Exercises
 Distributed Systemes: Part 2
 Summer Term 2014
 31.7.2014
 Solution Proposal

6. Exercise sheet: Petri nets

Exercise 1

Model a traffic light by a Petri-Net.
(1) You can use any number of places, however only multiplicity 1 is allowed.
(2) Now only 3 places (one for each color) may be used, but there are no restrictions on the multiplicities.

Solution:

Exercise 2

Prove or give a counterexample: $m[q\rangle m^{\prime} \Leftarrow m^{\prime}=m+\Delta q$.

Solution:

Consider $m=(1,1,0)$ and $m^{\prime}=(0,1,1)$ and further $q=t_{2} t_{3}$, where $\Delta q=(-1,0,1)$. We have $m^{\prime}=m+\Delta q$ and $m[q\rangle m^{\prime}$.

Consider now $m=(1,0,0)$ and $m^{\prime}=(0,0,1)$ and further $q=t_{2} t_{3}$, where $\Delta q=(-1,0,1)$. We have $m^{\prime}=m+\Delta q$, however $m[q\rangle m^{\prime}$ does not hold.

Exercise 3

(1) Model the following Handshaking protocol by a Petri-Net:

Two processes P1 and P2 mutually exchange messages. P1 is the sender and P2 the receiver. P1 starts in state Ready-to-Send. When it has sent a message to P2, it moves into the state Ready-to-Receive and waits for an acknowledgement ACK sent by P2. Once the acknowledgement has been arrived, P1 can send more messages. P2 starts in state Waiting-for-Messages. If it receives a message, it confirms by sending an acknowledgement ACK to P1 and waits for more messages.
(2) Give the reachability tree.

Solution:

(1)
(2) Consider the vector
(ReadytoSend, ReadyToReceive, MsgBuffer, WaitForAck, MessageReceived, AckBuffer, AckSent, AckReceived) The initial marking m_{0} is $(1,1,0,0,0,0,0,0)$.
The only possible transition is Send message, leading to $(0,1,1,1,0,0,0,0)$.
Now, the only possible transition is Receive message, leading to
($0,0,0,1,1,0,0,0$).
At this marking, we can only perform Send Ack, giving us
($0,0,0,1,0,1,1,0$).
We now have the choice of two options:
a) Performing Continue for Receive yields ($0,1,0,1,0,1,0,0$)
b) Performing Ack Received yields ($0,0,0,0,0,0,1,1$)

For the first case, the next possible steps are Ack Received ($0,1,0,0,0,0,0,1$) and then Continue for Send, leading to m_{0}.
For the second case, we have choice to perform either Continue first, leading to $(1,0,0,0,0,0,1,0)$ or $(0,1,0,0,0,0,0,1)$. In either case, the other Continue is the only option, leading to m_{0}

