
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture IV: Query Processing

Query Processing

• A DBMS needs to perform a number of tasks
– with limited memory resources,
– over large amounts of data,
– yet, as fast as possible.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 3

Query Processing

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 4

Query Processing: Our Agenda

• Efficient algorithms for implementing the main relational
operators
– Sorting
– Join
– Selection
– Projection
– Set Operators, Aggregate Operators

• Efficient techniques for executing compositions of
operators in a query plan
– Pipelining

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 5

Sorting
• Sorting is a core database operation with numerous

applications:
– An SQL query may explicitly request sorted output:

SELECT A,B,C FROM R ORDER BY A
– Bulk-loading a B+-tree pre-supposes sorted data.
– Duplicate elimination is particularly easy over sorted input:

SELECT DISTINCT A,B,C FROM R
– Some database operators rely on their input files being

already sorted (some of which we will see later in this course
such as sort-merge join).

• How can we sort a file that exceeds the available main
memory size by far (let alone the available buffer
manager space)?

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 6

Two-Way Merge Sort
• We start with two-way merge sort, which can sort files of

arbitrary size with only three pages of buffer space.
• Two-way merge sort sorts a file with N = 2k pages in multiple

passes, each of them producing a certain number of sorted sub-
files called “runs”.
– Pass 0 sorts each of the 2k input pages individually and in main memory,

resulting in 2k sorted runs.
– Pass n merges 2k-n pairs of runs into 2k-n sorted runs.
– Pass k leaves only one sorted run left (i.e., the overall sorted result).

• During each pass, we read/write every page in the file. Hence,
(k+1)*N page reads and (k+1)*N page writes are required to
sort the file.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 7

k+
1

pa
ss

es

Two-Way Merge Sort: Why 3 Buffer Pages?
• Pass 0: Read a page, sort it, write it.

– Only one buffer page is used.

• Pass 1, 2, …, k: Merge pairs of runs.
– Three buffer pages are used.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 8

Multiple Passes of Two-Way Merge Sort

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 9

Two-Way Merge Sort Example

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 10

Two-Way Merge Sort: I/O Behavior

• To sort a file of N pages, we need to read and write N
pages during each pass.

• Number of I/O operations per pass:
 2 . N
• Number of passes:

• Total number of I/O operations:

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 11

General External Merge Sort

• So far, we “voluntarily” used only three pages of buffer
space.

• How could we make effective use of a significantly
larger buffer pool (of, say, B memory frames)?

• There are basically two knobs that we can turn:
– Reduce the number of initial runs by using the full buffer

space during the in-memory sort.
– Reduce the number of passes by merging more than 2 runs at

a time.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 12

Reducing the Number of Initial Runs
• With B frames available in the buffer pool, we can read B

pages at a time during Pass 0 and sort them in memory:

• The number of initial runs determines the number of
passes we need to make.
– Total number of I/O operations:

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 13
number of passes

Reducing the Number of Passes
• With B frames available in the buffer pool, we can merge B-1

pages at a time (leaving one frame as a write buffer).

• With B pages of buffer space, we can do a (B-1)-way merge.
– Total number of I/O operations:

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 14
number of passes

General (“(B-1)-Way”) External Merge Sort: Recap

• To sort a file with N pages using B buffer pages:
– Pass 0: Use B buffer pages. Produce sorted runs of B pages

each.
– Pass 1, 2, …, etc.: Merge B-1 runs.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 15

External Sorting: I/O Behavior
• Number of I/O operations required for sorting N

pages with B buffer frames:

What is the access pattern of these I/O operations?
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 16

number of passes

Blocked I/O

• We could improve the I/O pattern by reading blocks of,
say, b pages sequentially at once during the merge
phases.
– Allocate b pages for each input (instead of just 1). In other

words, make each buffer (input/output) be a block of b pages.
– This reduces per-page I/O cost by a factor of ~ b.
– The price we pay is a decreased fan-in during merges (resulting

in an increased number of passes and more I/O operations).
– In practice, main memory sizes are typically large enough to

sort files with just 1 merge pass (even with blocked I/O).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 17

External Sorting: Discussion
• External sorting follows the principle of divide and conquer.

– This leads to a number of independent tasks.
– These tasks could be executed in parallel (think of multi-processor

machines or distributed databases).

• External sorting makes sorting very efficient. In most
practical cases, two passes suffice to sort even huge files.

• There are a number of tweaks to tune sorting even further:
– Replacement sort: Re-load new pages while writing out initial

runs in Pass 0, thus increasing the initial run length.
– Double buffering: Interleave page loading and input processing in

order to hide disk latency.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 18

Double Buffering

• To reduce wait time for I/O request to complete, we
can prefetch into a “shadow block”.
– Potentially, more passes; in practice, most files still sorted

in 2-3 passes.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 19

Query Plans
• External sorting is one

instance of a (physical)
database operator.

• Operators can be assembled
into a query execution plan.

• Each plan operator performs
one sub-task of a given query.
Together, the operators of a
plan evaluate the full query.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 20

• An example IBM DB2
 query execution plan:

 We’ll have a deeper look into join operators next.

The Join Operator
• The join operator is actually a short-hand for a

combination of cross product x and selection σp.

• One way to implement is to follow this equivalence:
1. Enumerate all records in the cross product of R and S.
2. Then pick those that satisfy p.

• More advanced algorithms try to avoid the obvious
inefficiency in Step 1 (the size of the intermediate
result is |R|*|S|).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 21

Nested Loops Join
• The nested loops join is the straight forward implementation

of the x-σ combination:

• Let NR and NS the number of pages in R and S; let pR and pS be
the number of records per page in R and S. The total number
of disk reads is then:

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 22

Nested Loops Join: I/O Behavior
• The good news about nljoin() is that it needs only

three pages of buffer space (two to read R and S, one
to write the result).

• The bad news is its enormous I/O cost:
– Assuming pR = pS = 100, NR = 1000, NS = 500, we need to

read 1000 + (100*1000*500) disk pages.
– With an access time of 10 ms for each page, this join would

take 140 hours!
– Switching the role of R and S to make S (the smaller one) the

outer relation does not bring any significant advantage (disk
pages = 500 + (100*500*1000)).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 23

Block Nested Loops Join
• Again we can save random access cost by reading R

and S in blocks of, say, bR and bS pages.

• R is still read once, but now with only disk seeks.
• S is scanned only times now, and we need to

perform disk seeks to do this.
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 24

Choosing bR and bS
• E.g., buffer pool with B = 100 frames, NR = 1000, NS = 500

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 25

bR + bS ~ 100

In-Memory Join Performance
• Line 4 in block_nljoin(R,S,p) implies an in-memory

join between the R- and S-blocks currently in memory.
• Building a hash table over the R-block can speed up this join

considerably.

• Note that this optimization only helps equi-joins.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 26

Using a Hash Table in
Block Nested Loops Join

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 27

Index Nested Loops Join
• The index nested loops join takes advantage of an index

on the inner relation (swap outer and inner if necessary):

• The index must be compatible with the join condition p.
– Hash indexes, e.g., only support equality predicates.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 28

I/O Behavior
• For each record in R, we use the index to find matching

S-tuples. While searching for matching S-tuples, we
incur the following I/O costs for each tuple in R:
1. Access the index to find its first matching entry: Nidx I/Os.
2. Scan the index to retrieve all n matching rids. The I/O cost

for this is typically negligible.
3. Fetch the n matching S-tuples from their data pages.

• For an unclustered index, this requires n I/Os.
• For a clustered index, this only requires I/Os.

• Note that (due to 2 and 3), the cost of an index nested
loops join becomes dependent on the size of the join
result.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 29

Index Access Cost
• If the index is a B+-tree index:

– A single index access requires the inspection of h pages (h:
B+-tree height).

– If we repeatedly probe the index, however, most of these
are cached by the buffer manager.

– The effective value for Nidx is around 1–3 I/Os.
• If the index is a hash index:

– Caching doesn’t help us here (no locality in accesses to hash
table).

– A typical value for Nidx is 1-2 I/Os (due to overflow pages).
• Overall, the use of an index (over, e.g., a block nested

loops join) pays off if the join picks out only few tuples
from a big table.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 30

Sort-Merge Join
• Join computation becomes particularly simple if both

inputs are sorted with respect to the join attribute(s).
– The merge join essentially merges both input tables, much like

we did for sorting.
– In contrast to sorting, however, we need to be careful

whenever a tuple has multiple matches in the other relation:

• Merge join is typically used for equi-joins only.
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 31

Merge Join

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 32

Sort-Merge Join: I/O Behavior
• If both inputs are already sorted and there are no

exceptionally long sequences of identical key values, the
I/O cost of a merge join is NR + NS (which is optimal).

• By using blocked I/O, these I/O operations can be done
almost entirely as sequential reads.

• Sometimes, it pays off to explicitly sort a (unsorted)
relation first, then apply merge join. This is particularly
the case if a sorted output is beneficial later in the
execution plan.

• The final sort pass can also be combined with merge join,
avoiding one round-trip to disk and back.
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 33

Hash Join
• Sorting effectively brought related tuples into spatial proximity,

which we exploited in the merge join algorithm.
• We can achieve a similar effect with hashing, too.
• Partition R and S into partitions R1, …, Rn and S1, …, Sn using the

same hash function (applied to the join attributes).

• Observe that:

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 34

Hash Join
• By partitioning the data, we reduced the problem of

joining to smaller sub-relations Ri and Si.
• Matching tuples are guaranteed to end up together in

the same partition.
• We only need to compute (for all i).
• By choosing n properly (i.e., the hash function h),

partitions become small enough to implement the
 as in-memory joins.
• The in-memory join is typically accelerated using a

hash table, too. We already did this for the block
nested loops join.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 35

Hash Join Algorithm

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 36

Hash Join: Buffer Requirements
• We’ve assumed that we can create the necessary n

partitions in one pass (note that: given B buffer pages,
we want the number of pages for partition Ri = NRi

 < (B-
1) (1 for input, 1 for output, and the rest for Ri)).

• This works out if R consists of at most ~ (B-1)2 pages.
– We can write out at most B-1 runs in one pass; each of them

should be at most B-1 pages in size.
– Hashing doesn’t guarantee us an even distribution. Since the

actual size of each run varies, R must actually be smaller than
(B-1)2.

• Larger input tables require multiple passes for
partitioning.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 37

Hash Join vs. Sort-Merge Join
• Provided sufficient buffer space, hash join and sort-

merge join both require 3*(NR + NS) I/Os.
– For reading and writing each relation once during the

partition/sort phase + reading each relation once during
join/merge).

• The cost for hash join could considerably increase if
partitions aren’t uniformly sized, whereas sort-merge
join is not sensitive to skew.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 38

The Selection Operator (σ)
• Example:
 SELECT *
 FROM Customer
 WHERE Zipcode ≥ 8800
• File scan is the basic approach:

– Scan the entire Customer relation, checking each tuple’s Zipcode and adding
the tuple to the result if its Zipcode is ≥ 8800.

– I/O cost ~ number of pages in Customer => Expensive!
• This approach always works (i.e., doesn’t make any assumptions

about file organization or index availability).
• We can improve this approach by exploiting the information in the

selection condition (e.g., inequality predicate on Zipcode) and
– leveraging file organization properties (e.g., physical sort order on Zipcode)
– using a suitable index if available (e.g., B+-tree on Zipcode)

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 39

Using Physical Sort Order for Selections

• Given a selection of the form σR.attr op value(R), if R is
physically sorted on R.attr, then instead of a full file
scan, we can do a binary search on R.attr followed by
a scan.

• Remember the “Sorted File” example of the Indexing
lecture:

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 40

Using an Index for Selections
• Given a selection of the form σR.attr op value(R):

1. if op is equality, then we can either use a B+-tree or a
hash index on R.attr.

2. if op is not equality, then we use a B+-tree index on
R.attr.

• Let’s consider the second case. Index is used as follows:
– Search the index to find the first qualifying entry.
– Then scan the leaf pages to retrieve all qualifying R tuples.

• The first step takes only 2-3 I/Os. The cost of the
second step depends on:
– the number of qualifying R tuples
– whether the index is clustered.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 41

Using a Clustered Index for Selections

• Clustering affects the retrieval cost greatly.
• Example:

– Consider “Zipcode ≥ 8800” on Customer.
– Assume that there are 100,000 customer tuples in

total occupying 1000 pages, and the selection
should return 10% of all Customer tuples.

– With a clustered B+-tree index: 100 + 2-3 I/Os
– With an unclustered B+-tree index: up to 10,000

I/Os!

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 42

Using an Unclustered Index for Selections

• A possible refinement to improve the I/O cost of
unclustered indexes:
– Find the qualifying index data entries.
– Sort the rid’s of the data entries by their page-id

components.
– Fetch rid’s in that order.

• The above approach ensures that when we bring in a

page, all qualifying tuples on this page are retrieved
one after the other, i.e., we look at each data page
only once (though the number of such pages is likely
to be higher than the case for using a clustered
index).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 43

General Selection Conditions

• In general, a selection condition is a Boolean
combination of terms with:
– conjunctions (e.g., R.attr1 op value1 AND R.attr2 op

value2)
– disjunctions (e.g., R.attr1 op value1 OR R.attr2 op value2)

• There are two approaches to evaluating selections
with general conjunctive conditions :
– based on the most selective access path
– by intersecting rid sets

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 44

Using Most Selective Access Paths
• Most selective access path is an index (or file scan) that we

estimate will require the fewest page I/Os.
• Find the most selective access path, retrieve tuples using it,

and apply any remaining terms that don’t match the index.
• Terms that match this index reduce the number of tuples

retrieved; other terms are used to discard some of the
retrieved tuples, but do not affect the number of tuples/
pages fetched.

• Example: “Zipcode ≥ 8800 AND Cust_ID=5555”.
– A B+-tree index on Zipcode can be used; then “Cust_ID=5555”

must be checked for each retrieved tuple.
– Alternatively, a hash index on Cust_ID could be used; “Zipcode ≥

8800” must then be checked.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 45

Intersecting rid Sets
• If we have two or more matching indexes that store

rid’s at the leaves:
– Get sets of rids of data records using each matching index.
– Then intersect these sets of rids.
– Retrieve the records and apply any remaining terms.

• Example: “Zipcode ≥ 8800 AND Cust_ID=5555”.
– If we have a B+-tree index on Zipcode and a hash index on

Cust_ID, we can retrieve rids of records satisfying “Zipcode
≥ 8800” using the first, rids of records satisfying
“Cust_ID=5555” using the second, then intersect and
retrieve the records.

• Refinement: Sort rid’s by page-id’s before the retrieval.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 46

Selections with Disjunctions

• Example: “Zipcode ≥ 8800 OR Cust_ID=5555”.

• If one of the terms in the disjunction is a file scan,
then the most selective access path has to be a file
scan.

• If every term has a matching index, we can retrieve
rid’s of candidate tuples using the indexes, take the
union of the rid’s, and retrieve the records.
– Refinement: Sort rid’s by page-id’s before the retrieval.

 Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 47

The Projection Operator
• Example query:
 SELECT DISTINCT R.sid, R.bid
 FROM Reserves R

• To implement projection, we have to do the following:
1. Remove unwanted attributes.
2. Eliminate any duplicates.

• Step 2 is the difficult part. Typically, systems try to avoid 2
whenever possible. In SQL, duplicate elimination has to be
asked for explicitly.

• There are two basic algorithms for projection:
– sorting-based
– hashing-based

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 48

Sorting-based Projection
• Given an input relation R of size N pages, the conceptual

sorting-based projection algorithm is as follows:
– Scan R and generate a set of tuples with only the desired

attributes (I/O cost = O(N)).
– Sort this set by the combination of all attributes (I/O cost =

O(NlogN)).
– Scan the sorted set, comparing adjacent tuples and eliminating

any duplicates (I/O cost = O(N)).

• We can get a better algorithm by adapting the external
sort algorithm to do projection with duplicate
elimination.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 49

Sorting-based Projection
• Two modifications on the original external sort

algorithm:
– Modify Pass 0 to eliminate unwanted fields. Thus, runs of

about 2B (as in external sort with replacement sort
refinement) pages are produced, but tuples in these runs
are smaller than the original input tuples.

– Modify merging passes to eliminate duplicates. Thus, the
number of result tuples is smaller than that of the input.

• Cost: In Pass 0, read original relation (size N), write
out the same number of smaller tuples. In merging
passes, fewer tuples are written out in each pass.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 50

Hashing-based Projection
• Consider an input relation R of size N pages and a memory

buffer of B pages. The algorithm is similar to hash-join.

• There are two phases in the algorithm:
1. Partitioning: Read R using 1 input buffer. For each tuple, discard

unwanted fields, apply hash function h1 to choose one of B-1 output
buffers. Result is B-1 partitions (of tuples with no unwanted fields). 2
tuples from different partitions are guaranteed to be distinct.

2. Duplicate elimination: For each partition, read it and build an in-
memory hash table, using hash function h2 (<> h1) on all fields, while
discarding duplicates.
• If partition does not fit in memory, can apply hash-based projection

algorithm recursively to this partition.

• Cost: For partitioning, read R, write out each tuple, but with
fewer fields. This is read in the next phase. (overall cost: O(N)).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 51

Discussion of Projection
• Sort-based approach is the standard.

– It handles skew (i.e., non-uniform distribution of hash
values) better.

– Result is sorted.
• If an index on the relation contains all wanted

attributes in its search key, can do index-only scan.
– Apply projection techniques to data entries (much

smaller!)
• If an ordered (i.e., tree) index contains all wanted

attributes as prefix of search key, can do even better:
– Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 52

Set Operators
• R∩S, R x S, R U S, R – S
• Intersection and Cross-product are special cases of Join (i.e.,

equality on all fields, no join condition, respectively).
• Union (and Difference) build on duplicate elimination.

– Sorting-based approach:
• Sort both relations on combination of all attributes.
• Scan sorted relations and merge them.
• (Difference: During merge, write only R tuples to result that are not in S.)

– Hashing-based approach:
• Partition R and S using hash function h1.
• For each S-partition, build an in-memory hash table (using h2), scan the

corresponding R-partition, and add tuples to table while discarding
duplicates.

• (Difference: Write only R tuples that are not in the hash table.)

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 53

Aggregate Operators
• AVG, MIN, MAX, SUM, COUNT
• Without GROUP BY:

– In general, scan the whole relation, maintaining running information
(e.g., <total, count> for AVG).

– Index can be used if the search key includes all attributes in SELECT or
WHERE clauses.

• With GROUP BY:
– Sort on group-by attributes, then scan relation and compute aggregate

for each group. (Can improve upon this by combining sorting and
aggregate computation.)

– Similar approach based on hashing on group-by attributes.
– Given tree index whose search key includes all attributes in SELECT,

WHERE and GROUP BY clauses, can do index-only scan; if group-by
attributes form prefix of search key, can retrieve data entries/tuples in
group-by order.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 54

Orchestrating Operator Evaluation
• So far we have assumed that all database operators

consume and produce files (i.e., on-disk items):

• Obviously, this causes a lot of I/O.
• In addition, we suffer from long response times:

– An operator cannot start computing its result before all its
input files are fully generated (i.e., “materialized”).

– Effectively, all operators are executed in sequence.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 55

Pipelined Evaluation
• Alternatively, each operator could pass its result directly on

to the next operator (without persisting it to disk first).
• Don’t wait until entire file is created, but propagate output

immediately.
• Start computing results as early as possible, i.e., as soon as

enough input data is available to start producing output.
• This idea is referred to as pipelining.
• The granularity in which data is passed may influence

performance:
– Smaller chunks reduce the response time of the system.
– Larger chunks may improve the effectiveness of (instruction)

caches.
– Actual systems typically operate tuple at a time.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 56

Unix: Pipelines of Processes
• Unix uses a similar mechanism to communicate between

processes (“operators”):

• Execution of this pipe is driven by the rightmost operand:
– To produce a line of output, cut only needs to see the next line of its

input: grep is requested to produce this input.
– To produce a line of output, grep needs to request as many input

lines from the xargs process until it receives a line containing the
string "XML".

– ...
– Each line produced by the find process is passed through the pipe

until it reaches the cut process and eventually is echoed to the
terminal.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 57

The Volcano Iterator Model
• The calling interface used in database execution run

times is very similar to the one used in Unix process
pipelines.

• In databases, this interface is referred to as open-next-
close interface or Volcano iterator model.

• Each operator implements the functions
– open () : initialize the operator’s internal states.
– next () : produce and return the next result tuple.
– close () : clean up all allocated resources (typically after all

 tuples have been processed).
• All state is kept inside each operator.

 Goetz Graefe, “Volcano - An Extensible and Parallel Query Evaluation System,
 IEEE TKDE, 6:1, 1994.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 58

Example: Selection
• Input operator R, predicate p.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 59

Example: Nested Loops Join

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 60

Blocking Operators
• Pipelining reduces memory requirements and response

time since each chunk of input is propagated to the
output immediately.

• Some operators cannot be implemented in such a way.
– (external) sorting
– hash join
– grouping and duplicate elimination over unsorted input

• Such operators are said to be blocking.
• Blocking operators consume their entire input before

they can produce any output.
– The data is typically buffered (i.e., “materialized”) on disk.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 61

Summary of Techniques
• Divide and Conquer

– Many database algorithms derive their power from
chopping a large input problem into smaller, manageable
pieces, e.g.,

• run generation and merging in external sorting,
• partitioning according to a hash function (hash join).

• Blocked I/O
– Reading and writing chunks of pages at a time can

significantly reduce the degree of random disk access.
• This “trick” was applicable to most operators we saw.

• Pipelined Processing
– The Volcano iterator model can save memory and reduce

response time by avoiding the full materialization of
intermediate results if possible.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 62

	Systems Infrastructure for Data Science
	Lecture IV: Query Processing
	Query Processing
	Query Processing
	Query Processing: Our Agenda
	Sorting
	Two-Way Merge Sort
	Two-Way Merge Sort: Why 3 Buffer Pages?
	Multiple Passes of Two-Way Merge Sort
	Two-Way Merge Sort Example
	Two-Way Merge Sort: I/O Behavior
	General External Merge Sort
	Reducing the Number of Initial Runs
	Reducing the Number of Passes
	General (“(B-1)-Way”) External Merge Sort: Recap
	External Sorting: I/O Behavior
	Blocked I/O
	External Sorting: Discussion
	Double Buffering
	Query Plans
	The Join Operator
	Nested Loops Join
	Nested Loops Join: I/O Behavior
	Block Nested Loops Join
	Choosing bR and bS
	In-Memory Join Performance
	Using a Hash Table in�Block Nested Loops Join
	Index Nested Loops Join
	I/O Behavior
	Index Access Cost
	Sort-Merge Join
	Merge Join
	Sort-Merge Join: I/O Behavior
	Hash Join
	Hash Join
	Hash Join Algorithm
	Hash Join: Buffer Requirements
	Hash Join vs. Sort-Merge Join
	The Selection Operator (σ)
	Using Physical Sort Order for Selections
	Using an Index for Selections
	Using a Clustered Index for Selections
	Using an Unclustered Index for Selections
	General Selection Conditions
	Using Most Selective Access Paths
	Intersecting rid Sets
	Selections with Disjunctions
	The Projection Operator
	Sorting-based Projection
	Sorting-based Projection
	Hashing-based Projection
	Discussion of Projection
	Set Operators
	Aggregate Operators
	Orchestrating Operator Evaluation
	Pipelined Evaluation
	Unix: Pipelines of Processes
	The Volcano Iterator Model
	Example: Selection
	Example: Nested Loops Join
	Blocking Operators
	Summary of Techniques

