
Efficiently Correlating Complex Events
over Live and Archived Data Streams

Nihal Dindar, Peter M. Fischer, Merve Soner, Nesime Tatbul
Systems Group, ETH Zurich, Switzerland

{dindarn, peter.fischer, msoner, tatbul}@inf.ethz.ch

ABSTRACT
Correlating complex events over live and archived data streams,
which we call Pattern Correlation Queries (PCQs), provides many
benefits for domains which need real-time forecasting of events or
identification of causal dependencies, while handling data at high
rates and in massive amounts, like in financial or medical settings.
Existing work has focused either on complex event processing over
a single type of stream source (i.e., either live or archived), or
on simple stream correlation queries (e.g., live events trigerring a
database lookup). In this paper, we specifically focus on recency-
based PCQs and provide clear, useful, and optimizable semantics
for them. PCQs raise a number of challenges in optimizing data
management and query processing, which we address in the setting
of the DejaVu complex event processing system. More specifically,
we propose three complementary optimizations including recent in-
put buffering, query result caching, and join source ordering. Fur-
thermore, we capture the relevant query processing tradeoffs in a
cost model. An extensive performance study on synthetic and real-
life data sets not only validates this cost model, but also shows
that our optimizations are very effective, achieving more than two
orders magnitude throughput improvement and much better scala-
bility compared to a conventional approach.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query Processing

General Terms
Performance, Languages, Theory

Keywords
Complex Event Processing, Pattern Matching, Data Streams, Stream
Correlation, Stream Archiving

1. INTRODUCTION
Complex Event Processing (CEP) has proven to be a key tech-

nology for analyzing complex relationships over high volumes of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’11, July 11–15, 2011, New York, New York, USA.
Copyright 2011 ACM 978-1-4503-0423-8/11/07 ...$10.00.

Figure 1: Financial use case: Whenever a price fall is detected
on live, find all “tick-shaped” patterns on recent archive.

data in a wide range of application domains reaching from financial
trading to health care. Complex events are typically expressed by
means of patterns that declaratively specify the event sequences to
be matched over a given data set.

Early CEP research primarily focused on pattern matching tech-
niques over real-time event streams (e.g., Cayuga [13], SASE+
[10], ZStream [21]). More recently, there has been an increasing
interest in archiving streams, not only for regulatory or reliability
reasons, but also for supporting longer-term data analysis [16]. The
presence of a stream archive enables a new class of CEP applica-
tions which can correlate patterns matched over live and archived
event streams. Such correlations form the basis for forecasting or
predicting future event occurrences (e.g., algorithmic trading in fi-
nance, or travel time estimation/route planning in intelligent trans-
portation systems), as well as for identifying causal relationships
among complex events across multiple time scales (e.g., medical
diagnosis in health care [3, 4]).

We will present a motivating use case from the financial domain,
which we will also use as a running example throughout the paper.

1.1 Running Example
In algorithmic trading, market data reports such as price quotes

or bids [20] are evaluated using various heuristics to automati-
cally predict the most profitable stocks to trade based on. We can
model each individual report as an event and the trading algorithms
as pattern matching queries over these events. Patterns are typi-
cally defined as regular expressions. Analysis in finance industry
includes among others increase/decrease/stability of stock prices.
As a concrete example, consider a simple query (used by e.g., a
day trader), which does the following: Upon detecting a fall in the
current price of stock X on the live report stream, look for a “tick”-
shaped pattern for X within a recent archive, where a fall in price
was followed by a rise in price that went beyond than the starting
price of the fall (see Figure 1). Such an observation might indicate
stocks that could bring profits in the near future. The high-rate live

Figure 2: Financial use case: PCQ
stream and the high-volume archived stream, as well as the need
for low-latency results for catching momentary trading opportuni-
ties to make profits, render this use case a highly challenging one.

This use case requires evaluating complex events over live (fall)
and archived streams (“tick”-shaped), and correlating them based
on a recency criteria. Price fall for a specific stock (live pattern)
can be expressed as an event of that stock (A) followed by another
event of the same stock (B), where B.price < A.price. Con-
tiguous fall in price can be expressed with a regular expression
as AB+. Fall in price followed by a rise in price (“tick”-shaped
archive pattern) can be expressed in a similar way. This query is
expressed more concretely in Figure 2, based on the SQL syntax
extended with a MATCH_RECOGNIZE clause for pattern matching
over row sequences [25]. The first MATCH_RECOGNIZE clause
utilizes the live stream (StockLive), capturing the price fall. The
second one works on the archive stream (StockArchive), express-
ing a “tick” by a decrease and then an increase to a higher price than
at the beginning. Finally, the two are correlated with an equality on
the stock symbol and a recency criterion of 7 seconds.

1.2 Challenges
Correlating complex events over live and archived streams poses

a number of technical challenges:

• First, the semantics for such queries should be cleanly de-
fined. In general, correlations are based on some notion of
similarity [11, 24], related to factors such as the structure of
the data (e.g., temporal recency, spatial proximity) or appli-
cation semantics (e.g., contextual similarity). A clean seman-
tics is important not only in terms of usefulness and clarity

for the user, but also for the optimizations that it enables in
evaluation of such queries.

• Second, the size of the stream archive will quickly grow,
while depending on the correlation criteria, not all of it will
be relevant to answer a given query. On the other hand, it
may not always be possible to pre-fetch this relevant portion
of the archive due to the live component in the query. As a
result, a dynamic yet low-cost method is needed for selective
archive access.

• Third, the system should scale well with potentially high
live stream rates. In particular, CEP on high-volume stream
archive should be able to keep up with CEP on high-rate live
stream arrival.

• Last but not least, the whole problem becomes more difficult
to handle due to the complexity of pattern matching queries
involving variable processing window sizes and slides on
both live and archive sources, some of which will result in
non-match, not contributing to the result despite costing pro-
cessing power. This makes both the cost and selectivity of
live-archive pattern correlation queries more difficult to track.

1.3 Contributions and Outline
In this paper, we provide the following contributions to address

the above listed challenges:

• a formal definition of pattern correlation queries (PCQs)
with correlation criteria based on the notion of temporal re-
cency (e.g., happened at most n time units before), providing
a composable, useful, and optimizable semantics;

• a set of algorithms and optimizations for processing PCQs
in storage- and computation-efficient ways in the context of
the DejaVu CEP engine [15], focusing on recent input buffer-
ing, query result caching, and join source ordering optimiza-
tions;

• a cost model capturing the relevant trade-offs and cost fac-
tors in query processing for PCQs; and

• extensive experimental evaluation on synthetic and real-life
data sets (NYSE TAQ data set [6]), validating our cost model
and showing orders of magnitude benefits in throughput over
a conventional approach.

The outline of rest of this paper is as follows: In the next section,
we present how we model the semantics of recency-based pattern
correlation queries (PCQs) in detail. In Section 3, we discuss the
state of the art for processing PCQs in existing CEP systems (algo-
rithm and its complexity analysis), and provide two possible base-
line algorithms that suggest obvious improvements over the state
of the art. Section 4 provides a detailed description of our tech-
niques for further optimizing PCQs over the baselines. We present
the results of our experimental performance evaluation in Section
5. Related work is summarized in Section 6, and we conclude the
paper in Section 7 with a brief discussion of potential avenues for
future work.

2. MODELING PCQ
In this section, we formally define the semantics of pattern cor-

relation queries. Our formal semantics is based on three essential
design goals:

1. Total order of input streams: Pattern matching queries over
data sequences require establishing a total order among their
elements.

2. Total order of output streams: For full query composabil-
ity, it is also desirable to maintain the total order on out-
put streams that result from pattern matching queries, in-
cluding pattern correlation queries. This is especially chal-
lenging in the case of PCQs, as these queries involve two
input sequences, one being the archive relative to the other.
Thus, the correlations should be allowed only between pairs
of events where one has happened before the other (e.g., an
event should not be in the archive of itself, or two events
should not be in the archive of each other at the same time).
In this case, simply following the total order on the two in-
put sources is not sufficient. Furthermore, a total order of the
output resulting from PCQs also needs to be defined explic-
itly.

3. Usefulness and clarity: Pattern correlation queries should
provide the necessary semantics for expressing a class of
queries that are useful in real-life applications. Furthermore,
users should be able to be grasp and apply these semantics.

We will gradually establish our semantics to meet these goals,
beginning with a number of fundamental concepts (such as event
streams, happened-before relation, recency correlation, etc.).

PCQs operate over live and archived streams of tuples, each rep-
resenting an event. We distinguish between primitive and complex
events. Primitive events happen at a specific point in time, whereas
complex events are composed of a sequence of other events (prim-
itive or complex) that happen within a time period. To model this,
each tuple is assigned a start timestamp (ts) and an end timestamp
(te). Primitive events have identical ts and te values, whereas
complex events take on the minimum ts and the maximum te of
the events that contributed to their occurrence. Furthermore, to
achieve total order on input streams (i.e., design goal #1), we as-
sume that tuples have unique (ts, te) values and they appear or-
dered in a stream (we show this order with ≺), primarily by their
ts values, then with their te values if a tie needs to be broken (e.g.,
(1, 4) ≺ (2, 3) and (1, 2) ≺ (1, 3)). More formally:

Definition 1 (Time Domain) The time domain T is a discrete, lin-
early ordered, countably infinite set of time instants t ∈ T. We
assume that T is bounded in the past, but not necessarily in the
future.

Definition 2 (Event) An event e 〈ts, te, v〉 consists of a relational
tuple v conforming to a schema S, with a start time value ts ∈
T, and an end time value te ∈ T, where te ≥ ts. We use the
notation e.ts, e.te to denote the start and end time value of an
event e, respectively.

Definition 3 (Primitive Event) An event e is a primitive event if
e.ts = e.te.

Definition 4 (Complex Event) An event e is a complex event if
e.ts �= e.te.

Definition 5 (Stream) A stream S is a totally ordered, countably
infinite sequence of events such that:

∀ei, ej ∈ S, ei ≺ ej , iff ei.ts < ej .ts
∨(ei.ts = ej .ts ∧ ei.te < ej .te)

Establishing a total order on outputs of PCQs (i.e., design goal
#2) requires the definition of a happened-before relation between
two complex events. In the following, we will first define this rela-
tion, and then build the recency correlation definition on top.

Definition 6 (Happened-before Relation (→)) Given a pair of
events ei, ej ∈ S, ei → ej , if ei.te < ej .te and ei.ts < ej .ts,
Happened-before is:

• transitive: ∀e1, e2, e3, if e1 → e2and e2 → e3, then e1 → e3.

• irreflexive: ∀e1, e1 �→ e1.

• antisymmetric: ∀e1, e2, if e1 → e2, then e2 �→ e1.

Definition 7 (Archive of a Stream) Archive of a stream S at time
t (denoted as St

a) consists of all events e ∈ S where e.te < t.
Archive of a stream S as of an event e ∈ S (denoted as Se

a) contains
all events ei ∈ S for which ei → e.

Based on the above, Se
a cannot contain e itself or any other event

ej ∈ S which has not happened before e (i.e., ej �→ e).
For PCQs, we take temporal recency as the main correlation cri-

teria. In this case, two events are correlated if they are within a
specified temporal distance from each other, which we call “re-
cency correlation distance". More formally:

Definition 8 (Recency Correlation) For a given stream S and a
recency correlation distance of P , any event e ∈ S has recency
correlation with the following set of events

recent(e, P) = {∀ei ∈ S where ei → e (i.e., ei ∈ Se
a) and

e.te − ei.ts ≤ P}
The above definition ensures that for a given live event el ∈ S, if
an archive event ea ∈ S

el
a has recency correlation with el, then

all other archive events ei ∈ S
el
a for which ea → ei must also

have recency correlation with el. This follows from the transitive
property of the happened-before relation.

Recency-based PCQs join live events with archive events based
on the recency correlation distance specified in the query, as we
define next.

Definition 9 (Recency-based PCQ) A recency-based PCQ
Q(Sa, pa, Sl, pl, P, q) takes six parameters: Archived and live data
stream sources (Sa and Sl, respectively), patterns to be matched
over these sources (pa and pl, respectively), a recency correlation
distance (P), and a join predicate (q). For a given set of pl matches
over Sl as Ml and pa matches over Sa as Ma, the recency-based
PCQ’s result will be as follows:

Ma �P,q Ml = {∀el ∈ Ml, ∀ea ∈ Ma(el �qea), where
ea ∈ recent(el, P)}

If a live event el joins with an archive event ea to produce an
output event eo, then eo.ts = ea.ts and eo.te = el.te. Please
note that, the total order for PCQ outputs (i.e., design goal #2) is
guaranteed when: (i) all el’s have unique te values, and (ii) all ea’s
have unique ts values. (i) is assured by the INCREMENTAL match
mode in MATCH-RECOGNIZE for the live pattern specifications.
In some sense, this is natural, as INCREMENTAL was specifically
designed to be used with live data sources [25]. (ii) is guaranteed
using the MAXIMAL match mode in MATCH-RECOGNIZE for
the archive pattern specifications.

Definition 10 (Incremental Match) Given a set with all possible
match results for a pattern P as M, the incremental match mode
reports only sets of the longest matches ending with each event (i.e.,
each match has a unique te). Results of incremental match mode
pattern search Mi can be defined more formally as follows:

∀m,n ∈ Mi,m.te = n.te iff m.ts = n.ts

Definition 11 (Maximal Match) Given a set of all possible match
results for pattern P as M, the maximal match mode reports only
sets of the longest matches starting with each event (i.e., each match
has a unique ts). Results of maximal match mode pattern search
Mx can be defined more formally as follows:

∀m,n ∈ Mx,m.ts = n.ts iff m.te = n.te

As a result of Definitions 9-11, output events that result from
joins between live and archive events always get unique pairs of
(ts, te) values, maintaining the total order property given in Defi-
nition 5.

With the above PCQ semantics, our last design goal is also met,
as the user has to only specify the recency correlation distance in
time units, without worrying about total order requirements on in-
put and output streams. This is quite intuitive as the three properties
of the happened-before relation guarantees the expected semantics.

3. PROCESSING PCQ
In the previous section, we have established the formal seman-

tics of recency-based PCQs. The next step is now to investigate
algorithms that can perform this correlation in an efficient man-
ner. In addition, these algorithms should integrate well with typ-
ical CEP/data stream processing environments, as to leverage ex-
isting standards, operations, and optimizations as much as possi-
ble. There are a few considerations on complexity and cost when
evaluating these algorithms: Pattern computation is an expensive
operation, involving many computations and a significant amount
of state [18]. Nearly all of the existing pattern matching algorithms
(e.g., [10]) need to “touch” all possibly relevant tuples at least once,
thus raising the bar for efficient data management and indexing.

In this section, we will present three basic approaches for im-
plementing PCQs, while investigating further optimizations in the
next section:

1. Expressing recency-based correlation with the means of ex-
isting CEP or stream processing environments, in particular
window-based joins followed by pattern processing.

2. Eagerly performing pattern processing on live and archive
streams first, followed by a pattern-aware correlation opera-
tor which understands pattern output structure and recency.

3. Lazily performing the second-side (i.e., archive-side) of the
pattern processing, driven by the pattern correlation operator
and the need for these pattern instances.

As we will see throughout this section, (3) is the most promising.

3.1 State of the Art
Correlating two streams is a well-researched problem for which

many approaches have been proposed (e.g., [23]). Most of these
differ in their specific approach and semantics, but share a common
idea: The possibly infinite stream on both sides is partitioned into a
succession of finite subsequences, typically sliding windows. The
contents of the windows on each side are joined/correlated to find
matching data items. Once the join over this pair of windows is
complete, the windows are advanced to handle newly arriving data
items.

The policies how to exactly advance the windows are the main
differentiator for these joins, but again there is similarity: Most ap-
proaches use item counts or timestamps as the underlying concepts.
Precisely these concepts have a strong impedance mismatch with
pattern correlation: Patterns could start/end with almost any arbi-
trary item, not just the next item or the item with the next higher
timestamp.

Figure 3: PCQ state of the art: Window correlation first

Figure 4: PCQ Pattern First

Despite the similarity of recency regions with sliding windows,
only a very rough translation is therefore possible. We show this
in Figure 3: Live and archive matches for a given recency region
happen in a window with the same size as this recency region (ωP).
By placing such windows on live and archive streams and joining
them on size/time (��W), we can create the recency regions, on
which we execute both patterns (μl and μa). Given the “advancing”
mismatch, these windows can only slide by one item/timestamp
value, while the pattern matches need to be computed anew for each
window. As a result, the effort to compute all correlated matches
for N items with a recency region of size P is (N − 1) ∗P ∗ (cl +
ca), where cl and ca are the cost to process a live/archive item on
a pattern (see Table 2). While recency could provide significant
savings in PCQ computation, using state of the art approaches to
express it actually incurs an additional overhead.

3.2 Eager Pattern Processing
There are several ways to overcome the efficiency problems in-

curred by the semantic mismatch of using state of the art window-
based stream correlation methods with PCQ. One approach would
incorporate more and more pattern processing knowledge into win-
dow correlation in order to overcome the mismatch. Since this
would lead to increased code complexity and runtime overhead in a
CEP system, we are pursuing a different approach, which is shown
in Figure 4: We first execute pattern matching on both live and
archive streams on all input elements (μl and μa). On the pat-
tern matching output, we use a special correlation operator that
expresses the recency correlation logic (��r(P)∧q , where r(P) de-
notes a special recency correlation predicate that captures the re-
cency correlation distance P). With this approach, we can ensure a
complexity of N ∗ (cl + ca) for all pattern computation, since each
pattern instance of both streams is computed exactly once, saving
the factor P compared to the state of the art approach.

3.3 Lazy Pattern Processing
Eager Pattern Processing has the disadvantage that it needs to

compute all patterns present in the data, even though they might
never contribute to the result of a correlation. We therefore intro-
duce a third option which has the potential to combine the best
aspects of the previous ones: Compute all patterns on one side
(e.g., live), but just the necessary patterns on the other side (e.g.,
archive). The data flow (as shown in Figure 4) does not change
compared to the eager version, but there is a significant potential
for cost savings. The baseline approach presented in this section
can compute recency-based PCQ without additional memory over-
head (other than pattern computation itself), but re-introduces some
of the additional work of the state of the art approach. In the next

Input Live Archive Result
(ts,p) (ts,te,pli,plm) (ts,te,pai,pam) (ts,te,pli,plm,pai,pam)

(02:00,10)

(02:01,6) (02:00,02:01,10,6)

(02:02,6)

(02:03,5) (02:02,02:03,6,5)

(02:04,7)

(02:05,6) (02:04,02:05,7,6) (02:02,02:04,6,7) (02:02,02:05,7,6,6,7)

(02:06,11)

(02:07,8) (02:04,02:06,7,11)
(02:02,02:04,6,7)

(02:02,02:07,11,8,6,7)
(02:04,02:06,7,11)

(02:08,8)

(02:09,3) (02:08,02:09,8,3)
(02:02,02:04,6,7) (02:02,02:09,8,3,6,7)

(02:04,02:06,7,11)
(02:04,02:07,11,8,7,11)
(02:04,02:09,8,3,7,11)

(02:10,3)

Table 1: Lazy pattern matching - Baseline

section, we will study optimizations that reduce this additional cost
by using additional memory.

A direct implementation of lazy pattern processing results in the
following join algorithm, where L is the live source, A is the archive
source, P is the recency region size, and q is the join predicate in
the WHERE clause:

Hybrid_Loop_Join_PCQ(DStream L, DArchive A,
int P, Predicate q)

{
FOR EACH match m_l over L
FOR EACH match m_a over A[m_l.t_e-P,m_l.e-1]

WHERE m_a.t_s < m_l.t_s
AND m_a.t_s >= m_l.t_e-P
AND m_a.t_e < m_l.t_e

IF q(m_l, m_a) THEN
append (m_l, m_a) to the result

}

Table 1 shows the execution of this algorithm on data from the
running example of Figure 1. The first column (Input) shows the
incoming simple events, each carrying a timestamp ts and a price
p. To clarify the presentation, we only show a single timestamp
(start and end are the same) and have omitted the symbol informa-
tion. The next two columns (Live and Archive) show the complex
events produced as matches from the respective pattern specifica-
tions. The start (ts) and end (te) timestamps are shown explicitly,
since the computed complex events now cover a time period. Fol-
lowing the query specification in Figure 2, we show the initial price
for each pattern: pli and pai. Furthermore, the live events contain
the minimum price (plm), and the archive events contain the max-
imum price (pam). In the last column (Result), we show how the
live and archive events are correlated to form the complete PCQ
result.

Given the execution strategy of this lazy algorithm, we compute
live events continuously in the outer loop. They are produced when
the complete matching input is available. In this example, we have
5 matches of the live pattern (fall) in total showing up at 02:01,
02:03, ..., 02:09, each also covering the previous simple event.
Based on these live matches, we can determine the recency re-
gion and compute the archive matches as required. Archive (“tick”)
events are produced at 02:05, 02:07, 02:09, when requested for the
related live patterns. Their timestamps, however, correspond to the
contributing simple events (such as 02:02 to 02:04). As one can see,
archive pattern matches are computed several times due to the over-
lapping recency regions. When correlating live and archive events,
the generated events are ordered first by start time and then by end
time, as specified in Definition 5. The start time is determined by
the archive match (following Definition 7), while processing occurs
in live event order. We therefore need to sort archive/live match
combinations, which incurs delays until the remaining live matches

Name Description
N total number of input tuples

cl average cost of live pattern processing per tuple (time)

ca average cost of archive pattern processing per tuple
(time)

cj average cost of join per result (time)

Ml total number of live matches

Ma total number of archive matches

Mj total number of join results

Pl average number of input tuples inside the recency re-
gion of a live match

Pa average number of input tuples inside the recency re-
gion of an archive match

c′l average cost of live pattern processing per tuple
over recency region (time)

c′a average cost of archive pattern processing per tuple
over recency region (time)

�l average difference between two consecutive recency
regions of live matches (# tuples)

�a average difference between two consecutive recency
regions of archive matches (# tuples)

Table 2: Workload cost factors for PCQs

for an archive match have been handled. This can be seen in par-
ticular on result (02:02,02:09,8,3,6,7) and (02:04,02:07,11,8,7,11).
The latter would have been already available with the arrival of the
input tuple (02:07,8), but needs to go after the former, which is only
available at the arrival of the input tuple (02:09,3).

When categorizing this join algorithm one can say that it is a
hybrid between a nested-loop join (when P is large) and a sort-
merge join (when P << |A|), since the matches in both streams
are generated in an ordered fashion, and the recency region is also
advancing monotonically. Other join types are not applicable for
the following reasons: Hash joins only work for equi-joins, and
band-joins [14] are typically designed to establish the order we al-
ready get for free from our processing model. The main step keep-
ing us from an optimal join execution is the overlap among recency
regions, for which we introduce the result cache in Section 4.3.
Another small overhead is incurred by having to sort result events
according to their start time, while the current algorithm produces
them by end time. This overhead is fairly small, however, and sort-
ing is not needed when changing the join order (Section 4.4).

From this algorithm, we can formulate a basic cost formula con-
sisting of three main parts: (i) cost of the outer pattern processing,
(ii) cost of the inner pattern processing, and (iii) cost of joining the
results.

Costproc = N ∗ cl + Ml ∗ Pl ∗ c
′
a + Mj ∗ cj (1)

As shown in Table 2, we assume a constant average cost for pro-
cessing a tuple in the first stream (cl), in the active region of the
second stream (c′a) and in the join (cj). The number of items pro-
cessed in the second pattern depends on the selectivity of the first
pattern (Ml) and the average number of tuples inside the recency
region of a live match (Pl). Ml ∗ Pl can become larger than N if
there are many live matches and/or a large recency region, so that
the cost could exceed that of eager pattern processing. The opti-
mizations in the next section will show methods to overcome this
problem. The number of actual join results (Mj) or the cost of
computing each of them (cj) does not depend on the join/pattern
processing order and can be treated as a constant in this work.

Figure 5: DejaVu CEP system architecture

4. OPTIMIZING PCQ
As seen in the previous section, we need to address two main

challenges in order to optimize recency-based PCQ: (i) manag-
ing and accessing the data efficiently, in particular creating a good
working set from the archive, and (ii) efficiently processing the in-
dividual patterns and the correlations between them.

In this section, we will present three main optimization ideas
(input buffering, query result caching, and join source ordering),
that target these two challenges. We will also extend our cost model
along the way, which helps us to analyze the impact of our proposed
techniques.

We have studied and implemented our optimization techniques
within the setting of the DejaVu CEP system. Therefore, we will
first give a quick overview of DejaVu, before we dive into the de-
tails of our optimization techniques.

4.1 System Setting
DejaVu is a CEP system that integrates declarative pattern match-

ing over live and archived streams of events [15]. DejaVu is built
on top of MySQL [5] and implements a core subset of MATCH-
RECOGNIZE [25].

Figure 5 shows the high-level architecture of DejaVu, includ-
ing the three main extensions (colored in dark) that we have added
for supporting and optimizing PCQs: (i) Recent Buffer, (ii) Query
Result Cache, and (iii) PCQ operators. DejaVu’s Live Stream Store
(DStream) accepts live events into the system and feeds them to the
Query Processor as they arrive, whereas its Archived Stream Store
(DArchive) persists live events for long-term access. A fundamen-
tal design decision behind DejaVu was to route the live data to be
archived through the Query Processor instead of directly storing it
in a DArchive. As we will show, this approach not only enables
important optimizations such as changing the order of join sources,
but also simplifies working set maintenance.

4.2 Recent Input Buffering
To address our first challenge of managing and accessing the

archive data during PCQ processing efficiently, we introduced the
Recent Buffer. It is an in-memory data structure that mediates be-
tween the live and archived event stores (i.e., DStream as well as
DArchive in DejaVu). By caching the most recent stream tuples,
it provides the “hottest” subset of the DArchive with the same ac-
cess costs and paths as for the DStream, thereby avoiding costly
disk reads on recently archived data. Furthermore, it provides the
means to perform bulk inserts into the DArchive.

Figure 6: Recent Buffer

Figure 7: Query Result Cache

Figure 6 depicts the structure of the Recent Buffer. P and R rep-
resent the recency region size (determined by the value of recency
correlation distance defined in Section 2) and the Recent Buffer ca-
pacity, respectively. If R ≥ P , then all the necessary tuples are
stored in the Recent Buffer. If not, the Recent Buffer will only store
the most recent R tuples. In such a case, the first portion of the
recency region will be read from the disk by using a B+tree index
on the start time values of the tuples.

The contents of the Recent Buffer need to be maintained as new
inputs arrive into the DStream and as live matches are processed.
The access properties of the patterns in our model (sequential scans,
results only moving forward), and the recency region of size P lead
to the following Recent Buffer maintenance approach: When there
is a completed live match from time ts to te, the region from the
end of the match (i.e., [te − P , te)) needs to be considered for
archive processing (see Definition 8). On the other hand, if no live
match has been found yet and we are currently processing a tu-
ple T (ts, te), we generally need to consider the region back from
this tuple (i.e., [T.te − P − 1, T.te]), since a live match might be
completed with the next arriving tuple. If a previous match m was
found, however, we know that the next match will not end before
m.te (based on the INCREMENTAL mode discussion provided in
Section 2). Therefore, we can take the maximum start points of
these expected recency regions, ensuring that we never need more
than P entries in the Recent Buffer. Given these properties, the Re-
cent Buffer is implemented as a set of in-memory FIFO stores, with
a separate one for each partition (specified with the PARTITION
BY clause) in the query.

In addition to providing efficient memory management, our re-
cent input buffering mechanism also facilitates our query optimiza-
tion techniques, which we present next.

4.3 Query Result Caching
One important potential bottleneck of our baseline PCQ algo-

rithm in Section 3 is the re-computation of pattern matching queries
over the archived stream, because it leads to O(Pl ∗Ml) complex-
ity.

One way to overcome this problem is based on the observation
that the recency region of a live match intersects with the recency
regions of other live matches, so that an archive match could be
used by multiple live matches. This scenario resembles material-
ized views in traditional databases, where the access to the mate-
rialized results is faster than recomputing the view [17]. Figure
7 illustrates the relationship among such recency regions and the
effect of using the Query Result Cache for different overlap scenar-
ios. On the top lane, we see three live matches mi, mj , and mk,

Live tuple Recent Buffer Query Result Cache Result
(ts,p) (ts,p) (ts,ts,pai,pam) (ts,te,pli,plm,pai,pam)

. . .

(02:04,7)
(02:00,10)

. . .
(02:04,7)

(02:05,6)
(02:03,5)

(02:02,02:04,6,7) (02:02,02:05,7,6,6,7). . .
(02:05,6)

(02:06,11)
(02:03,5)

(02:02,02:04,6,7). . .
(02:06,11)

(02:07,8)
(02:05,6) (02:02,02:04,6,7)

(02:02,02:07,11,8,6,7). . .
(02:04,02:06,7,11)

(02:07,8)

(02:08,8)
(02:05,6) (02:02,02:04,6,7)

. . .
(02:04,02:06,7,11)

(02:08, 8)

(02:09,3)
(02:05,6) (02:02,02:04,6,7) (02:02,02:09,8,3,6,7)

. . .
(02:04,02:06,7,11)

(02:04,02:07,11,8,7,11)
(02:09,3) (02:04,02:09,8,3,7,11)

(02:10,3)
(02:05,6)

(02:04,02:06,7,11). . .
(02:10,3)

Table 3: Lazy Live First with Query Result Cache

(yellow tetragon) each spanning a recency region on the archive
side (hollow rectangles) with archive matches (triangles). The re-
cency regions of mi and mj overlap, making the effective distance
�j smaller than Pl and allow the reuse of the last archive match
of mi for mj . In turn, �k is equal to Pl, since there is no recency
region overlap.

We can now adapt Equation (1) to only cover the computation of
archive matches that have not been previously computed, covering
a smaller portion of the recency region �l. Since cache retrieval is
very cheap compared to pattern computation, we do not include it
in our cost formula:

Costproc = N ∗ cl + Ml ∗ Min(Pl,�l) ∗ c
′
a + Mj ∗ cj (2)

Since we are only targeting the correlation of pattern queries, we
do not need to burden ourselves with the overhead of general view
maintenance [17], but can use a much simpler approach instead:
The underlying data sources are append-only, and the recency re-
gions advance monotonically. Therefore, a FIFO-based data struc-
ture is sufficient. In addition, the pattern correlation (Section 2)
demands that there is only one pattern starting per time unit in the
recency region; therefore, the maximum size of the Query Result
Cache has a linear correlation with the size of the recency region.

Similar to the Recent Buffer, the Query Result Cache is also im-
plemented as a set of stores, one for each partition in the query. Ac-
cording to our measurements and analysis, we expect the number
of Query Result Cache entries to be much smaller than the number
of Recent Buffer entries, since a complex event pattern can easily
aggregate dozens or more input tuples. Nonetheless, using both
of these data structures is still beneficial, since the Recent Buffer
speeds up the computation of archive results at their first access,
and can be shrunk to just the �l regions. Furthermore, both can
share a memory pool, since the Query Result Cache needs most
capacity when there is matching, whereas the Recent Buffer needs
most memory when not matching.

Table 3 illustrates the contents of the Recent Buffer and Query
Result Cache for a snapshot of the execution trace of our running
day trader example when our baseline algorithm (i.e., Lazy Live
First) is enhanced with a Query Result Cache. The results show
the expected behavior: Query Result Cache entries are added when
they are computed on demand (e.g., live match (02:02,02:04,6,7) at
input (02:05,6)) and stay in the cache until no recency region can

Figure 8: Join Source Ordering & Selectivities

cover them any more (e.g., at (02:10,3)). The Recent Buffer is now
only needed for input items which are not covered by the Query
Result Cache, so it only needs to start one item after the start of the
most recent Query Result Cache entry (e.g., (02:03,5) at (02:05,6),
when the archive match starts at 02:02).

4.4 Join Source Ordering
Traditional relational query optimization approaches have estab-

lished several ways to optimize join queries with expensive predi-
cates or nested subexpressions [19]. Yet, most of these approaches
are not applicable to our problem, since they assume that the ex-
pensive operations can be freely moved around through the query
plan. This is not possible in our case, since attributes of the patterns
are used in the join.

Nonetheless, we can still exploit the opportunities for changing
the order of join sources in our hybrid loop join algorithm, when
the selectivity of live and archive patterns differs. This way, using
the less selective partner on the outer side will also reduce the over-
all workload, as fewer recency regions will need to be inspected.
A second factor comes from the observation that pattern queries
have significant variances in their cost depending on their input
data, e.g., when the number of match candidates varies greatly.
This effect is amplified by the correlation operations we are per-
forming, since the recency regions will change when changing the
join order. In this case, changing the recency region might help
skip the processing of the hot spots. Figure 8 gives an example
of such a tradeoff: The upper lane with tetragons shows the live
matches, the lower with triangles shows the archive matches. Rect-
angles shaded in the same way as the matches show the respective
recency regions, where the archive recency regions is constructed
in a forward manner. As one can see, Live First would compute two
live matches and accordingly two recency regions, whereas Archive
First would just compute a single archive match, and accordingly a
single recency region.

As a result, our cost formula will have two variants:

Costproc_live_first = N ∗ cl + Ml ∗ Min(Pl,�l) ∗ c
′
a + Mj ∗ cj (3)

Costproc_archive_first = N ∗ca+Ma∗Min(Pa,�a)∗c′l+Mj ∗cj (4)

The above equations are conceptually symmetric, but they capture
the different cost and selectivity distributions.

Since recency by itself is not symmetric, several design decisions
were made so data source re-ordering would work efficiently: Our
recency correlation function (Definition 8) covers the region from
start of archive match to end of live match, and does not allow any
part to exceed this range. Therefore, we can also easily process for-
ward from an archive match to discover the relevant live matches.
The recency regions actually processed will now be slightly differ-
ent (starting from an archive match forward), but the same set of
combined events will be produced. What will change, however, is
the order in which the results are computed: Since archive matches
drive the “outer loop”, we will receive combined events ordered by
their start time, not their end time (as in Live First). This is actually
an advantage, since we can avoid reordering to achieve the desired
start time ordering. The Recent Buffer can now be attached to the
first data source of the join.

Input Tuple Recent Buffer Query Result Cache Result
(ts,p) (ts,p) (ts,te,pli,plm) (ts,te,pli,plm,pai,pam)

. . .
(02:03,5) (02:03,5)

(02:04,7)
(02:03,5)
(02:04,7)

(02:05,6)
(02:03,5)

(02:04,02:05,7,6) (02:02,02:05,7,6,6,7). . .
(02:05,6)

. . .

(02:07,8)
(02:03,5)

(02:04,02:05,7,6)
(02:02,02:07,11,8,6,7). . .

(02:07,8) (02:06,02:07,11,8)

. . .

(02:09,3)
(02:03,5) (02:04,02:05,7,6) (02:02,02:09,8,3,6,7)

. . . (02:06,02:07,11,8) (02:04,02:07,11,8,7,11)
(02:09,3) (02:08,02:09,8,3) (02:04,02:09,8,3,7,11)

(02:10,3)
(02:07,8) (02:06,02:07,11,8)

. . .
(02:08,02:09,8,3)

(02:10,3)

Table 4: Lazy Archive First with Query Result Cache

Table 4 illustrates the contents of the Recent Buffer and Query
Result Cache for a snapshot of the execution trace of our running
day trader example when the order of the join sources in our base-
line algorithm are swapped (i.e., Lazy Archive First) is addition to
using a Query Result Cache. The Query Result Cache now contains
live matches which are collected while performing forward pro-
cessing starting from the archive matches. They stay in the cache
until archive processing overtakes them (e.g., at (02:10,3)). The
Recent Buffer is also filled in a forward fashion, covering the start
of the current archive match until the current data item. In contrast
to Live First processing, restarting the archive computation after
the previous starting point (e.g., (02:03,5) for the archive match
from (02:02,6)) requires keeping the full recent region, not just the
difference.

5. PERFORMANCE EVALUATION

5.1 Experimental Setup
DejaVu is built as an extension of MySQL-6.0.3-alpha, modify-

ing its query parser, optimizer, run-time and storage engine. All
experiments were executed on an Intel Xeon X3360 (2.8Ghz) with
8 GB RAM and a single 1 TB S-ATA disk, running Redhat Enter-
prise 5.4 64bit; the stock GCC 4.2.4 at optimization level -O2 was
used for compilation, following the default setting for MySQL.

In order to evaluate the effectiveness of our optimization tech-
niques and understand the factors in our cost model, we performed
experiments in three directions:

• maintenance and access of archive data (recent buffer)

• query processing parameters (query result cache + join order)

• verification of our results on a real-life data set (NYSE TAQ)

We ran two variants of the financial query presented in Sec-
tion 1.1. Both employ complex and costly patterns on the live and
the archive clauses:

• Q1 looks for a fall pattern on the live stream and correlates it
with a “tick”-shaped pattern on the archive stream (see Figure
1 and Section 1.1).

• Q2 also looks for a fall pattern on live stream but correlates it
with a rise pattern on the archive stream. This query is used
to model workloads where live and archive patterns are anti-
correlated.

Workload variance in our setups comes from the input streams,
which we adapt according to the parameters discussed in Section

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Recent Size(# tuples)

w/o built-archive
w built-archive

Figure 9: Archive storage and Recent Buffer, Q1, Pl=500

4. We use a single input data stream with schema (tstart, tend,
symbol, price) and one tuple recorded at every time unit. This
stream is pre-generated and pushed completely into the live store,
from where it is pulled by DejaVu for query processing and archiv-
ing.

In our study, we focus on overall throughput, since it is most
indicative of the processing cost. More specifically, throughput is
defined as the number of input tuples processed per second, and
compute it by dividing the total number input tuples by the total
query processing time.

5.2 Evaluation of Recent Input Buffering
The first part of our analysis focuses on the overhead of stor-

age management, both from creating the archive and reading data
out of it. Figure 9 shows (i) the impact of different recent buffer
sizes when an archive is maintained, and (ii) the gain in throughput
when not building an archive. Query processing is done in a naive
way (i.e., live-first, no query result cache); we will study query
processing parameters in the next section. Figure 9 verifies that,
to avoid having to read from disk when performing archive pattern
processing, the recent buffer should be at least as big as the recency
region size (Pl), in this case 500 tuples (and cannot be smaller than
this when “w/o built-archive”). If a smaller recent buffer is used
(due to, e.g., limited memory), the performance degrades propor-
tionally to the available buffer size, accounting for the tuples hav-
ing to be fetched from the portion of the archive that is on disk.
In this case, since fetching can by done using an index scan and
the cache replacement policy of the recent buffer always discards
the oldest tuples, we still achieve a throughput value better than
2500 tuples/second. Archive building causes a more-or-less con-
stant overhead; it can only be avoided if the recent buffer is large
enough to cover the recency region completely. Overall, archive
reading is clearly a bottleneck when doing naive query execution.
On the other hand, the focus of this work is not to optimize stream
archiving, but to optimize query processing for PCQs that utilize
an underlying stream archive. By introducing an in-memory recent
buffer component into our architecture, we support the query pro-
cessor in accessing the more recent archive data faster. We there-
fore run the rest of our experiments with a sufficiently big recent
buffer.

5.3 Evaluation of Query Processing
The main part of our performance study focuses on query pro-

cessing, as it has the most profound impact on throughput and a
larger set of parameters to explore. We vary the input data to stress

Pl 10 50 100 200 300 400 500 600 700 800 900 1000

No Result Cache Max Recent Items 10 50 100 200 300 400 500 600 700 800 900 1000

Query Result Cache
Max Recent Items 10 49 49 49 49 49 49 49 49 49 49 49
Max Cache Entries 0 1 3 7 11 15 19 23 27 31 35 39

Table 5: Item count for Recent Buffer and Query Result Cache, varying Pl (Figure 10)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Pl

lazy, w/o result cache
lazy, w result cache

Figure 10: Varying Pl; Q1; fixed Ml, �l, and c′a

particular cost factors, in particular investigating the impact of the
recency region size, the presence of the query result cache, and join
source ordering.

Figure 10 illustrates the performance impact of varying the size
of the archive correlation region, which is the core of our correla-
tion model. As predicted by the cost model, we see a quadratic cost
increase (and accordingly a throughput decrease) as soon as the
recency region size is large enough to actually produce archive pat-
tern matches. Hence, we need to recompute all these matches for
every live match (similar to a nested-loop join). Using the result
cache, we can reduce this cost, since each of these matches only
needs to be computed once. Therefore, the cost is now propor-
tional to the number of results, which results in a linear throughput
decrease (similar to a hash join).

We also measured the maximum utilization of both the recent
buffer and the result cache, to see the required capacity. The re-
sults are shown in Table 5: When no result cache is used, the recent
buffer usage is as big as Pl, since we always have to keep the full
recency region available. When a result cache is used, this changes
significantly, since the recent buffer is used only when “sliding”
between live matches. In our test dataset, it is dominated by the
difference between live matches, which is 49 tuples. The number
of entries in the result cache is linear to the size of Pl, since our
model ensures distinct starting points for the matches (Section 2).
Furthermore, it is often much smaller than the number of input tu-
ples, since a pattern clause consumes many input tuples to produce
a single output tuple.

As a result, the total memory consumption is linear to Pl, ensur-
ing good scalability for higher values of Pl.

5.3.1 Lazy vs. Eager Pattern Processing
Figure 11 compares the throughput of the system, when different

processing strategies are used. As explained in Section 3, the Ea-
ger strategy computes both live and archive patterns over the whole
dataset, which makes its performance independent of the recency
correlation distance (Pl). This can be attributed to the observa-
tion that the join between live and archive matches is significantly

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Pl

lazy, w/o result cache
lazy, w result cache

eager, w result cache

Figure 11: Varying Pl; Q1; fixed Ml, �l, and c′a

cheaper than the pattern processing itself. Due to the independence
from Pl, the throughput of the Eager strategy stays constant with
varying recency correlation values. As the figure shows, the Eager
strategy performs better than Lazy w/o result cache since the lat-
ter has quadratic cost on the archive side (as the cost formula from
Section 3 and 4 predicts). On the other hand, Lazy with result cache
outperforms Eager for small Pl values since it can skip unneeded
parts on the archive side, whereas Eager needs to compute patterns
on these. As Pl increases and the gaps on the archive side shrink,
the cost of Lazy with result cache converges with Eager, since both
need to perform the same workload. Yet as the cost model predicts,
Eager never actually outperforms Lazy with result cache in terms of
throughput. Given this result, we have focused on the Lazy strategy
for our remaining experiments.

5.3.2 Query Result Cache Sensitivity
The effectiveness of the query result cache depends on two fac-

tors: The overlap between the consecutive recency regions and the
cost of archive processing. As Figure 12a shows, a decreasing over-
lap �l (i.e., the distance between two consecutive recency regions)
entails a decrease in throughput, due to the lower cache utiliza-
tion. When �l is as big as Pl (and thus no overlap exists), cache
and no-cache performance converges, showing that there is no per-
formance overhead in employing an unused cache. This can be
explained by the very small cost of a maintaining and probing an
in-memory queue compared to pattern matching operations.

Since the query result cache eliminates the cost of recomputing
the pattern on the second data source, its benefit becomes more
pronounced the more expensive the second pattern query is. Figure
12b illustrates this trend by comparing the relative throughput gain
((TPcache−TPnocache)/TPnocache) of the cache-based approach
when modifying the cost of archive processing (c′a).

As a result of our query result cache experiments, we can clearly
see that a result cache should be used whenever there is no extreme
memory shortage. It enables significant performance gains on ap-
propriate workloads, does not carry a measurable performance over-
head in the worst case, and has very modest memory consumption.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Δl

lazy, w/o result cache
lazy, w result cache

(a) Varying �l; Q1; fixed Ml, Pl = 200, and c′a

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t g

ai
n

ra
tio

ca’

result cache gain

(b) Varying c′a; Q1; fixed Ml, �l = 80, and Pl = 200

Figure 12: Impact of Query Result Cache when �l or c′a is varied

5.3.3 Evaluation of Join Source Ordering
As outlined in Section 4.4, changing the join order is beneficial if

there is a significant selectivity or cost difference between the two
join inputs. If such a difference exists, the more selective/less costly
input is best used as the outer loop. In our case, there is a potential
for optimization even if the two join partners have the same overall
selectivity: The correlation of live and archive matches can create
“empty” regions or “hotspots”, which can then be skipped.

The join order experiments are performed in both workloads
where the result cache is beneficial, as well as in workloads where
it is not. Doing both yields additional insight, since join order and
result cache can have competing effects: Join order works best in
bringing the most selective join partner to the outer loop, whereas
result caching reduces the cost of the inner loop.

We used Q2 in these experiments, since the archive pattern of Q1
contains the live pattern, thus fixing both the selectivity and cost
ratios: There is a fall pattern instance (live) inside every “tick”-
shaped (fall followed by increase) pattern (Q1 archive) instance,
which prohibits varying relative cost and selectivities among the
two sources. Section 5.4 shows the results of running Q1 in both
join orders on our real-life data set, showing that our results for Q2
also apply for Q1 on a realistic data set.

In the first set of the experiments, the cost of recency region pro-
cessing is the same for live- and Archive First processing (c′l =
c′a), and the cost of first pattern processing is set to a value that
is proportional to the number of the first pattern matches (cl ∝
Mlandca ∝ Ma). Hence, according to our cost formula, the to-
tal processing cost depends on the selectivity of archive and live
matches (Ml and Ma).

We varied the match ratio in the first experiment (see Figure 13a).
Let us first discuss the case where the workload does not benefit
from a result cache (empty square and triangle in the graph). If
there is no difference in the selectivity of live and archive matches,
the performance is the same. When there is a selectivity differ-
ence, then the pattern which is less likely to be matched should be
processed first.

When the workload is amenable for result cache usage (filled
square and triangle in Figure 13a), the trend is similar to the one
in the without result cache scenario, but the relative benefits are
smaller. Although the cost for the first pattern stays the same, pro-

cessing the second pattern becomes cheaper, since the result cache
eliminates the quadratic overhead.

In the second set of experiments, we keep the selectivity of both
patterns at the same level (Ml = Ma), but change the correlations
between the recency regions and thus introduce variance in the “lo-
cal” cost. In other words, changing the join order might help to skip
the computationally expensive areas in the stream. As a result, the
average cost of processing a tuple over the whole stream is much
lower than processing it in the recency region.

Figure 13b shows our results. If the result cache is not effective
(empty square and triangle in Figure 13b), the performance of the
system increases when the less costly recency region is preferred.
On the other hand, when a result cache is actually applicable, it
leads to a significant cost reduction in processing the second data
source, so that the join order has almost no impact (filled square
and triangle in Figure 13b). Archive-first processing always per-
forms slightly better than life-first, since it can access the recent
buffer more efficiently, it can benefit from forward processing in
the pattern, and does not need to re-order the final results.

These experiments clearly demonstrate the benefits of join order-
ing in PCQs. The performance factors are orthogonal, so we expect
to see even better results when there is a skew in both selectivity and
cost/correlation.

5.4 Results on Real-Life Data
Our experiments so far have been performed on synthetic data

which was geared towards evaluating the cost model factors. In or-
der to understand how relevant our optimizations are in real-world
workloads, we took several days of stock-market data from NYSE
(January 26 to 31, 2006), and selected the most heavily traded stock
(Exxon Mobile, symbol XOM). We again ran Q1, and extended
Pl to cover the equivalent of several hours. As Figure 14 shows,
the total throughput is somewhat lower than for the synthetic data
(Figure 10), whereas the benefit of result caching is even more pro-
nounced on larger Pl, giving a factor of 54 performance gain for
Pl=500 between the baseline approach (Live First without cache)
and the best method (Archive First with Cache).

Although the actual numbers are different, we see the same trend
regarding the benefit of result caching. The main reason behind the
different throughput numbers is that real life data is more likely to
produce matches than synthetic data. This means more recency

 0

 10000

 20000

 30000

 40000

 50000

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Match Ratio(Ml / (Ma + Ml))

live first, w/o result cache
live first, w result cache

archive first, w/o result cache
archive first, w result cache

(a) Varying selectivity; Q2; c′l=c
′
a, cl ∝ Ml, ca ∝ Ma, Pl = Pa = 500

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

Cost’ Ratio(ca’ / (ca’ + cl’))

live first, w/o result cache
live first, w result cache

archive first, w/o result cache
archive first, w result cache

(b) Varying cost ratio; Q2; cl << c′a, ca << c′l, Ml = Ma,
Pl = Pa = 500

Figure 13: Impact of Join Source Ordering when match selectivities or recency region processing cost is varied

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

P

lazy, live first, w/o result cache
lazy, live first, w result cache

lazy, archive first, w/o result cache
lazy, archive first, w result cache

Figure 14: Real-life data, Q1, varying P , Lazy Live First &
Lazy Archive First, with or without Query Result Cache

regions overlap more and more matches in the recency regions.
Another important observation regarding the real life experiment
is that Archive First processing achieves a better throughput. The
reason behind it is that the archive pattern is more selective than
the live pattern. As a reminder, each “tick”-shaped pattern instance
includes at least one fall pattern instance, and “tick”-shaped pattern
is less likely to be matched than a fall pattern. Here, the selectiviy
difference dominates the join source ordering decision and makes
Archive First with result cache the winner strategy.

5.5 Discussion
In our experiments, we have studied the impact of the different

processing approaches and optimizations on throughput, both on
synthetic and real-life data. The results lead to several clear con-
clusions: Eager is nearly always outperformed by Lazy with Re-
sult Cache, in the best case it manages to perform equally well.
Therefore, there is little motivation to use Eager when focusing on
throughput. Among the optimizations, using a result cache is al-
ways useful when there is at least some free memory available, as

it significantly speeds up processing when overlaps exists yet has
extremely low overhead when none exists. In addition, memory
requirements are low and well-bounded. In a similar fashion, a re-
cent input buffer should be used whenever there is enough memory,
since it significantly reduces the cost of archive access. The use-
fulness of join order depends on a skew in selectivity or correlation
among the two inputs. If such a skew exists, it also provides mea-
surable benefits. To sum up, all the optimizations we have investi-
gated provide significant benefits, sometimes improving results by
an order of magnitude or more.

6. RELATED WORK
There are several CEP engines (e.g., Cayuga [13], SASE [10],

ZStream [21]) that propose languages and processing techniques
for efficient pattern matching over live streams, but none of them
supports stream archiving or pattern correlation queries. On the
other hand, the DataDepot stream warehousing system [16] has
been designed to automate the ingestion of streaming data from
a variety of sources, as well as to maintain complex materialized
views over them, but it does not provide any facilities for PCQs.

The need for combining the processing of live and historical
events has also been recognized by previous work (e.g., Moirae
[11], TelegraphCQ [12, 22], NiagaraST/Latte [24]), and they mostly
tackle the efficient archive access problem. Moirae [11] prioritizes
the processing of the recent historical data and produces approx-
imate results by using multi-level storage, recent event material-
ization, and context similarity metrics. TelegraphCQ proposes an
overload-sensitive disk access method where multiple samples of
a stream archive are created and are selectively accessed depend-
ing on the input rates [12], and a bitmap-based indexing technique
for efficiently querying live and historical stream data [22]. Ni-
agaraST/Latte demonstrates how hybrid queries can be used for
travel time estimation in intelligent transportation systems [24].
The focus is on window-based hybrid queries (no pattern match-
ing) and on efficient archive access based on different similarity
notions. Our recency-based correlation criteria falls under Latte’s
structural similarity notion.

Typical commercial SPEs also support hybrid continuous queries
(e.g., [1], [8], [9]), where for every new item on the stream, a

database query needs to be executed. We generalize this to find-
ing correlated archive pattern matches for every new pattern match
on the stream. As such, we face the additional challenges of vari-
able processing window sizes on live and archive, variable archive
scope due to variable slide on live, and more complex window com-
putations.

Last but not least, Oracle CEP [7] and ESPER [2] also pro-
vide a basic implementation for MATCH-RECOGNIZE, though
with some limitations that render their use not feasible for process-
ing PCQs. More specifically, application-time based processing of
MATCH-RECOGNIZE is not currently supported in Oracle CEP
engine, whereas ESPER does not support joins across MATCH-
RECOGNIZE clauses.

7. CONCLUSIONS AND FUTURE WORK
In this work, we have investigated the problem of efficiently cor-

relating complex events over live and archived data streams, which
we call Pattern Correlation Queries (PCQs). Applications for PCQs
span various domains (such as financial or medical), which need
real-time forecasting of events or identification of causal depen-
dencies, while handling data at high rates and in massive amounts.
In the paper, we first defined the formal semantics for recency-
based PCQs, paying attention to usefulness, clarity, composability,
and optimizability. After studying the state of the art and possi-
ble baseline algorithms for implementing PCQs according to their
complexity, we have proposed three optimizations for efficient data
management and query processing, including recent input buffer-
ing, query result caching, and join source ordering. An extensive
performance study on synthetic and real-life data sets not only vali-
dates our cost model, but also shows that our optimizations are very
effective, achieving more than two orders magnitude throughput
improvements and much better scalability compared to a straight-
forward implementation.

In terms of future work, we plan to pursue additional optimiza-
tions such as result cache value indexing for further join optimiza-
tions and exploiting similarity of patterns to reduce matching cost.
We also consider investigating how other performance criteria, such
as response time, are affected by our design decisions and which
optimizations are needed if they become more relevant. Another
important direction to study is how other correlation criteria such
as context similarity or temporal periodicity would work with our
architecture and optimizations. We think that the role of the recent
buffer will be reduced, whereas result caching will become even
more important.

Acknowledgments.
We would like to thank Patrick Lau for his contribution in the

development of DejaVu engine. This work has been supported in
part by the Swiss NSF ProDoc PDFMP2-122971/1 grant.

8. REFERENCES
[1] Coral8, Inc. http://www.coral8.com/.

[2] ESPER. http://esper.codehaus.org/.

[3] MEDAN - Competence Center for Medical Data
Warehousing and Analysis. http://www.inf.unibz.
it/dis/projects/medan/index.html.

[4] Medical Use case. http:
//www.mamashealth.com/Bloodpressure.asp.

[5] MySQL. http://www.mysql.com/.

[6] NYSE Data Solutions.
http://www.nyxdata.com/nysedata/.

[7] Oracle CEP. http:
//www.oracle.com/technetwork/middleware/
complex-event-processing/index.html/.

[8] StreamBase Systems, Inc.
http://www.streambase.com/.

[9] Truviso, Inc. http://www.truviso.com/.

[10] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient Pattern Matching over Event Streams. In ACM
SIGMOD Conference, Vancouver, Canada, June 2008.

[11] M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee. Moirae:
History-Enhanced Monitoring. In CIDR Conference,
Asilomar, CA, January 2007.

[12] S. Chandrasekaran and M. Franklin. Remembrance of
Streams Past: Overload-Sensitive Management of Archived
Streams. In VLDB Conference, Toronto, Canada, August
2004.

[13] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma,
and W. White. Cayuga: A General Purpose Event Monitoring
System. In CIDR Conference, Asilomar, CA, January 2007.

[14] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An
Evaluation of Non-Equijoin Algorithms. In VLDB
Conference, Barcelona, Spain, September 1991.

[15] N. Dindar, B. Güç, P. Lau, A. Özal, M. Soner, and N. Tatbul.
DejaVu: Declarative Pattern Matching over Live and
Archived Streams of Events (Demo). In ACM SIGMOD
Conference, Providence, RI, June 2009.

[16] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk.
Stream Warehousing with DataDepot. In ACM SIGMOD
Conference, Providence, RI, June 2009.

[17] A. Gupta and I. S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE Data
Engineering Bulletin, 18(2), 1995.

[18] D. Gyllstrom, J. Agrawal, Y. Diao, and N. Immerman. On
Supporting Kleene Closure over Event Streams. In IEEE
ICDE Conference, Cancun, Mexico, April 2008.

[19] J. M. Hellerstein. Optimization Techniques for Queries with
Expensive Methods. ACM TODS Journal, 23(2), June 1998.

[20] A. Lerner and D. Shasha. The Virtues and Challenges of Ad
Hoc + Streams Querying in Finance. IEEE Data Engineering
Bulletin, 26(1), March 2003.

[21] Y. Mei and S. Madden. ZStream: A Cost-based Query
Processor for Adaptively Detecting Composite Events. In
ACM SIGMOD Conference, Providence, RI, June 2009.

[22] F. Reiss, K. Stockinger, K. Wu, A. Shoshani, and J. M.
Hellerstein. Enabling Real-Time Querying of Live and
Historical Stream Data. In SSDBM Conference, Banff,
Canada, July 2007.

[23] J. Teubner and R. Müller. How Soccer Players Would Do
Stream Joins. In SIGMOD, 2011.

[24] K. Tufte, J. Li, D. Maier, V. Papadimos, R. L. Bertini, and
J. Rucker. Travel Time Estimation using NiagaraST and
Latte. In ACM SIGMOD Conference, Beijing, China, June
2007.

[25] F. Zemke, A. Witkowski, M. Cherniack, and L. Colby.
Pattern Matching in Sequences of Rows. Technical Report
ANSI Standard Proposal, July 2007.

