Systems Infrastructure for Data Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture III: Multi-dimensional Indexing

Querying Multi-dimensional Data

```
SELECT *
        FROM CUSTOMERS
    WHERE ZIPCODE BETWEEN 8000 AND 8999
    AND REVENUE BETWEEN 3500 AND 6000
```

- This example query involves a range predicate in two dimensions.
- The general case: spatial queries over spatial data.

Spatial Data

- Spatial data is used to model multi-dimensional points, lines, rectangles, polygons, cubes, and other geometric objects that exist in space.
- Two main types:
- Point Data
- Region Data

Point Data

- Points in a multi-dimensional space
- No area or volume
- Examples:
- Raster data such as satellite imagery, where each pixel stores a directly measured value corresponding to a location in space (e.g., temperature, color)
- Feature vectors extracted from images, text, signals such as time series, where the point data is obtained by transforming a data object

Region Data

- Objects have spatial extent (i.e., occupy a certain region of space) characterized by their location and boundary.
- DB typically stores geometric approximations for objects called "vector data", which is constructed using points, line segments, polygons, etc.
- Examples:
- Geographic applications (roads and rivers represented as line segments; countries and lakes represented as polygons)
- Computer-Aided Design (CAD) applications (airplane wing represented as polygons)

A Familiar Example for Spatial Data with Points, Lines, and Regions

Spatial Queries

- Spatial queries refer to queries on spatial data.
- Three main types:
- Spatial range queries
- Nearest neighbor queries
- Spatial join queries

Spatial Range Queries

- A spatial range query has an associated region (i.e., location and boundary).
- The query should return all regions that overlap the specified range or all regions contained within the specified range.
- Examples: relational queries, GIS queries, CAD/CAM queries.
- Find all employees with salaries between \$50K and \$60K, and ages between 40 and 50 .
- Find all cities within 100 kilometers of Freiburg.
- Find all rivers in Baden-Württemberg.

Nearest Neighbor Queries

- A nearest neighbor query (k-NN) returns the k objects that have the smallest distance to a given reference object.
- Results must be ordered by proximity.
- Examples: GIS queries, similarity search in multi-media databases
- Find the 10 cities nearest to Freiburg.
- Find the 10 images that are the most similar to this picture of the criminal suspect (using feature vector point data for images).

Spatial Join Queries

- In a spatial join query, the join condition involves regions and proximity.
- These queries often times involve self-join operations and are expensive to evaluate.
- Example: Consider a relation with points representing a city or a mountain.
- Find pairs of cities within 200 kilometers of each other.
- Find all cities near a mountain.
- It gets more complex if we represent objects with region data instead of point data.

Spatial Applications Recap

- Traditional relations with k fields \sim collections of k dimensional points
- Geographic Information Systems (GIS)
- Geo-spatial information (2- and 3-dim datasets)
- All types of spatial queries and data are common.
- Computer-Aided Design/Manufacturing (CAD/CAM)
- Store spatial objects such as surface of airplane wing
- Both point and range data.
- Range queries and spatial join queries are the most common.
- Multi-media Databases
- Images, audio, video, text, etc. stored and retrieved by content
- First converted to feature vector form (high dimensionality)
- Nearest-neighbor queries (for querying similarity) are the most common.

Many Solutions for Multi-dimensional Indexing

Quad Tree [Finkel 1974]
R-tree [Guttman 1984]
R+-tree [Sellis 1987]
R*-tree [Geckmann 1990]
Vp-tree [Chiueh 1994]
UB-tree [Bayer 1996]
SS-tree [White 1996]
M-tree [Ciaccia 1996]
Pyramid [Berchtold 1998]
DABS-tree [Bohm 1999]
Slim-tree [Faloutsos 2000]
P-Sphere-tree [Goldstein 2000]

K-D-B-Tree [Robinson 1981]
Grid File [Nievergelt 1984]
LSD-tree [Henrich 1989]
hB-tree [Lomet 1990]
TV-tree [Lin 1994]
hB--tree [Evangelidis 1995]
X-tree [Berchtold 1996]
SR-tree [Katayama 1997]
Hybrid-tree [Chakrabarti 1999]
IQ-tree [Bohm 2000]
landmark file [Bohm 2000]
A-tree [Sakurai 2000]
$>$ Note that none of these is a "fits all" solution.

Can't we just use a B^{+}-tree?

- Maybe two B^{+}-trees, over ZIPCODE and REVENUE each?

- Can only scan along either index at once, and both of them produce many false hits.
- If all you have are these two indexes, you can do index intersection:
- Perform both scans in separation to obtain the rids of candidate tuples.
- Then compute the (expensive!) intersection between the two rid lists (IBM DB2: IXAND - index AND'ing).

Maybe with a Composite Key?

- Exactly the same thing!
- Indexes over composite keys are not symmetric: The major attribute dominates the organization of the B+-tree.
- Again, you can use the index if you really need to. Since the second argument is also stored in the index, you can discard non-qualifying tuples before fetching them from the data pages.

Single-dimensional Indexes

- B^{+}-trees are fundamentally single-dimensional indexes.
- When we create a composite search key in \mathbf{B}^{+}-tree, e.g., an index on <age, sal>, we effectively linearize the 2-dimensional space, since we sort the data entries first by age and then by sal.
- Consider the following data entries:
$<11,80>$
$<12,10>$
$<12,20>$
$<13,70>$

Multi-dimensional Indexes

- A multi-dimensional index clusters entries so as to exploit "nearness" in multi-dimensional space.
- Keeping track of entries and maintaining a balanced index structure presents a challenge.
- Consider the following <age, sal> data entries:

$<11,80>$	
$<12,10>$	
$<12,20>$	
$<13,70>$	spatial clusters in
a	

Example Queries (B^{+}-tree vs. Multi-dim)

- age < 12
- B^{+}-tree performs better than the multi-dim index.
- sal < 20
- B^{+}-tree can not be used, since age is the first field in the search key.
- age < 12 AND sal < 20
- B^{+}-tree effectively utilizes only the index on age, and performs badly if most tuples satisfy age <12.
$>$ If almost all data entries are to be retrieved in age order, then the multi-dim spatial index is likely to be slower than the B^{+}-tree index.

Multi-dimensional Indexes

- B^{+}-trees can answer one-dimensional queries only.
- We'd like to have a multi-dimensional index structure that
- is symmetric in its dimensions,
- clusters data in a space-aware fashion,
- is dynamic with respect to updates, and
- provides good support for useful queries.
- We'll start with data structures that have been designed for in-memory use, then tweak them into disk-aware database indexes.

Point Quad Trees

- A binary tree in k dimensions => 2^{k}-ary tree
- Each data point partitions the data space into 2^{k} disjoint regions.
- In each node, a region points to another node (representing a refined partitioning for that region) or to a special null value.
$>$ Finkel and Bentley, "Quad Trees: A Data Structure for Retrieval on Composite Keys", Acta Informatica, vol. 4, 1974.

Searching a Point Quad Tree

1 Function: p_search (q, node)
2 if q matches data point in node then
$3 L$ return data point;
4 else
$5 \quad P \leftarrow$ partition containing q;
6 if P points to null then return not found; else
node ${ }^{\prime} \leftarrow$ node pointed to by P; return p_search (q, node') ;

Inserting into a Point Quad Tree

- Inserting a point $q_{\text {new }}$ into a quad tree happens analogously to an insertion into a binary tree:
- Traverse the tree just like during a search for $q_{\text {new }}$ until you encounter a partition P with a null pointer.
- Create a new node n^{\prime} that spans the same area as P and is partitioned by $q_{\text {new }}$, with all partitions pointing to null.
- Let P point to n^{\prime}.
- Note that this procedure does not keep the tree balanced.

Evaluating Range Queries with a Point Quad Tree Index

- To evaluate a range query (i.e., rectangular regions), we may need to follow several children of a given quad tree node.

1 Function: r_search (Q, node)
2 if data point in node is in $\underset{Q}{ }$ then
3 append data point to result ;
4 foreach partition P in node that intersects with Q do
$5 \mid$ node ${ }^{\prime} \leftarrow$ node pointed to by P;
6 r_search (Q, node') ;

1 Function: regionsearch (Q)
2 return r_search (Q, root);

Range Query Example

Point Quad Trees

- Point Quad Trees
\checkmark are symmetric with respect to all dimensions
\checkmark can answer point queries and region queries
- However,
\boldsymbol{x} the shape of a quad tree depends on the insertion order of its content, in the worst case degenerates into a linked list
\mathbf{x} null pointers are space inefficient (particularly for large k)
X they can only store point data
- Also, quad trees are designed for main memory.

k-d Trees

- Index k-dimensional data, but keep the tree binary.
- For each tree level I, use a different discriminator dimension $d_{/}$along which to partition.
- Typically: round robin
> Bentley, "Multidimensional Binary Search Trees Used for Associative Searching", Communications of the ACM, 18:9, 1975.

k-d Trees

- k-d trees inherit the positive properties of the point quad trees, but improve on space efficiency.
- For a given point set, we can also construct a balanced k-d tree (v_{i} denotes coordinate i of point v):

1 Function: kdtree (pointset, level)
2 if pointset is empty then
3 return null ;
4 else
$5 \quad p \leftarrow$ median from pointset (along $d_{\text {level }}$);
6
points ${ }_{\text {left }} \leftarrow\left\{v \in\right.$ pointset where $\left.v_{d_{\text {level }}}<p_{d_{\text {level }}}\right\}$;
points $_{\text {right }} \leftarrow\left\{v \in\right.$ pointset where $\left.v_{d_{\text {level }}} \geq p_{d_{\text {level }}}\right\}$;
$n \leftarrow$ new k-d tree node, with data point p;
n.left \leftarrow kdtree points $_{\text {left }}$, level +1);
n.right \leftarrow kdtree (points ${ }_{\text {right }}$, level +1);
return n;

Balanced k-d Tree Construction

Resulting tree shape:

K-D-B Trees

- k-d trees improve on some of the deficiencies of point quad trees:
\checkmark We can balance a k-d tree by re-building it. (For a limited number of points and in-memory processing, this may be sufficient.)
\checkmark We are no longer wasting big amounts of space.
- It's time to bring k-d trees to the disk. The K-D-B Tree
- uses page as an organizational unit (e.g., each node in the K-D-B tree fills a page)
- uses a k-d tree-like layout to organize each page
> John T. Robinson, "The K-D-B Tree: A Search Structure for Large Multidimensional Dynamic Indexes", SIGMOD'81.

K-D-B Trees

region pages:

- contain entries〈region, pagelD>
- no null pointers
- form a balanced tree
- all regions disjoint and rectangular
point pages:
- contain entries <point, rid〉
$-\sim \mathrm{B}^{+}$-tree leaf nodes

K-D-B Tree Operations

- Searching a K-D-B Tree is straight forward:
- Within each page determine all regions R_{i} that contain the query point q (intersect with the query region Q).
- For each of the R_{i}, consult the page it points to and recurse.
- On point pages, fetch and return the corresponding record for each matching data point p_{i}.
- When inserting data, we keep the K-D-B Tree balanced, much like we did in the B^{+}-tree:
- Simply insert a <region, pageID> (<point, rid>) entry into a region page (point page) if there is sufficient space.
- Otherwise, split the page.

Splitting a Point Page

- Splitting a point page p :

1. Choose a dimension i and an i-coordinate x_{i} along which to split, such that the split will result in two pages ($p_{\text {left }}$ and $\left.p_{\text {right }}\right)$ that are not overfull.
2. Move data points with $p_{i}<x_{i}$ and $p_{i} \geq x_{i}$ to new pages $p_{\text {left }}$ and $p_{\text {right }}$, respectively.
3. Replace <region, $p_{i}>$ in the parent of p with <left region, $p_{\text {left }}><$ right region, $p_{\text {right }}>$.

- Step 3 may cause an overflow in p's parent and, hence, lead to a split of a region page.

Splitting a Region Page

- Splitting a point page and moving its data points to the resulting pages is straight forward.
- In case of a region page split, by contrast, some regions may intersect with both sides of the split.

- Such regions need to be split, too.
- This can cause a recursive splitting downward in the tree.

Example Region Page Split

new root

- Region page 1 => pages 1 and 7 (point pages not shown)
- Root page $0=>$ pages 0 and 6 (creation of new root)

K-D-B Trees

- K-D-B Trees
\checkmark are symmetric with respect to all dimensions
\checkmark cluster data in a space-aware and page-oriented fashion
\checkmark are dynamic with respect to updates
\checkmark can answer point queries and region queries
- However,
X we still don't have support for region data and
x K-D-B Trees (like k-d trees) won't handle deletes dynamically.
- This is because we always partitioned the data space such that
- every region is rectangular
- regions never intersect

R-Trees

- R-trees do not have the disjointness requirement.
- R-tree inner or leaf nodes contain <region, pageID> and <region, rid> entries, respectively. region is the minimum bounding rectangle that spans all data items reachable by the respective pointer.
- Every node contains between d and $2 d$ entries except the root node (as in B^{+}-tree).
- Insertion and deletion algorithms keep an R-tree balanced at all times.
- R-trees allow the storage of point and region data.
> Antonin Guttman, "R-Trees: A Dynamic Index Structure for Spatial Searching", SIGMOD'84.

R-Tree Example

Searching an R-Tree

- Start at the root.
- If current node is non-leaf, for each entry $<E, p t r>$, if region E overlaps Q, search subtree identified by ptr.
- If current node is leaf, for each entry $\langle E$, rid>, if E overlaps Q, rid identifies an object that might overlap Q.
- While searching an R-tree, we may have to descend into more than one child node for point and region queries (in contrast, a B^{+}-tree equality search goes to just one leaf).

Inserting into an R-Tree

- Inserting into an R-tree very much resembles B^{+}-tree insertion:

1. Choose a leaf node n to insert the new entry.

- Try to minimize the necessary region enlargement(s).

2. If n is full, split it (resulting in n and n^{\prime}) and distribute old and new entries evenly across n and n^{\prime}.

- Splits may propagate bottom-up and eventually reach the root (as in B^{+}-tree).

3. After the insertion, some regions in the ancestor nodes of n may need to be adjusted to cover the new entry.

Splitting an R-Tree Node

- To split an R-tree node, we have more than one alternative.

bad split

good split
- Heuristic: Minimize the totally covered area.
- Goal: To reduce the likelihood of both regions being searched on subsequent queries. Redistribute so as to minimize the total area.
- Exhaustive search for the best split is infeasible. Guttman proposes two ways to approximate the search. Follow-up papers (e.g., the R*-tree paper) aim at improving the quality of node splits.

Deleting from an R-Tree

- All R-tree invariants are maintained during deletions.

1. If an R-tree node n underflows (i.e., less than d entries are left after a deletion), the whole node is deleted.
2. Then, all entries that existed in n are re-inserted into the Rtree, as discussed before.

- Note that Step 1 may lead to a recursive deletion of n 's parent.
- Deletion, therefore, is a rather expensive task in an R-tree.

R-Tree Variants

- The R*-tree uses the concept of forced reinserts to reduce overlap in tree nodes. When a node overflows, instead of splitting:
- Remove some (say, 30\% of the) entries and reinsert them into the tree.
- Could result in all reinserted entries fitting on some existing pages, avoiding a split.
- R^{*}-trees also use a different heuristic, minimizing box perimeters rather than box areas during insertion.
- Another variant, the \mathbf{R}^{+}-tree, avoids overlap by inserting an object into multiple leaves if necessary.
- Searches now take a single path to a leaf, at cost of redundancy.

Indexing High-dimensional Data

- Typically, high-dimensional datasets are collections of points, not regions.
- Example: Feature vectors in multi-media applications
- Very sparse
- Nearest neighbor queries are common.
- R-tree becomes worse than sequential scan for most datasets with more than a dozen dimensions.
- As dimensionality increases, contrast (i.e., the ratio of distances between nearest and farthest points) usually decreases; "nearest neighbor" is not meaningful.
- In any given data set, it is advisable to empirically test contrast.

High Dimensional Spaces

- For large k, all the techniques we discussed become ineffective:
- Example: for $k=100$, we'd get $2^{100} \sim 10^{30}$ partitions per node in a point quad tree. Even with billions of data points, almost all of these are empty.
- Consider a really big search region, cube-sized covering 95\% of the range along each dimension:

For $k=100$, the probability of a point being in this region is still only $0.95^{100} \approx 0.59 \%$.

- We experience the curse of dimensionality here.

Bit Interleaving

- We saw earlier that a B^{+}-tree over concatenated fields $<a, b>$ doesn't help our case, because of the asymmetry between the role of a and b in the index.
- What happens if we interleave the bits of a and b (hence, make the B^{+}-tree "more symmetric")?

Z-Ordering

- Both approaches linearize all coordinates in the value space according to some order.
- Bit interleaving leads to what is called the Z-order.
- The Z-order (largely) preserves spatial clustering.

B^{+}-trees over Z-Codes

- Use a \mathbf{B}^{+}-tree to index Z-codes of multi-dimensional data.
- Each leaf in the B^{+}-tree describes an interval in the Z -space.
- Each interval in the Z -space describes a region in the multidimensional data space.

- To retrieve all data points in a query region Q, try to touch only those leaf pages that intersect with Q.

Summary

- Point Quad Tree
- k-dimensional analogy to binary trees; main memory only.
- k-d Tree, K-D-B Tree
- k-d tree: Partition space one dimension at a time (roundrobin).
- K-D-B Tree: B^{+}-tree-like organization with pages as nodes; nodes use a k-d-like structure internally.
- R-Tree
- Regions within a node may overlap; fully dynamic; for point and region data.
- Curse Of Dimensionality
- Most indexing structures become ineffective for large k; fall back to sequential scanning and approximation/compression.

