
SPARQL 1.1

Peter Fischer
DMQL

SPARQL 1.0 limitations

• Limited graphs operations: How to compute
connectedness?

• No updates
• No aggregates
• No explicit negation
• No subqueries
• …

Property Paths – Motivation

• RDF is a graph data model, expressed as set of
node-edge-node triples

• SPARQL allows us to ask queries on these
graphs.

• Basic primitve: selecting individual triples
using patterns

• Combinations of triples need to be stated
explicitly

Property Paths – Motivation (2)

• Many interesting graph algorithms need a more
general way to select triples or „paths“ between nodes:
– In a social network, is there a connection between me and

Kevin Bacon
(and if yes, is it really 6 degrees of separation)

– What is my complete list of ancestors?
– How can I retrieve the entire graph?

• What can we do in SPARQL 1.0?
– Fixed-length paths via BGP, UNION, OPTIONAL
– No Recursion (as in XQuery, modern SQL)
– No arbitrary graph paths

Property Paths - Idea

• Permit paths (=sequence of triples) with possibly
unbounded length

• Describe properties of this path
• Trivial case: single triple pattern
• Complex paths:

– Extend triple pattern syntax in to include a more
powerful „middle part“

– borrow regular expression syntax
– Variables possible at the start and end
– Allow cycles

Property Paths - Syntax
• elt: any path element (recursively defined)
• IRI: single “step” (like a predicate)
• ^elt: inverse direction (object->predicate)
• !IRI: negated property
• (elt): group (for precedence)
• elt1/elt2: sequence of elt1 followed by elt2
• elt1|elt2: alternative, either elt1 or elt2 possible
• elt*, elt+, elt?: zero or more, one or more, one or zero elt
• elt{n,m}: between n and m occurences of elt
• elt{n}, elt{n,}, elt{,n}: exactly n, at least n, at most n

Property Paths - Examples
• Alternative

{ :book1 dc:title|rdfs:label ?displayString }
• Sequence: name of people that Alice knows

{
?x foaf:mbox <mailto:alice@example> .
?x foaf:knows/foaf:name ?name .
}

• Same as above, but two steps away
{
?x foaf:mbox <mailto:alice@example> .
?x foaf:knows{2}/foaf:name ?name .
}

• Arbitrary distance
{ ?x foaf:mbox <mailto:alice@example> .
?x foaf:knows+/foaf:name ?name . }

Property Paths – More examples
• Negated Property Paths: Find nodes connected but not by rdf:type

(either way round)
{ ?x !(rdf:type|^rdf:type) ?y }

• Multiple paths
@prefix : <http://example/> .
:x :p :z1 .
:x :p :z2 .
:z1 :q :y .
:z2 :q :y .

PREFIX : <http://example/>
SELECT * { ?s :p/:q ?o . }

What should be the expected result?

Property Paths –Semantics

• All duplicates are being returned/counted
• Is this a good idea?

• Consider a fully connected graph with N nodes,

same predicate p (clique)
• How many results are there for {?a (p*)* ?)
• N = 1: 1 N = 3: 6 N=4: 305 N=5: 418657

N= 8: 79 x 1024 (Yottabytes!)
• WWW12 Best Paper by Arenas, Conca, Perez
• Existential semantics do scale, however!

Extended operations with solutions

• SPARQL 1.0 only allows limited operations on
matching results/solutions
– Filter/Duplicate elimination/Ordering
– Projection
– Triple construction (CONSTRUCT)

• Need to provide more flexible operations
– Aggregates
– Grouping
– Assignment
– Select expressions

SELECT expressions

• More flexible rules on SELECT
– Bind new variables
– Perform operations on variables

PREFIX dc:
<http://purl.org/dc/elements/1.1/> PREFIX
ns: <http://example.org/ns#>
SELECT ?title (?p*(1-?discount) AS ?price)
{ ?x ns:price ?p .
?x dc:title ?title .
?x ns:discount ?discount }

Aggregates

• Provide the usual suspects:
– COUNT, SUM, MIN, MAX, AVG
– SUM, AVG working on numeric values

• Slightly more unusual
– GROUP_CONCAT: Concatenate all values to a

string
– SAMPLE: Return arbitrary value from set
– DISTINCT can be used for all arguments

• Compute results over a group of bindings

GROUP BY

• Usual Syntax: GROUP BY Expression+
• Can bind new variables
• Further restrict using HAVING
• Projection list can only contain group variables

and aggregates

Aggregate+Group Example

PREFIX : <http://data.example/>
SELECT (AVG(?size) AS ?asize)
WHERE { ?x :size ?size }
GROUP BY ?x
HAVING(AVG(?size) > 10)

Subqueries
• Embed a SPARQL query into another
• Possible use cases: complex correlations

„ Return a name (the one with the lowest sort order) for all the
people that know Alice and have a name.”

PREFIX : <http://people.example/>
SELECT ?y ?minName
WHERE {
 :alice :knows ?y .
 {
 SELECT ?y (MIN(?name) AS ?minName)
 WHERE { ?y :name ?name . }
 GROUP BY ?y
 }
}

„Negation“ in 1.0
Names of people who have not stated that they know anyone
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:givenName ?name .
 OPTIONAL { ?x foaf:knows ?who } .
FILTER (!BOUND(?who)) }

What are we doing here?
⇒ Not very intuitive

Two solutions in 1.1
1. NOT EXISTS
2. MINUS

Negation via NOT EXISTS
PREFIX foaf:
<http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE { ?x foaf:givenName ?name .
FILTER (NOT EXISTS
 {?x foaf:knows ?who })
}

• NOT EXISTS is a filter function that yields true of a
binding does not exists

• There is now also a EXISTS

Negation via MINUS

PREFIX foaf:
<http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE { ?x foaf:givenName ?name .

 MINUS { ?x foaf:knows ?who } .

}

• MINUS is a graph Pattern Match (like UNION,
OPTIONAL)

• Removes Bindings that match

Entailment

• Recall entailment? Adding semantics and
metadata, we can generate new triples/facts

• Entailment affects triple matching: we may find
additional triples which were not present in the
original (axiomatic) triples

• SPARQL 1.0 only considered simple entailment
• SPARQL 1.1 provides

– Detailed rules how entailment should work
– Descriptions for different entailment standards (RDF,

RDFS, OWL, …)

Some entailment effects

• RDF entailment
– blank nodes (consistent in answers)
– XML Literals
– Properties

• RDFS entailment
– Can lead to inconsistencies (fewer answers!) Here

only due to invalied XML Literals
– Derived results due to new tuples

Entailment example
ex:book1 a ex:Publication .
ex:book2 a ex:Article .
ex:Article rdfs:subClassOf ex:Publication .
ex:publishes rdfs:range ex:Publication .
ex:MITPress ex:publishes ex:book3 .

SELECT ?pub WHERE { ?pub a ex:Publication }

What are the results under
• Simple entailment ?
• RDF entailment ?
• RDFS entailment ?

Updates

• SPARQL 1.0 is read-only
• Changes to graphs need to be done using

other languages or proprietary extensions
• SQL and XQuery have update languages

• SPARQL 1.1 has two update mechanism:

1. Language-based updates (like SQL, XQuery)
2. REST API: Graph Store operations via HTTP

Update - Concepts

Graph Store
• Collection of graphs, default+named
• Does not need to be authoritative (Cache!)
• Local operations should be atomic

• Two classes of operations:

1. Modifying triples in graphs
2. Managing complete graphs

INSERT into a graph
PREFIX dc: <http://purl.org/dc/elements/1.1/>
INSERT DATA {
<http://example/book1> dc:title "A new book";

dc:creator "A.N.Other" .
}

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
<http://example/book1> ns:price 42 .
<http://example/book1> dc:title "A new book" . <http://example/book1> dc:creator
"A.N.Other" .

• Optionally a graph name
• Triples must not contain variables
• What happens if a triple with the same values is already present?

DELETE from a graph
PREFIX dc: <http://purl.org/dc/elements/1.1/>
DELETE DATA {
<http://example/book2> dc:title "David
 Copperfield" ;
 dc:creator "Edmund Wells" .
}
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix ns: <http://example.org/ns#> .
 <http://example/book2> ns:price 42 .
<http://example/book2> dc:title "David Copperfield" .
<http://example/book2> dc:creator "Edmund Wells" .

• No variables or blank nodes
• Entailed triples will not be deleted

Parameterized Delete/Insert
(WITH IRIref)?
((DeleteClause InsertClause?) | InsertClause)
(USING (NAMED)? IRIref)*
WHERE GroupGraphPattern
DeleteClause ::= DELETE QuadPattern
InsertClause ::= INSERT QuadPattern

• Match triples in WHERE,
perform delete, then insert with bindings
(Why?)

• Triples in WHERE can be from a different store/graph
(USING) than updated graph (WITH)

• Shorthands for DELETE only/INSERT only

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

Update Example

Rename all “Bills” to “William”

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

WITH http://example/addresses

DELETE { ?person foaf:givenName 'Bill' }

INSERT { ?person foaf:givenName 'William' }

USING http://example/addresses

WHERE { ?person foaf:givenName 'Bill' }

http://example/addresses
http://example/addresses

Complex Filter+Moving Example
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
INSERT
{ GRAPH <http://example/bookStore2>
 { ?book ?p ?v }
}
WHERE
{ GRAPH <http://example/bookStore>
 { ?book dc:date ?date .
 FILTER (
 ?date > "1970-01-01T00:00:0002:00
 ^^xsd:dateTime)
 ?book ?p ?v
 }
}
Copy all book published from 1970 onwards into bookstore2

 Bulk operations

• LOAD uri [INTO GRAPH uri]
Load all triples from uri into the graph

• CLEAR [GRAPH uri | DEFAULT | NAMED | ALL]
Delete all triples from the graph(s)

Graph Management
• CREATE (SILENT)? GRAPH IRIref
• DROP (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)
• COPY (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((

GRAPH)? IRIref_to | DEFAULT)
copy all triples from IRIref_from to IRIref_to, overwrite all
contents of IRIref_to

• MOVE (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((
GRAPH)? IRIref_to | DEFAULT)
as COPY, just delete the source

• ADD (SILENT)? ((GRAPH)? IRIref_from | DEFAULT) TO ((
GRAPH)? IRIref_to | DEFAULT)
as COPY, keep contents of IRIref_to

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

Graph Store Protocol

• SPARQL 1.0 already defined a protocol to query
RDF data over the network (=> Linked Open Data)

• Extend Protocol to manage Graph Stores
• Use REST vocabulary

– Use Graph URI/IRI as location (directly or as
parameter)

– PUT to COPY a graph
– DELETE to DROP a graph
– POST to ADD triples to a graph
– GET to return a entire graph (CONSTRUCT)

Other new features
• Explicit support for federated data: SERVICE keyword to

invoke parts of a query at remote endpoints
• Service description: provide capabilities, vocabulary of

a SPARQL endpoint
• Short form for CONSTRUCT (state graph and bindings

only once)
• Many new functions:

– EXISTS/NOT EXISTS, IN/NOT IN
– String manipulation
– Math
– Date/Time accessors, current dateTime
– Hashing

Summary

• SPARQL 1.1 fixes many shortcomings of 1.0
• Feature set closer to other classical query

languages
• Introduction of significant complexity

(property paths, subqueries)
• What is still missing?

– Fulltext operations
– Integration with application development

	SPARQL 1.1
	SPARQL 1.0 limitations
	Property Paths – Motivation
	Property Paths – Motivation (2)
	Property Paths - Idea
	Property Paths - Syntax
	Property Paths - Examples
	Property Paths – More examples
	Property Paths –Semantics
	Extended operations with solutions
	SELECT expressions
	Aggregates
	GROUP BY
	Aggregate+Group Example
	Subqueries
	„Negation“ in 1.0
	Negation via NOT EXISTS
	Negation via MINUS
	Entailment
	Some entailment effects
	Entailment example
	Updates
	Update - Concepts
	INSERT into a graph
	DELETE from a graph
	Parameterized Delete/Insert
	Update Example
	Complex Filter+Moving Example
	 Bulk operations
	Graph Management
	Graph Store Protocol
	Other new features
	Summary

