
Universität Freiburg Georges-Köhler Allee, Geb. 51
Institut für Informatik D-79110 Freiburg
Prof. Dr. P. Fischer peter.fischer@informatik.uni-freiburg.de

Exercises
Distributed Systemes: Part 2

Summer Term 2014
17.7.2014

Solution Proposal

5. Exercise sheet: Distributed Concurrency Control and Recovery

Exercise 1
Consider the following local schedules:

• S1 : R1A W1A R2A W2A
S2 : R2B W2B R1B W1B

• S1 : R1A W2A
S2 : R3B W1B R2C W3C

• S1 : R1A R3A R3B W3A W3B R2B
S2 : R4D W4D R1D R2C R4C W4C

• S1 : W1A c1 R3A R3B c3 W2B c2
S2 : W2C c2 R4C R4D c4 W1D c1

(1) Verify whether or not the schedules are serializable.
(2) Demonstrate that by applying Distributed 2PL (Timestamp Protocol) the non-serializable schedules could

not have occured.
(3) Check whether or not the schedules are rigourous and commit-deferred.
(4) Demonstrate that by applying a Ticket-based concurrency control the not serializable schedules could not

have occured.

Solution:

(1) – locally yes, globally no, S1: T1 → T2, S2: T2 → T1

– locally yes, globally no, S1: T1 → T2, S2: T2 → T3 → T1

– locally yes, globally no, S1: T1 → T3 → T2, S2: T2 → T4 → T1

– locally yes, globally no, S1: T1 → T3 → T2, S2: T2 → T4 → T1

(2) Distributed 2PL: If a local transaction reaches the point when it would start unlocking, it would ask the other sites running
the same transaction if they also reached this point. If not, it would have to wait
– not possible, since either transaction cannot make progress after the first two steps
– not possible, since R11 and R32 cannot make progress after the first step
– not possible, since R11 and R42 cannot make progress after the first and second step, respectively
– local commit violate global 2 PL protocols if they went through. At c1, the lock on A cannot be released since T12 has not

yet claimed all its locks
Timestamp Protocol: Abort transactions, if a conflicting access is performed with a later timestamp. Without restricting
generality, we always assume that S1 start is transactions earlier than S2

– TS1 < TS2, so R1B performs a read on B which has been written to by a "later" transaction before (W2B)
– TS1 < TS3, so W1B performs a write on B which has been read to by a "later" transaction before (R3B)



– TS1 < TS4 < TS3, so R1D performs a read on D which has been written to by a "later" transaction before (W4D)
– TS1 < TS2 < TS3 < TS4, so W2B performs a write on B which has been read by a "later" transaction before (R3B). The

same problem occurs for W1D and R4D.

(3) The last case is easiest: The schedules are rigorous since all a commit happens before any conflicting operation. It is not
commit-deferred since e.g. T11 commits before T12.
In first three cases, no commit is specified. We therefore have the options to either perform the commit at (i) the global end of
a transaction or (ii) as soon as possible after the local end. (i) would make the schedules commit-deferred (by definition), but
not rigorous, since conflict pairs exist before abort or commit. (ii) would make some of the schedules rigorous, but not all of
them.

(4) Tickets are expressed by adding a Ticket access into the local schedules of global transactions. When "locking" the ticket (which
we denote as Ij for server j) we add an explicit Read/Write Operation.

– S1 : R1I1 W1I1 R1A W1A R2I1 W2I1 R2A W2A
S2 : R2I2 W2I2 R2B W2B R1I2 W1I2 R1B W1B

In this case, no local detection is possible, but the

access to I1 and I2 happens in different order. Using dependency graph on the tickets we can detect the cycle.

– S1 : R1I1 W1I1 R1A R2I1 W2I1 W2A
S2 : R3B R1I2 W1I2 W1B R2I2 W2I2 R2C W3C

Tickets introduce T1T2 order on S2 which makes the

conflict explicit and locally detectable at S2, since the execution without ticket yields the order T2 → T3 → T1

– Like in the previous case, we ticket introduce T1T2 order on S2, making the conflict locally detectable.
– Like in the first case, no local detection is possible, but a depedency graph on the the tickets detects the conflict.

Exercise 2
Think about a distributed database management system that runs 2PC and how it deals with failures

(a) What happens when a participant votes abort in phase 1? Use the state transition graphs shown in the
slides to explain your answer.

(b) What happens when a participant fails in phase 2 without sending anything to the coordinator (e.g. a kernel
freeze)? Again use the state transition graphs to further explain your answer.

(c) How would using 3PC change the situation of b)

Solution:

(a) In phase 1, no global decision has been made; the coordinator is requesting the local decisions. An abort decision of a participant
has two consequences: 1) Since at least one participant will not commit, the global outcome will be an abort. 2) Since no global
commit can happen, the participant that voted abort can directly go to abort, sidestepping the prepare phase.

(b) Since the participant has voted commit and received a global commit, it is obliged to actually perform a commit. Given that it
is hanging, no more progress can be made. A timeout at the coordinator will detect the problem at this participant, but there
is no way to resolve it without manual intervention - in particular the whole commit protocol is blocked.

(c) 3PC splits the commit part into two stages in order to reduce the uncertainty period. If the participant fails at PRECOMMIT,
it has already been informed that the commit will happen, but does not know if the others have been informed. At this stage,
it can inquire any other participant if it knows about the outcome. The coordinator does not have to worry about the failed
node, since it already was informed about the outcome.

Exercise 3
(a) Describe the communication topology of centralized, decentralized and linear 2PC.
(b) Give the state diagrams of decentralized 2PC, in analogy to the state diagramm of centralized 2PC.

Solution:

(a)

(b)

Exercise 4
Characterize centralized 2PC and linear 2PC with respect to

(1) message and time complexity,



(2) possibilities of processes to become uncertain.

Solution:

(a) Centralized 2PC requires 3n messages (if ACKs are not considered), and takes 3 rounds. Linear 2PC requires 2n messages, but
needs also 2n rounds.

(b) For centralized 2PC, all participants are uncertain (in the same way) from the moment they cast their vote until they receive
the decision from the coordinator. In linear 2PC, period of uncertaintly shrinks with the distance from the coordinator, the
rightmost participant is actually never uncertain, whereas the leftmost participant is uncertain from 2n-2 rounds.

3


