
Module 4

Implementation of XQuery

Part 3: Support for Streaming XML

Motivation

• XQuery used in very different environments:
– XQuery implementations on XML stored in databases

(with indexes).

– Main-memory XQuery implementations on XML in
files, sent as streams, computed on the fly…

• Example Applications:
– Web Services (e.g., ActiveXML).

– Telecommunication apps (XML messages).

– XML documents.

– Information Integration.

 9/11/2003 2

Challenges to Address

• Efficient Representation: Compression

• Matching Content/Message Brokering

• Discarding unneeded Data: Projection

Reducing the space overhead

• XML uses rather verbose syntax

– High bandwidth overhead

– Slow parsing speed

• Excludes usage in resource-constrained
environments

• Compress XML to trade additional CPU time to
storage/transfer cost

5

Classification of Compression

• XML knowledge

– General Text Compression

– Schema-dependent compression

– Schema-independent compression

• Queryable

– Archive-only

– Homomorphic compression

– Non-homomorphic compression

Compression

• Classic approaches: e.g., Lempel-Ziv, Huffman
– decompress before queries
– miss special opportunities to compress XML structure
– Not Queryable at all

• XMill: Liefke & Suciu 2000
– Idea: separate data and structure -> reduce entropy
– separate data of different type -> reduce entropy
– specialized compression algo for structure, data types

• Assessment
– Very high compression rates for documents > 20 KB
– Decompress before query processing (bad!)
– Indexing the data not possible (or difficult)

6

7

Xmill Architecture

XML

Parser
Path Processor

Cont. 1 Cont. 2 Cont. 3 Cont. 4

Compr. Compr. Compr. Compr.

Compressed XML

8

XMill Example

<book price=„69.95“>

 <title> Die wilde Wutz </title>

 <author> D.A.K. </author>

 <author> N.N. </author>

</book>

– Dictionary Compression for Tags:
book = #1, @price = #2, title = #3, author = #4

– Containers for data types:
ints in C1, strings in C2

– Encode structure (/ for end tags) - skeleton:
gzip(#1 #2 C1 #3 C2 / #4 C2 / #4 C2 / /)

9

Querying Compressed Data
(Buneman, Grohe & Koch 2003)

• Idea:
– extend Xmill

– special compression of skeleton

– lower compression rates,

– but no decompression for XPath expressions

bib

book

title auth. auth.

book

title auth. auth.

bib

book

title auth.

2

2

uncompressed compressed

Compression

• XML-aware compressors outperform text
compressors

• Queryable compressors show worse
compression than archival

• Not much adoption outside research

• Binary XML

– picks up many compression ideas

– Now a W3C standard: EXI

XML
Message
Broker

<?xml version="1.0" ?>

<nitf version="-//IPTC-NAA//DTD NITF-XML 2.1//EN" >

 <head>

 <tobject tobject.type="news">

 <tobject.subject tobject.subject.type="Weather"/>

 <tobject.subject tobject.subject.matter="Statistics"/>

 </tobject>

 <docdata doc-idref="iptc.32.a">

 <doc-id id-string="iptc.32.b" />

 <evloc city="Norfolk" state-prov="VA" iso-cc="US" />

 <series series.name="Tide Forecasts" series.part="5"/>

 </docdata>

 </head>

 <body>

 <body.head>

 <hedline><hl1>Weather and Tide Updates for Norfolk</hl1>

 </hedline>

 <byline>By <person>John Smith</person></byline>

 </body.head> …….

client
queries

query
results

Content Matching:
XML Message Brokering

XML
messages

<?xml version="1.0" ?>

<nitf version="-//IPTC-NAA//DTD NITF-XML 2.1//EN" >

 <head>

 <tobject tobject.type="news">

 <tobject.subject tobject.subject.type="Weather"/>

 <tobject.subject tobject.subject.matter="Statistics"/>

 </tobject>

</head>

 <body>

 <body.head>

 <hedline><hl1>Weather and Tide Updates for Norfolk</hl1>

 </hedline>

</body.head> …….

<?xml version="1.0" ?>

<nitf version="-//IPTC-NAA//DTD NITF-XML 2.1//EN" >

<body>

 <body.head>

 <hedline><hl1>Weather and Tide Updates for Norfolk</hl1>

 </hedline>

 <byline>By <person>John Smith</person></byline>

 </body.head> …….

Q1

Q2

Q3

Q4





Filtering

Transformation

Routing

Broker

Broker
Broker

Broker

Broker

Broker

Message-based Middleware

• Publish/Subscribe
– Subscribers express interests, later notified of relevant

data from publishers.
– Loose coupling at the communication level.

• XML, a de facto standard for online data exchange
– Flexible, extensible, self-describing.
– Enhanced functionality: XSLT, XQuery, …
– Loose coupling at the content level.

• XML message brokering
– Publish/subscribe + XML = flexibility at

communication and content levels.
– Declarative XML queries provide high functionality.

• Message brokering supports a large number
of emerging distributed applications:
– Application integration

– Personalized newspaper generation

– Stock tickers

– Network monitoring

– Mobile services

– …

New Applications

XML

Message

Broker

Buyer 1

Buyer 2

Buyer 3

Buyer 4

Q1

Q2

Q3

Q4

 Supplier A

 Supplier B

 Supplier C

 Supplier D

Problem Statement

Inputs:
(1) continuously arriving XML messages (usually small)

 (2) a set of XQuery queries representing client interests

Main functions of an XML message broker:
– Filtering: matches messages to query predicates.

– Transformation: restructures the matching messages.

– Routing: directs messages to queries over a network of brokers.

Challenges: providing this functionality for

– large numbers of queries (e.g., 10’s thousands of them)

– high volumes of XML messages (e.g., tens or hundreds/sec)

Design Space

TIBCO

MQ Pub/Sub

JMS Pub/Sub

Siena

Gryphon

xmlBlaster

Snoeren et al.[SOSP01]

Le Subscribe YFilter

[VLDB03]

ONYX
[VLDB04]

Oracle Advanced

Queuing

Subject-
based

Predicate-
based

XML
filtering

XML filtering
& transformation

Yes

No

Distribution

Expressive-
ness

Subject =

“Stock”

Yes No

(a1, v1)
(a2, v2)
(a3, v3)

….
(an, vn)

Yes No

<?xml version="1.0" ?>

<nitf version="-//DTD NITF-XML 2.1//EN" >

 <head>

 <tobject tobject.type="news">

 <tobject.subject

 tobject.subject.type="Weather"/>

 </tobject>

 </head>

 <body>

 <hedline><hl1>Weather and Tide

 Updates for Norfolk</hl1>

 </body>

</nitf>

Yes No

<?xml version="1.0" ?>

<nitf version="-//DTD NITF-XML 2.1//EN" >

 <head>

 <tobject tobject.type="news">

 <tobject.subject

 tobject.subject.type="Weather"/>

 </tobject>

 </head>

</nitf>

<?xml version="1.0" ?>

<nitf version="-//DTD NITF-XML 2.1//EN" >

 <head>

 <tobject tobject.type="news">

 <tobject.subject

 tobject.subject.type="Weather"/>

 </tobject>

 </head>

 <body>

 <hedline><hl1>Weather and Tide

 Updates for Norfolk</hl1>

 </body>

</nitf>

XFilter

XTrie

IndexFilter
XMLTK]

YFilter [ICDE02,TODS03]

YFilter & ONYX

• YFilter, a system for XML filtering and transformation.

• Filtering exploiting sharing:
– Order-of-magnitude performance benefits over previous work.

– Scalable to 100’s thousands of distinct queries.

– YFilter 1.0 release: used in research projects and product development,
being integrated into Apache Hermes for WS-Notification.

• Transformation exploiting sharing:
– The first algorithm for transformation for a large set of queries.

– Scalable up to 10’s of thousands of distinct queries.

• Routing (ONYX): an overlay network of brokers with routing abilities,

providing flexible, Internet-scale XML dissemination services.

The Filtering Problem

• Full XPath/XQuery too expensive 

• Query language: path expression =

 ((‘/’ | ‘//’) (ElementName | ‘*’) Predicate*)+

• The filtering problem:

– Given (1) a set Q = Q, …, Qn of path queries, where each Qi
has an associated query identifier, and (2) a stream of XML
documents.

– Compute, for each document D, the set of query identifiers
corresponding to the XPath queries that match D.

Constructing an FSM for a Query

Location
steps

FSM
fragments

/a

//a

/*

a

*
a 

*

Map location steps to FSM fragments.

Concatenate FSM fragments for location steps in a query.

a

*
b 

a
*

b  Query “/a//b”

Key Idea: represent query paths as state machine that are driven by the XML
parser (SAX)

• Simple paths: ((“/” | “//”) (ElementName | “*”))+

• A finite state machine (FSM) for each path: mapping steps to machine states.

YFilter builds a single combined FSM for all paths!

 Complete prefix sharing among paths.

 Nondeterministic Finite Automaton (NFA)-based implementation: a
small machine size, flexible, easy to maintain, etc.

 Output function (Moore machine): accepting states → partition of
query ids.

Constructing the Combined FSM

a

 {Q1}

b Q1=/a/b

Q2=/a/c

Q3=/a/b/c

Q4=/a//b/c

Q5=/a/*/b

Q6=/a//c

Q7=/a/*/*/c

Q8=/a/b/c

a

 {Q2}
c

c
 {Q3}



{Q4}
c

b *

*

b {Q5}

c
 {Q6}

* c
{Q7}

 {Q3, Q8}

YFilter uses a stack mechanism to handle XML
• Backtracking in the NFA.

• No repeated work for the same element!

 <c> </c> An XML fragment <a> <c> </c> …

Execution Algorithm

read <a>

2

1

read </c>

3 9 7 6

2

1

initial

1

Runtime Stack NFA

match Q1

9

read

 3

2

1

6 7

read <c>

5

3 9 7 6

2

1

12

8 6

match Q3 Q8

10

11

Q5 Q6 Q4

c

c
b

 {Q1}

 {Q3, Q8}

 {Q2} {Q4}

 {Q6}

 {Q5}
{Q7}

a *

c

b

* c

c

*



b

1

4

3 5

8

6

12

10

2
7

11

13

9

DFA vs. NFA

• DFA has exponential number of states

– Large main-memory requirements

– Or I/O needed in order to process messages

• DFA has high maintenance costs

– Need to rerun Myhill/Büchi algorithm, everytime a new
profile is posted or deleted

• NFA is slower than DFA

• NFA: entries in stack can grow exponentially

– In practice, XML documents are fairly flat

• NFA is the clear winner (current trade-offs)!

Performance results for YFilter

• YFilter scales to 150,000 distinct path queries w/o predicates.
• Consistently takes 30 msec or less.

• Achieves a 25x performance improvement over previous

approaches

• Deep element nesting: No exponential blow-up of active states.

• Sensitivity to ‘*’ and “//”: Little, due to effective prefix sharing.

• NFA maintenance for query updates: Tens of milliseconds for

inserting 1000 queries.

• YFilter handles 100’s thousands of queries with predicates.
• No real competition before

• Mechanism not shown here. What are the difficulties?

XML Projection

24

Memory Limitations

• Main-memory XQuery
implementations cannot
handle large documents.

• Complex XQuery
expressions require
materialization (DOM).

• DOM is the bottleneck.

XQuery
Processors

Maximum
Document Size

Quip

Kweelt

Galax

Xalan (XSLT)

7Mb

17Mb

33Mb

75Mb

XMark Query 1 on an IBM laptop
 T23 (256Mb RAM)

25

Projection: Example

<site>
 <regions>...</regions>
 <people>
 ...
 <person id="person120">
 <name>Wagar Bougaut</name>
 <emailaddress>mailto:Bougaut@wgt.edu</emailaddress>
 </person>
 <person id="person121">
 <name>Waheed Rando</name>
 <emailaddress>mailto:Rando@pitt.edu</emailaddress>
 <address>
 <street>32 Mallela St</street>
 <city>Tucson</city>
 <country>United States</country>
 <zipcode>37</zipcode>
 </address>
<creditcard>7486 5185 1962 7735</creditcard>
<profile income="59224.09">
...

<site>
 <regions>...</regions>
 <people>
 ...
 <person id="person120">
 <name>Wagar Bougaut</name>
 <emailaddress>mailto:Bougaut@wgt.edu</emailaddress>
 </person>
 <person id="person121">
 <name>Waheed Rando</name>
 <emailaddress>mailto:Rando@pitt.edu</emailaddress>
 <address>
 <street>32 Mallela St</street>
 <city>Tucson</city>
 <country>United States</country>
 <zipcode>37</zipcode>
 </address>
<creditcard>7486 5185 1962 7735</creditcard>
<profile income="59224.09">
...

XMark Query 1
for $b in /site/people/person[@id=“person0”]
return $b/name

Less than 2% of original
document !

26

Projection: Intuition

• Given a query:
For $b in /site/people/person[@id=“person0”]

Return $b/name

– Most nodes in the input document(s) are not required.
– Projection operation removes unnecessary nodes.
– Evaluation of the query on projected document yields the same

results as on the original document.

• How it works:
– Projection defined by set of paths.
– Static analysis infers sets of paths used within a query.

/site/people/person

/site/people/person/@id

/site/people/person/name

27

Projection: Challenges

• For an XQuery expression, compute all paths that
allow to reach nodes required to evaluate the
expression.

• XQuery is complex:
– Variables

– Composition

– Syntactic Sugar

– Complex expressions

• Have to be able to analyze all of XQuery.

28

XML Projection

• Similar to relational projection:
– One key operation.

– Prunes unnecessary part of the data.

– Essential for memory management.

• Specific problems related to XML:
– Projection must operate on trees.

– Requires analysis of the query.

– Need to address XQuery complexity.

29

Notation

• Projection Paths:

– Path expressions are noted using XPath semantics
(/site/people/person/@id)

– “#” notation used when subtree should be kept
(/site/people/person/name#)

• Static Analysis: inference rule notation

 Expr => Paths

30

Static Analysis: Variables

• Variables can be bound to nodes coming form
different paths.
for $b in /site/people/(teacher | student)

return $b/name

• Analysis must remember paths to which variable was
bound
/site/people/teacher

/site/people/student

• Environment is maintained during path analysis:
 Env |- Expr => Paths

31

Static Analysis: Example

• Literals do not require any paths:

• Paths are propagated in a sequence:

Env |- Literal => {}

Env |- Expr1 => Paths1

Env |- Expr2 => Paths2

Env |- Expr1,Expr2 => Paths1 U Paths2

32 => {}

/a/b => {/a/b}

/a/d => {/a/d}

/a/b,/a/d
=> {/a/b,/a/d}

32

Static Analysis: Composition

(if (count (/site/regions/*) = 3)

then /site/people/person

else /site/open_auctions/open_auction)/@id

• /@id does not apply to /site/regions/*
• Final set of paths should be

/site/regions/*

/site/people/person/@id

/site/open_auctions/open_auction/@id

• Need to differentiate two sets of paths during analysis:
– Returned Paths: returned by the expression, further path steps are

applied on them.
– Used Paths: used to compute the expression.

Env |- Expr => Paths using UPaths

33

XQuery Processing Architecture

XQuery

Parser

Query

Evaluation

SAX Parser
XML Data

Model Loader

XQuery

Expression

Input XML

Document

XQuery Abstract

Syntax tree

XML Query

Result

SAX

Events

Path

Analysis

Projection Paths

Projected Data

Model

Document

Data Model

34

Loading Algorithm: Description

• Input:
– Set of projection paths.
– Document SAX events.

• Decide on action to apply on document nodes:
– Skip: ignore node and its subtree.
– KeepSubtree: keep node and its subtree.
– Keep: keep node without its subtree.
– Move: keep processing SAX events. Current node is

only kept if some of its children are kept.

• Keep a set of current paths.

35

Loading Algorithm: Example

Projection Paths:
/a/b/c#
/a/d

Document Stream

<a> <g> </g> </f> <f> </c> <c> <d> </d> <e> </e>

Current Paths:

Loaded Nodes:

/b/c#
/d

Action: Move Skip

/c#

Keep Subtree

c

f

Keep

b d

/a/b/c#
/a/d

a

Similar to XML filtering algorithms

Limitations:
 - Backward Axis!
 - Number of current paths can
 be huge (descendant axis)

36

Experiments: Settings

• XML Projection Evaluation:
– Effectiveness: projection impact on different

queries.

– Maximum document size: largest document that
can be processed.

– Processing time: effect on processing time.

• Experimental Setup:
– Default XMark document size: 50Mb.

Configuration CPU Cache Size RAM

A 1GHz 256Kb 256Mb

B 550MHz 512Kb 768Mb

C (default) 1.4GHz 256Kb 2Gb

37

Experiments: Effectiveness

0

1

2

3

4

5

6

7

8

9

10

Q
ue

ry
 1

Q
ue

ry
 2

Q
ue

ry
 3

Q
ue

ry
 4

Q
ue

ry
 5

Q
ue

ry
 6

Q
ue

ry
 7

Q
ue

ry
 8

Q
ue

ry
 9

Q
ue

ry
 1

0

Q
ue

ry
 1

1

Q
ue

ry
 1

2

Q
ue

ry
 1

3

Q
ue

ry
 1

4

Q
ue

ry
 1

5

Q
ue

ry
 1

6

Q
ue

ry
 1

7

Q
ue

ry
 1

8

Q
ue

ry
 1

9

Q
ue

ry
 2

0

S
iz

e
 a

s
 p

e
rc

e
n

ta
g

e
 o

f
th

e
 s

iz
e

 o
f

th
e

o
ri

g
in

a
l

d
o

c
u

m
e

n
t

Projection

Optimized

Projection

100% 100% 33% 100% 60%

All queries but one require less than 5% of the document.

38

Experiments: Maximal Document Size

Configuration A B C
XMark Query 3
(simple selection
with predicate)

No Projection 33Mb 220Mb 520Mb

Optimized
Projection

1Gb 1.5Gb 1.5Gb

XMark Query 14
(Non-selective

path query with
predicates)

No Projection 20Mb 20Mb 20Mb

Optimized
Projection

100Mb 100Mb 100Mb

XMark Query 15

(Long, very
selective path

query)

No Projection 33Mb 220Mb 520Mb

Optimized
Projection

1Gb 2Gb 2Gb

39

Experiments: Query Execution Time

0

50

100

150

200

250

Q
ue

ry
 1

Q
ue

ry
 2

Q
ue

ry
 3

Q
ue

ry
 4

Q
ue

ry
 5

Q
ue

ry
 6

Q
ue

ry
 7

Q
ue

ry
 1
3

Q
ue

ry
 1
5

Q
ue

ry
 1
6

Q
ue

ry
 1
7

Q
ue

ry
 1
8

Q
ue

ry
 1
9

Q
ue

ry
 2
0

T
o

ta
l
Q

u
e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

in
 s

e
c
o

n
d

s
)

Projection significantly reduces query processing time
Next Bottleneck: Joins!

0

1000

2000

3000

4000

5000

6000

7000

8000

Query

8

Query

9

Query

10

Query

11

Query

12

Query

14

No Projection

Projection

Optimized Projection

Hardware-based Projection

• Projection effective to reduce memory
consumption, document processing cost

• Still bound by XML parsing speed

– Best parsers on modern CPUs: 10-30 MB/s

• How can we do better:

– Hardware/Software Co-Design!

– Run Projection on an FPGA!

– Parse and project on wire speed!

Hardware-based Projection (2)

1. Extract Projection Path, load into FPGA

2. Request XML document

3. Send (regular) XML to FPGA
Receive filtered XML from FPGA

FPGAs

• Field-Programmable Gate Arrays

• Reconfigurable Hardware

– Memory

– Logic Gates

– Wires

• Massive parallelism possible

• „Create“ custom processor

• Slow to reprogram

Projection Processing on FPGAs

• FPGA very efficient in running automata

Use automata-based path processing (see before)

• Reprogramming Slow

Provide general „skeleton“ path processor

Instantiate for specific projection paths

Evaluation/Demo Setup

• Use FPGA boards with 1GB Ethernet

• Send XML document over network using UDP

• Run stock MXQuery with UDP receiver

Performance Results

• Performance gains of 1-2 orders of magnitude

• Many queries close to network limit

• Q15 slowed down by Gigabit Ethernet!

