

Universität Freiburg
Institut für Informatik
Prof. Dr. Peter Fischer
Lecuture XML and Databases
Winter Semester 2011/12

Due date/discussion: 27.1.2012

Exercise Sheet 10

XQuery Implementation and Optimisation

Exercise 1: Query plans: Implementation
The purpose of this exercise and of the following exercise is to familiarise you with
query plans and optimisation of query plans for XQuery. At the end of this exercise
sheet, you will find a short introduction to query plans.

Draw the query plans for the following queries and check them with MXQuery.

2.1. (From exercise sheet 7, exercise 1.2.)
let $doc := doc("flights.xml")
let $results := (
<order>
 {
 for $a in $doc//Airport
 let $c := count($doc//Flight[((./source eq $a/@airId)
 or
 (./destination eq $a/@airId))
])
 order by $c descending, $a/name ascending
 return
 <result>
 {$a}
 <count>{$c}</count>
 </result>
 }
</order>
)
let $maxcount := xs:integer(max($results//count))
return $results/result[xs:integer(./count) eq $maxcount]

2.2. (From exercise sheet 7, exercise 1.4.)
let $doc := doc("flights.xml")
return
<Possibilities>{
 for $f1 in $doc//Flight[./source eq 'NPL'],
 $f3 in $doc//Flight[destination eq 'SPL'],
 $f2 in $doc//Flight
 where $f1/destination eq $f2/source
 and $f2/destination eq $f3/source
 and xs:time($f1/arrival) lt xs:time($f2/departure)
 and xs:time($f2/arrival) lt xs:time($f3/departure)
 and $f1/seats > 0 and $f2/seats > 0 and $f3/seats > 0
 return
 <TwoIntermediateStops>

 {$f1}
 {$f2}
 {$f3}
 </TwoIntermediateStops>
}</Possibilities>

2.3. (From exercise sheet 6, exercise 1.3.)
for $a in distinct-values(doc("bib.xml")//author)
return <res>
<name>{$a}</name>
<count>
{
count(doc("bib.xml")//book[author = $a])
}
</count>
</res>

Exercise 2 - Optimisation
2.1. Estimate the execution cost of the query 2.3. (find a suitable measure for expressing
the cost, e.g., number of nodes in the query plan which are used during execution)
2.2. Optimise the query plan of this query and show, using the chosen metric, that the
rewritten plan is better.

Introduction to query plans

Let/return (a return belongs to a let or for)

let $result := <order>ABC</order>
return $result

The let variable is represented as a label on the left edge; the right edge (corresponding
to the initial return) gives the result and cannot be executed before the left edge.

For/return

for $a in doc("flights.xml")//Airport
let $c := 5
return $result <result>{$c}</result>

The for variable is represented as a label on the left edge, which evaluates to a sequence
of nodes. For each mapping of the variable to one of the items in the sequence generated
by the left edge, the right edge is executed.
The result of the for is the sequence of all results returned on the right side for each
mapping.
A branch is to be read bottom-up: the "flights.xml" is used, then the doc is applied to it,
then we evaluate descendant-or-self on this node, get the Airport, and the result is
bound to $a.

If-then-else

let $results := [...]
return $results/result[count = 2]

equivalent to

let $results := [...]
for $r in $results/result
where count = 2
return $r

A temporary variable $r is introduced. The condition is expressed using an ifthenelse
node. It takes a boolean expression in the first branch, returns the result of the second

branch when the expression is true, and the result of the third branch when the
expression is false (in our case, the empty sequence).

You can visualise the query plan by invoking MXQuery as follows:

java -jar mxquery.jar -f queryfile.xq --explain

The expression tree is written in an XML form, which you can copy and paste into an
XML editor like Oxygen to display the structure of the query tree.

Note that the MXQuery engine does some optimisations, hides some details and
compacts the query plan, so that the notation here may differ from that of MXQuery, for
example:

• $variable_name becomes VariableIterator("variable_name")
• $results - children - match("result") becomes

ChildrenIterator(VariableIterator("results"), "result")
• $doc - descendant-or-self - match ("Flight") becomes

DescendantOrSelfIterator(VariableIterator("doc"), "Flight")
• Inside a for loop, ifthenelse can be a Where iterator
• A function call is represented as a FunctionCallIterator
• A node constructor is represented as XMLContent.

	Exercise Sheet 10
	XQuery Implementation and Optimisation

