merge join algorithm. 
• We can achieve a similar effect with hashing, too. 
• Partition R and S into partitions R1, …, Rn and S1, …, Sn using the 

same hash function (applied to the join attributes). 
 
 
 
 
 
 

• Observe that: 
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Hash Join 
• By partitioning the data, we reduced the problem of 

joining to smaller sub-relations Ri and Si. 
• Matching tuples are guaranteed to end up together in 

the same partition. 
• We only need to compute              (for all i). 
• By choosing n properly (i.e., the hash function h), 

partitions become small enough to implement the 
               as in-memory joins. 
• The in-memory join is typically accelerated using a 

hash table, too. We already did this for the block 
nested loops join. 
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Hash Join Algorithm 
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Hash Join: Buffer Requirements 
• We’ve assumed that we can create the necessary n 

partitions in one pass (note that: given B buffer pages, 
we want the number of pages for partition Ri = NRi

 < (B-
1) (1 for input, 1 for output, and the rest for Ri)). 

• This works out if R consists of at most ~ (B-1)2 pages. 
– We can write out at most B-1 runs in one pass; each of them 

should be at most B-1 pages in size. 
– Hashing doesn’t guarantee us an even distribution. Since the 

actual size of each run varies, R must actually be smaller than 
(B-1)2. 

• Larger input tables require multiple passes for 
partitioning. 
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Hash Join vs. Sort-Merge Join 
• Provided sufficient buffer space, hash join and sort-

merge join both require 3*(NR + NS) I/Os. 
– For reading and writing each relation once during the 

partition/sort phase + reading each relation once during 
join/merge). 
 

• The cost for hash join could considerably increase if 
partitions aren’t uniformly sized, whereas sort-merge 
join is not sensitive to skew. 
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The Selection Operator (σ) 
• Example: 
 SELECT * 
 FROM Customer 
 WHERE Zipcode ≥ 8800 
• File scan is the basic approach: 

– Scan the entire Customer relation, checking each tuple’s Zipcode and adding 
the tuple to the result if its Zipcode is ≥ 8800. 

– I/O cost ~ number of pages in Customer => Expensive! 
• This approach always works  (i.e., doesn’t make any assumptions 

about file organization or index availability). 
• We can improve this approach by exploiting the information in the 

selection condition (e.g., inequality predicate on Zipcode) and 
– leveraging file organization properties (e.g., physical sort order on Zipcode) 
– using a suitable index if available (e.g., B+-tree on Zipcode) 
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Using Physical Sort Order for Selections 

• Given a selection of the form σR.attr op value(R), if R is 
physically sorted on R.attr, then instead of a full file 
scan, we can do a binary search on R.attr followed by 
a scan. 

• Remember the “Sorted File” example of the Indexing 
lecture: 
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Using an Index for Selections 
• Given a selection of the form σR.attr op value(R): 

1. if op is equality, then we can either use a B+-tree or a 
hash index on R.attr. 

2. if op is not equality, then we use a B+-tree index on 
R.attr. 

• Let’s consider the second case. Index is used as follows: 
– Search the index to find the first qualifying entry. 
– Then scan the leaf pages to retrieve all qualifying R tuples. 

• The first step takes only 2-3 I/Os. The cost of the 
second step depends on: 
– the number of qualifying R tuples 
– whether the index is clustered. 
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Using a Clustered Index for Selections 

• Clustering affects the retrieval cost greatly. 
• Example: 

– Consider “Zipcode ≥ 8800” on Customer. 
– Assume that there are 100,000 customer tuples in 

total occupying 1000 pages, and the selection 
should return 10% of all Customer tuples. 

– With a clustered B+-tree index: 100 + 2-3 I/Os 
– With an unclustered B+-tree index: up to 10,000 

I/Os! 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 42 



Using an Unclustered Index for Selections 

• A possible refinement to improve the I/O cost of 
unclustered indexes: 
– Find the qualifying index data entries. 
– Sort the rid’s of the data entries by their page-id 

components. 
– Fetch rid’s in that order. 

 
• The above approach ensures that when we bring in a 

page, all qualifying tuples on this page are retrieved 
one after the other, i.e., we look at each data page 
only once (though the number of such pages is likely 
to be higher than the case for using a clustered 
index). 
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General Selection Conditions 

• In general, a selection condition is a Boolean 
combination of terms with: 
– conjunctions (e.g., R.attr1 op value1 AND R.attr2 op 

value2) 
– disjunctions (e.g., R.attr1 op value1 OR R.attr2 op value2) 

 

• There are two approaches to evaluating selections 
with general conjunctive conditions : 
– based on the most selective access path 
– by intersecting rid sets 
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Using Most Selective Access Paths 
• Most selective access path is an index (or file scan) that we 

estimate will require the fewest page I/Os. 
• Find the most selective access path, retrieve tuples using it, 

and apply any remaining terms that don’t match the index. 
• Terms that match this index reduce the number of tuples 

retrieved; other terms are used to discard some of the 
retrieved tuples, but do not affect the number of tuples/ 
pages fetched. 

• Example: “Zipcode ≥ 8800 AND Cust_ID=5555”. 
– A B+-tree index on Zipcode can be used; then “Cust_ID=5555” 

must be checked for each retrieved tuple. 
– Alternatively, a hash index on Cust_ID could be used; “Zipcode ≥ 

8800” must then be checked. 
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Intersecting rid Sets 
• If we have two or more matching indexes that store 

rid’s at the leaves: 
– Get sets of rids of data records using each matching index. 
– Then intersect these sets of rids. 
– Retrieve the records and apply any remaining terms. 

• Example: “Zipcode ≥ 8800 AND Cust_ID=5555”. 
– If we have a B+-tree index on Zipcode and a hash index on 

Cust_ID, we can retrieve rids of records satisfying “Zipcode 
≥ 8800” using the first, rids of records satisfying 
“Cust_ID=5555” using the second, then intersect and 
retrieve the records. 

• Refinement: Sort rid’s by page-id’s before the retrieval. 
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Selections with Disjunctions 

• Example: “Zipcode ≥ 8800 OR Cust_ID=5555”. 
 

• If one of the terms in the disjunction is a file scan, 
then the most selective access path has to be a file 
scan. 
 

• If every term has a matching index, we can retrieve 
rid’s of candidate tuples using the indexes, take the 
union of the rid’s, and retrieve the records. 
– Refinement: Sort rid’s by page-id’s before the retrieval. 
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The Projection Operator 
• Example query: 
 SELECT DISTINCT R.sid, R.bid 
 FROM Reserves R 

• To implement projection, we have to do the following: 
1. Remove unwanted attributes. 
2. Eliminate any duplicates. 

• Step 2 is the difficult part. Typically, systems try to avoid 2 
whenever possible. In SQL, duplicate elimination has to be 
asked for explicitly. 

• There are two basic algorithms for projection: 
– sorting-based 
– hashing-based 
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Sorting-based Projection 
• Given an input relation R of size N pages, the conceptual 

sorting-based projection algorithm is as follows: 
– Scan R and generate a set of tuples with only the desired 

attributes (I/O cost = O(N)). 
– Sort this set by the combination of all attributes (I/O cost = 

O(NlogN)). 
– Scan the sorted set, comparing adjacent tuples and eliminating 

any duplicates (I/O cost = O(N)). 
 

• We can get a better algorithm by adapting the external 
sort algorithm to do projection with duplicate 
elimination. 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 49 



Sorting-based Projection 
• Two modifications on the original external sort 

algorithm: 
– Modify Pass 0 to eliminate unwanted fields. Thus, runs of 

about 2B (as in external sort with replacement sort 
refinement) pages are produced, but tuples in these runs 
are smaller than the original input tuples. 

– Modify merging passes to eliminate duplicates. Thus, the 
number of result tuples is smaller than that of the input. 
 

• Cost:  In Pass 0, read original relation (size N), write 
out the same number of smaller tuples. In merging 
passes, fewer tuples are written out in each pass. 
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Hashing-based Projection 
• Consider an input relation R of size N pages and a memory 

buffer of B pages. The algorithm is similar to hash-join. 
 

• There are two phases in the algorithm: 
1. Partitioning: Read R using 1 input buffer. For each tuple, discard 

unwanted fields, apply hash function h1 to choose one of B-1 output 
buffers. Result is B-1 partitions (of tuples with no unwanted fields). 2 
tuples from different partitions are guaranteed to be distinct. 

2. Duplicate elimination: For each partition, read it and build an in-
memory hash table, using hash function h2 (<> h1) on all fields, while 
discarding duplicates. 
• If partition does not fit in memory, can apply hash-based projection 

algorithm recursively to this partition. 
 

• Cost: For partitioning, read R, write out each tuple, but with 
fewer fields. This is read in the next phase. (overall cost: O(N)). 
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Discussion of Projection 
• Sort-based approach is the standard. 

– It handles skew (i.e., non-uniform distribution of hash 
values) better. 

– Result is sorted. 
• If an index on the relation contains all wanted 

attributes in its search key, can do index-only scan. 
– Apply projection techniques to data entries (much 

smaller!) 
• If an ordered (i.e., tree) index contains all wanted 

attributes as prefix of search key, can do even better: 
– Retrieve data entries in order (index-only scan), discard 

unwanted fields, compare adjacent tuples to check for 
duplicates. 
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Set Operators 
• R∩S, R x S, R U S, R – S 
• Intersection and Cross-product are special cases of Join (i.e., 

equality on all fields, no join condition, respectively). 
• Union (and Difference) build on duplicate elimination. 

– Sorting-based approach:  
• Sort both relations on combination of all attributes. 
• Scan sorted relations and merge them. 
• (Difference: During merge, write only R tuples to result that are not in S.) 

– Hashing-based approach: 
• Partition R and S using hash function h1. 
• For each S-partition, build an in-memory hash table (using h2), scan the 

corresponding R-partition, and add tuples to table while discarding 
duplicates. 

• (Difference: Write only R tuples that are not in the hash table.) 
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Aggregate Operators 
• AVG, MIN, MAX, SUM, COUNT 
• Without GROUP BY: 

– In general, scan the whole relation, maintaining running information 
(e.g., <total, count> for AVG). 

– Index can be used if the search key includes all attributes in SELECT or 
WHERE clauses. 

• With GROUP BY: 
– Sort on group-by attributes, then scan relation and compute aggregate 

for each group.  (Can improve upon this by combining sorting and 
aggregate computation.) 

– Similar approach based on hashing on group-by attributes. 
– Given tree index whose search key includes all attributes in SELECT, 

WHERE and GROUP BY clauses, can do index-only scan;  if group-by 
attributes form prefix of search key, can retrieve data entries/tuples in 
group-by order. 
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Orchestrating Operator Evaluation 
• So far we have assumed that all database operators 

consume and produce files (i.e., on-disk items): 
 
 
 

• Obviously, this causes a lot of I/O. 
• In addition, we suffer from long response times: 

– An operator cannot start computing its result before all its 
input files are fully generated (i.e., “materialized”). 

– Effectively, all operators are executed in sequence. 
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Pipelined Evaluation 
• Alternatively, each operator could pass its result directly on 

to the next operator (without persisting it to disk first). 
• Don’t wait until entire file is created, but propagate output 

immediately. 
• Start computing results as early as possible, i.e., as soon as 

enough input data is available to start producing output. 
• This idea is referred to as pipelining. 
• The granularity in which data is passed may influence 

performance: 
– Smaller chunks reduce the response time of the system. 
– Larger chunks may improve the effectiveness of (instruction) 

caches. 
– Actual systems typically operate tuple at a time. 
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Unix: Pipelines of Processes 
• Unix uses a similar mechanism to communicate between 

processes (“operators”): 
 
 
 

• Execution of this pipe is driven by the rightmost operand: 
– To produce a line of output, cut only needs to see the next line of its 

input: grep is requested to produce this input. 
– To produce a line of output, grep needs to request as many input 

lines from the xargs process until it receives a line containing the 
string "XML". 

– ... 
– Each line produced by the find process is passed through the pipe 

until it reaches the cut process and eventually is echoed to the 
terminal. 
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The Volcano Iterator Model 
• The calling interface used in database execution run 

times is very similar to the one used in Unix process 
pipelines. 

• In databases, this interface is referred to as open-next-
close interface or Volcano iterator model. 

• Each operator implements the functions 
– open () : initialize the operator’s internal states. 
– next () : produce and return the next result tuple. 
– close () : clean up all allocated resources (typically after all  

    tuples have been processed). 
• All state is kept inside each operator. 
 
 Goetz Graefe, “Volcano - An Extensible and Parallel Query Evaluation System, 
     IEEE TKDE, 6:1, 1994. 
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Example: Selection 
• Input operator R, predicate p. 
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Example: Nested Loops Join 
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Blocking Operators 
• Pipelining reduces memory requirements and response 

time since each chunk of input is propagated to the 
output immediately. 

• Some operators cannot be implemented in such a way. 
– (external) sorting 
– hash join 
– grouping and duplicate elimination over unsorted input 

• Such operators are said to be blocking. 
• Blocking operators consume their entire input before 

they can produce any output. 
– The data is typically buffered (i.e., “materialized”) on disk. 
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Summary of Techniques 
• Divide and Conquer 

– Many database algorithms derive their power from 
chopping a large input problem into smaller, manageable 
pieces, e.g., 

• run generation and merging in external sorting, 
• partitioning according to a hash function (hash join). 

• Blocked I/O 
– Reading and writing chunks of pages at a time can 

significantly reduce the degree of random disk access. 
• This “trick” was applicable to most operators we saw. 

• Pipelined Processing 
– The Volcano iterator model can save memory and reduce 

response time by avoiding the full materialization of 
intermediate results if possible. 
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