
Quality of Service in Stateful Information Filters

Peter M. Fischer Donald Kossmann

Department of Computer Science
ETH Zurich

8092 Zurich, Switzerland
www.dbis.ethz.ch

ABSTRACT
Information Filters play an important role in processing
streams of events, both for filtering as well as routing events
based on their content. Stateful information filters like AG-
ILE [15], Cayuga [13] and SASE [24] have gained a signif-
icant amount of attention recently. Such filters not only
consider the data of a single event, but also additional state
such as a sequence of previous events or a context state. Ap-
plications for Wireless Sensors and RFID data are particu-
larly prominent examples for the need for stateful informa-
tion filtering, with use cases like event correlation or sensor
data affecting the routing of other events. While quality of
service has been researched fairly thoroughly for network-
ing systems and general data stream management systems,
no comprehensive work exists for information filters. The
goal of this work is to present QoS criteria for stateful in-
formation filters and to examine how QoS control methods
established in other areas can be applied to information fil-
ters.

1. INTRODUCTION
Information filtering has seen a significant amount of in-

terest from both academia and industry. The database com-
munity has developed matching algorithms that support ex-
pressive profile languages like XPath [14, 20, 9] and are
scalable to millions of profiles [16] while maintaining high
message throughput rates. Under the name of message bro-
ker [1] or message queuing system [2, 5], the industry has
picked up information filters. A fairly recent and promising
trend are stateful information filters such as AGILE [15],
Cayuga [13] and SASE [24], which incorporate context data
(for example from sensors) or event sequences (for example
from RFID readers) into the matching. Information filters
are often used for in-network query processing. Prominent
examples are SIENA [10], or Gryphon [22].

Considering quality of service is well-established in related
areas like networking, data stream management systems,
and –in a very rudimentary manner– even in commercial
message brokers. What is lacking, however, is a wider view
on how the information filter algorithms developed in the
database community can provide specific service levels, in-
cluding timely delivery and error-free processing, if the avail-
able resources are limited.
This work contributes the following aspects to the area of
quality of service (QoS) in information filters:

Proceedings of the 3rd International Workshop on Data Manage-
ment for Sensor Networks (DMSN’06), Seoul, South Korea, 2006

Information
Filter

profiles/
rules

Messages

Context
Updates

NetworkNetwork
Messages

Matched

Context
State

Database

Figure 1: Information Filtering

1. it defines QoS parameters for information filters;
2. it reviews (qualitatively) the suitability of existing process-

ing architectures and algorithms devised in the database
community to support the QoS parameters;

3. it presents some results of an extensive performance study
of these architectures and algorithms with regard to QoS
parameters.

2. QOS OF INFORMATION FILTERS

2.1 What is an Information Filter?
An information filter (as depicted in Figure 1) connects

sources and sinks of information using profiles. In many
cases, information filters are distributed over the network in
order to increase scalability and remove single points of fail-
ure. Parties interested in receiving information (sinks) sub-
mit a profile of their interest to the information filter, while
parties interested in disseminating information (sources) send
messages to the information filter. Sources are often sen-
sors or data derived from sensors. The purpose of an infor-
mation filter is therefore the matching of messages to the
profiles, so that the matching messages can be sent to the
relevant subscribers or routed to another information filter
closer to the subscriber. A message matches a profile if
it contains values for all the attributes involved in predi-
cates of the profile and these values meet the restrictions
specified in these predicates. For instance, the message
[temperature=20,pressure=850,speed=8] meets the profile
(temperature<22) ∧ (speed>5), whereas it does not match

1

41

Amol Deshpande
Rectangle

Amol Deshpande
Text Box
Proceedings of the 3rd International Workshop on Data Management for Sensor Networks (DMSN'06), Seoul,South Korea, 2006
Copyright is held by the authors/owners.

the profile (humidity ≤ 75). The information filter keeps
track of the profiles, and in stateful information filters [15,
13, 24] additional state (named context in [15]) is used for
the matching decision. The updates in the profiles (un-/re-
subscribe or state change) compete with the messages for
timely processing.

2.2 QoS Scenarios
Existing evaluations of information filters mostly target

the cost aspect: how much is the cost (in time or CPU) to
process a message or a subscription change. There are, how-
ever, many situations where cost is just one aspect among
others. The usefulness (or quality) of an information fil-
tering “service” needs to be judged by many, often com-
peting, aspects. Most services do not have a constant load,
but rather massive changes in their utilization. Provisioning
those services for peak load is -under most circumstances-
not possible at acceptable cost. So while fulfilling all pos-
sible requirements at low load is not a problem, a tradeoff
has to be made for higher loads. Some of these requirements
are “hard”, therefore they must be fulfilled, while others can
be treated with lower priority. The following examples show
some very different, yet typical scenarios of information filter
quality of service:
• E-science: A big scientific instrument (like the particle

accelerators at CERN) sends results of a running experi-
ment at very high rates. An information filter is used to
only keep the data that is relevant for specific interests.
No errors are allowed to occur, as important information
about not yet discovered particles might get lost. The
arrival of events does not have to be timely, however.

• Sports results: During a sports events like a soccer or
a basketball game, the current result is transmitted when
it changes (e.g. a goal/point is scored). Messages with
the result can be dropped, if new results are coming in
quickly (e.g. many points in the same minute).

• Location based service: Messages with offers are sent
to a subscriber based on his/her current location. If there
is a delay in processing the messages, it is actually better
to filter based on the new location than filter on the old
location (which might be hard to reach again).

• Load balancing: Incoming jobs (=messages) are placed
on the server that is the best fit (lowest CPU load, enough
free memory). Placing a short-running job on a system
that has somewhat outdated load statistics might result
in sub-optimal utilization, but the impact is limited. Up-
dating the load statistics every microsecond will be more
costly overall.

Each of these scenarios needs different QoS requirements, so
in practice most of them are solved by building a specialized,
ad-hoc system or massive overprovisioning. The goal of this
work is to study how already existing processing algorithms
for information filters can be used for those different require-
ments, and find out if there is one single method that would
cover all the requirements.

2.3 QoS Requirements
Several related areas have established their respective no-

tion of quality of service: In packet networking, require-
ments are minimum throughput, latency/delay, jitter, con-
tent errors, lost/duplicated packets and packet order. The
commercial message broker systems, on the other hand, put
their focus on reliability, fairness of arrival (same time for

all subscribers).
Since we focus on the algorithms inside each information

filters, the following requirements are the most important:
• Latency: Latency here is defined as the time between

message creation and message arrival at the designated
target: In the scenarios mentioned above, soccer, load
balancing and location based services require low latency.

• Jitter: Jitter is the change in latency between events,
more specifically between two consecutive messages. In
the e-science scenario it is important to avoid overloading
later stages with bursts of messages.

• Errors: Two types of errors may occur:
– False negatives: False negatives are matching mes-

sages that are not delivered to a subscriber. In the sce-
narios above, the e-science example is sensitive to false
negatives, since lost messages cannot be recovered.

– False positives: False positives are non-matching mes-
sages that are delivered to a subscriber. False positives
are again important in an e-science scenario in order to
avoid flooding the subscribers with spurious data.

Besides these main requirements, there are other relevant
parameters: availability, message order and content errors.
For all these parameters, there exist solutions orthogonal
to the processing algorithms: Availability can be ensured
by techniques like replication and failover. Message order
(which is given up by some processing algorithms to improve
the throughput) can be restored by an extra sorting step
before delivery. Content errors (i.e. the message content
is destroyed) are normally not a problem of the filtering
system, but more of the network. Solutions include error-
correcting encoding and retransmitting.

Processing in the filter is not the only factor influenc-
ing the QoS parameters, but the transport network and the
sources may also have an impact. These effects influence all
the processing algorithms in the same way, thus they need
not to be taken into consideration in the rest of the study.

An important aspect of QoS requirements is the gran-
ularity. With coarse-grained QoS, all messages, updates
and profiles have the same requirements. With fine-grained
QoS [8], certain sets of messages, updates and profiles have
different QoS requirements: some profiles may require strict
latency while others do not allow errors. Since this work is
a study of the current state of the art, and no information
filter fine-grained QoS currently exists, the focus will be on
coarse-grained QoS.

3. INFORMATION FILTER TECHNIQUES

3.1 Components of an Information Filter
The right-hand side of Figure 2 gives an overview of the

architecture of an information filter (following [15] and [18]).
Such an information filter has four main components: (a)
indexes, (b) merge, (c) postfiltering, (d) state management.
Typically, there are several indexes for different kinds of
predicates of the profiles. An index implements a function
that gets a single message as input and returns a set of
profiles that potentially match that message. Indexing to
speed up the process of finding matching predicates have
extensively studied in the literature [16, 14, 9, 11].

Since a profile can involve several predicates, the sets of
profiles returned by each index need to be merged. Logically,
the merging step carries out conjunctions and disjunctions.
The result of the merging step is a set of profiles that match

2

42

Amol Deshpande
Rectangle

!"#$%&'
()*+,'-.
$#"
.

-%/0&'.
%/1'2

3/1'2'- ('"0' !#-*$%&*'"

4'-5&*.
6%*,

$)&-'.
7#-%*%8'-

9*)*'.
:)/)0':'/*

9*"'):.#$

;#/*'2*.
<71)*'-

9*"'):.#$

=('--)0'>
()*+,'1
!"#$%&'-?

9*"'):.#$

('--)0'-

('--)0'
@5'5'

(
A

<71)*'.@5'5'

<A

!"#$

%"&'(")

Figure 2: Information filter architecture

the message according to all predicates that are indexed.
Since a profile can involve additional predicates that are not
indexed, a postfilter step is necessary in order to evaluate
those predicates. The state management is used to keep the
state; it is used by the indexes and the postfilter stage. As
an example of the use of the state management, consider a
profile which determines that messages specifying a location
within 500 meters of the current position of the subscriber
should be received. The context management will contain
the current position, and a spatial index or the postfilter
will use this location information for the matching.

3.2 Extensions for QoS Control
To support the QoS parameters of latency, jitter and er-

rors, a system needs to take control over the flow of messages
and updates (similar to queuing disciplines in networking
like random early detection [19]) and also control the activi-
ties of the filter. The left-hand side of Figure 2 shows queues
which keep the incoming messages and updates until they
are processed. The QoS policy can access these queues and
also steer the filter for specific operations.

4. QOS CONTROL APPROACHES
While there are many policies to enforce QoS parameters

on queues of events, we focus on three approaches that work
on information filters and represent the state of the art:
Traditional processing, Shedding and Batching.

4.1 Traditional Processing
The general idea of traditional processing is to process all

messages individually in the order they arrive and not exert
any control over the messages and updates in the queues.
Existing publish/subscribe systems like SIENA [10],
Gryphon [22], Tibco [1], Sun JMS [2], Oracle Streams [4],
Websphere MQ [5] and Microsoft BizTalk [3] use the tradi-
tional approach in their processing. The published version
of AGILE [15] also uses this approach, but adapts the filter
component to changes in the message/update ratio [15] in
order to optimize the throughput (and thus the latency). In
the rest of this paper, the method without this kind of load
adaptation will be called Traditional Eager, the method
with load adaption Traditional Agile.

A qualitative evaluation of the traditional approach gives
the following results: Since no events are discarded and the
order of the events stays the same, there will be neither
false positives nor false negatives. In turn, there are no
guarantees on latency: If the arrival rate of events is lower

than the processing capabilities of the filter, the latency will
be very low. If the arrival rate exceeds the capcity, the filter
will be overloaded and there will be a backlog of events.
Jitter will be relatively low, since the changes in processing
time between two consecutive messages are relatively small,
even at the begin or at the end of a burst.

There are no control parameters for traditional processing;
it will always process all events in the given order.

4.2 Load Shedding
The main idea of load shedding is to discard events when

processing within the QoS bounds is not possible. This
strategy is used in networking (e.g. [19]) and has also re-
ceived a significant amount of interest in stream processing
systems like Aurora [23], LoadStar [12] and STREAM [6].

When looking into the details of possible shedding poli-
cies, the following issues need to be considered:
• What to shed: Messages alone (Shed messages), up-

dates alone (Shed updates) or both messages and up-
dates (Shed both)?

• When to shed: How does the system detect that it needs
to shed events?

• Which specific events to shed: Which events are taken
out of the queue: the last arrived, some random events or
specific events (e.g. semantic shedding [23])?

In the context of this work, we decided to use a combination
of cost-based heuristics and a random shedding policy to
cater for the above issues: When the filter is ready to process
new events, it determines the available time from the latency
bound, the current time and the arrival timestamp of the
message as well as the number of outstanding updates. The
filter “knows” (as set by the administrator or by self-mo-
nitoring) a (close) upper bound of the cost of processing a
single message or a single update (in Section 5, 1850 µsec
for a message and 80 µsec for updates were used, derived
from observing the filter). From this information, the filter
determines if all events can be processed. If the time is not
sufficient, it randomly drops as many events needed until
the bound can be reached (again based on the cost). On
the issue what to shed, we evaluate all variants mentioned
above.

Load shedding is the only method (within the scope of
this work) that can provide hard bounds on latency, unless
the wrong type of events is shed, e.g. Shed updates in a mes-
sage burst or the overall rate is so high that even the cost
of load shedding exceeds the available resources. In turn,
it does not provide any error bounds. Shed messages leads
to false negatives due to the dropped messages during an
overload situation. The two other shedding methods lead
to false negatives and false positives during and also after
the burst, as updates are shed. Since the shed updates are
not applied, the state of the filter after the burst is different
compared to the traditional execution, an effect we call “er-
ror propagation”. In terms of jitter, shedding is very similar
to traditional processing: the processing in the filter is at
the same speed, and the removal of events does not cause
significant variations in queuing times.

For all shedding methods, the targeted latency bound is
the main control parameter. For Shed both, the preference
to shed messages or to shed updates can be adapted.

4.3 Batch Processing
The concept of batching is to combine several events or

3

43

Amol Deshpande
Rectangle

!
"#
$
"#
!
%#
$
%#
!
&#
$
&#
!
'#
$
'

$
"#
$
%#
$
&#
$
'###
!
"#
!
%#
!
&#
!
'#

!
"#
!
%#
!
&#
!
'####
$
"#
$
%#
$
&#
$
'

!
"#
!
%###
$
"#
$
%#
$
&#
$
'##
!
&#
!
'#

())*+,-#.)/0)1
2),/*3*.4,-

5.#6737)0#83,30

5.#.73/,30/#83,30

9+0)-,::*4;#83,30

Figure 3: Batching consistency models

operations (of the same type) and do a combined processing,
which is more efficient than processing them individually. In
the context of databases, bulk index operations are a very
typical example [7]. This technique is also widespread in
networking, for examples Nagle’s algorithm in TCP [21]. In
the context of information filtering, a number of algorithms
on batched message processing have been proposed in [18].
The results show that throughput can be improved by an
order of magnitude even on moderately sized batches.

While the improved throughput can reduce the overall la-
tency, batching can also have adverse effects on the quality
of service: Collecting a sufficiently large batch to actually
increase throughput can introduce additional latency. An-
other aspect is that the stream of incoming events is usually
fairly mixed in terms of events, but batches can only be
formed for messages and updates separately. So batching
needs to reorder the flow of events, introducing errors from
the different execution order of messages and updates.

Batching can neither give a hard bound on latency nor can
it guarantee that there are no errors. However, latency un-
der heavy load will be low since batching can speed up the
processing of events. Compared to load shedding, batch-
ing has much stronger guarantees on errors: At the end
of a batch, the state is the same as in traditional execu-
tion, therefore excluding error propagation. Additionally,
the borders of batches form a limit on how much the state
can diverge from traditional execution. Batching introduces
jitter: the first message on the next batch has to wait all the
time until the previous batch has been processed. The dif-
ferent execution orders (see Fig. 3) allow specifying an error
model, e.g. location-based services would use no outdated
state to match against the current location of a subscriber
instead of his/her location when the message arrived.

In general, the batchsize is automatically adapted to the
current load by taking all events that have arrived out of
the queue when the filter is ready to process.

5. EXPERIMENTS
Based on the qualitative QoS analysis in the last sections,

the approaches Traditional (both Eager and Agile), Shed-
ding (Shed messages, Shed updates and Shed both)
and Batching were evaluated. As stated in Section 2.3, La-
tency, Jitter and Errors (false negatives (FN) and false
positives(FP)) were the relevant QoS requirements. These
requirements become important if the information filter be-
comes overloaded. Many real-life workloads can cause over-

Parameter Description Values

MR Message arrival rate (per second) 50 - 1500
UR Update arrival rate (per second) 2,500 -

150,000
BD Burst duration (seconds) 10
P Number of profiles 500,000
Att Number of attributes used in mes-

sages, contexts and profiles
8

AttI Indexed attributes 2
Val Values for messages, contexts and

constants
0–10,000

UpdAtt Percentage of updates on indexed
attributes

25

UpdProf Distribution of updates over pro-
files

uniform

MD Dist. of msg values Zipf
Lat Latency bound 100–10,000

millisec

Table 1: Workload and tuning parameters

load: rush hours, major sports events like the soccer world
cup and many more. Provisioning information systems that
always can handle the peak of a burst is costly or –in most
cases– impossible.

Due to the lack of space, only a subset of the experiments
performed is shown here. For the remaining experiments,
the reader is referred to [17].

5.1 Methodology and Setup
To perform the analysis, we used an existing informa-

tion filter implementation ([15],[18]). This system provides
a high-speed main-memory information filter for messages
consisting of sets of attribute-value pairs and context-enabled
profiles consisting of conjunctions or disjunctions of point
or range predicates. To support the different QoS policies
outlined in Section 4.1, 4.2 and 4.3, we extended this sys-
tem with queues for the incoming events and the respective
control policies. The system is implemented in C++ and
was run on a Linux 2.6 system with a single 2.2 GHz AMD
Opteron processor and 4 GB of main memory.
Since the focus of this work is on the impact of the match-
ing engine on the different QoS parameters, we excluded the
cost of I/O and message parsing from the measurements:

Each event gets a timestamp that corresponds to its desig-
nated arrival according to the workload requirements. The
times to process a message, the updates between messages, a
batch of messages or a batch of updates are measured using
the gettimeofday() OS method which provides an accu-
racy of about 1 µsec. If processing previous events finished
before the arrival time, the arrival time is counted as start
for the next processing, otherwise the finishing time of the
previous processing. From this starting time and the actual
processing cost the new finishing time is computed.

5.2 Workload
The parameters to create the profiles, messages and up-

dates are shown in Table 1. To simulate changes in the
workload, the arrival rates for messages (MR) and updates
(UR) are changed. An experiment with a combined burst of
BD 10 seconds, MR 800 msgs/sec, UR 115,000 updates/sec
is shown here. The other parameters follow the settings
in [15] and [18]: Both messages and contexts are sets of at-
tribute/value pairs. The number of profiles (P) is 500,000.
The overall number of attributes (Att) is 8. Profiles con-

4

44

Amol Deshpande
Rectangle

tain only conjunctions of simple predicates. Predicates, in
turn, specify an epsilon environment around a constant or
a context value. The selectivity of profiles on individual
attributes was chosen to create a global selectivity order
among the attributes. We put indexes on predicates in-
volving the two most selective attributes (AttI). The values
used in message attributes, context attributes and constants
(Val) are of type float and are taken uniformly from the
range [0; 10, 000]. We quantified all values to three relevant
digits in order to create a reasonably large number of differ-
ent values. The distribution of updates over the attributes
(UpdAtt) is uniform, issuing about 25 percent of the up-
dates on attributes of indexed predicates. The distribution
of updates over profiles (UpdProf) is also uniform. The dis-
tribution of message (MD) value was skewed following a zipf
distribution. For shedding, the experiments using a latency
bound (Lat) of 5 seconds are shown, while we also did exper-
iments with latency bounds ranging from 100 milliseconds
to 10 seconds. The results of these (and other) experiments
are summarized in Section 5.4

5.3 Selected Experiment: Combined Burst
In the selected experiment the effect of a combined burst

of messages and updates is shown, as many real-life scenarios
might exhibit this. The workload is split in three phases:
1. Steady State: about 10 seconds of 150 msgs/sec, 7500

updates/sec (significantly below capacity)
2. Combined Burst: A burst of 10 seconds (BD) with

800 msgs/sec(MR), and 115,000 updates/sec (UR), an
increase in the message rate by more than a factor of 5
and an increase in the update rate by more than a factor
of 15 (each profile is updated every 5 seconds),

3. Decay: 50 seconds of 50 msgs/sec, 2500 updates/sec, to
show the return to steady state.

The latency bound for shedding (Lat) was 5 seconds.
The latency evaluation (Figure 4) shows the following re-

sult: Traditional (a) reaches a maximum latency of about
19.5 seconds, returning slowly to steady state afterwards.
Shed messages and Shed both (b) limit the latency to the
designated latency and return to normal latency levels faster
as there is no big backlog of events in the queues. Shed Up-
dates is not able to achieve this latency bound, reaching
about 19 seconds latency, since the messages alone cause
an overload. Batching exhibits a sawtooth pattern with a
maximum latency of 5.6 seconds. In evaluation of errors
(Figure 5) shed messages (a,d) has a larger number of shed-
ded messages during the burst (7500) than shed both (6900),
but the latter has a tail of errors after the end of the burst
(b,e). Batching has a fairly small number of errors during
the batch (2609 FP, 2706 FN) and no errors after the batch
(c,f).

5.4 Summary of Additional Experiments
We performed more experiments to show different types

of bursts (message only, update only), the impact of set-
ting the control parameters to the individual methods, and
also longer bursts. For brevity, we do not show the re-
sults here, but they can be summarized as follows: Set-
ting different latency bounds on shedding shows that it is
effective to keep the latency under control by discarding
events. The same overall results were observed, with in-
creasing/decreasing number of errors for lower/higher la-
tency bounds. On longer bursts, the number of errors for

shedding and batching increases. More events need to be dis-
carded to keep the bounds, and the batches get larger and
thus the deviation in state. When a limit on batch time is
set, overall latency becomes worse for the bounded batches
compared to the unbounded batches, but overall errors are
smaller.

6. CONCLUSION AND FUTURE WORK
The impact of filtering algorithms on the quality of service

of information filters has –so far– been an uncharted terri-
tory. This work defines QoS requirements, reviews (qual-
itatively) the suitability of existing methods and does an
extensive performance study.

The results of the qualitative analysis and the perfor-
mance study show that there is no clear winner: Traditional
and Shedding each satisfy one parameter completely (error
and latency, resp.), but are weak on the missing parameter
(latency and error, resp.). Batching is able to perform well
on both latency and error in overload situations but cannot
give a hard bound on latency and errors.

The overall processing strategies of existing information
filters are very similar, so traditional and load shedding are
easily applicable. Batching is currently not supported by
any other information filter implementation, but we expect
very similar performance characteristics if the other imple-
mentations are extended accordingly. QoS for stateless in-
formation filters is a subset of the issues discussed here, as
the impact of state update need not to be considered.

A short-term goal is to extend information filters by a
“frontend” that maps QoS specifications on the method that
is the closest fit. The allow this, it is necassary to combine
batching and shedding with a hybrid method (perhaps sim-
ilar to semantic shedding [23]) that allows a gradual transi-
tion, since the other transitions are already possible.

Another direction of research that can be based on this
work are models and techniques for fine-grained QoS guar-
antees, handling different QoS requirements on the same
filter. The interesting issue with fine-grained QoS is that
requirements specified on profiles mean that determining
which QoS requirements apply to a messages is already as
expensive as the actual filtering.

7. REFERENCES
[1] http://www.tibco.com.
[2] Java Message Service. http://java.sun.com/products/jms.
[3] Microsoft BizTalk. http://www.microsoft.com/biztalk/.
[4] Oracle Streams. http://www.oracle.com/technology/

products/dataint/index.html.
[5] Websphere MQ.

http://www-306.ibm.com/software/integration/wmq/.
[6] B. Babcock, M. Datar, and R. Motwani. Load Shedding for

Aggregation Queries over Data Streams. In ICDE, 2004.
[7] J. Bercken and B. Seeger. An Evaluation of Generic Bulk

Loading Techniques. In VLDB, 2001.
[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and

W. Weiss. RFC 2475: An Architecture for Differentiated
Services, 1998.

[9] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig
Joins: optimal XML Pattern Matching. In SIGMOD, 2002.

[10] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service.
ACM TOCS, 19(3):332–383, 2001.

[11] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi.
Efficient Filtering of XML Documents with XPath
Expressions. In ICDE, 2002.

5

45

Amol Deshpande
Rectangle

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000

La
te

nc
y

pe
r m

es
sa

ge
 (m

s)

Time at message arrival (ms)

Overall
Queueing

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000
Time at message arrival (ms)

Overall
Queueing

 1

 10

 100

 1000

 10000

 0 10000 20000 30000 40000 50000 60000 70000
Time at message arrival (ms)

Overall
Queueing

(a) Traditional (any) (b) Shedding (messages, both) (c) Batching

Figure 4: Latency for combined burst

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000

E
rr

or
s

Time at message arrival (ms)

FP Shedding Messages

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000
Time at message arrival (ms)

FP Shedding both

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000
Time at message arrival (ms)

FP batching

(a) FP Shed messages (b) FP Shed both (c) FP Batching

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000

E
rr

or
s

Time at message arrival (ms)

FN Shedding messages

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000
Time at message arrival (ms)

FN Shedding both

 1

 10

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000 70000
Time at message arrival (ms)

FN batching

(d) FN Shed messages (e) FN Shed both (f) FN Batching

Figure 5: Errors for combined burst

[12] Y. Chi, H. Wang, and P. S. Yu. Loadstar: Load Shedding
in Data Stream Mining. In VLDB, 2003.

[13] A. J. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. M. White. Towards expressive publish/subscribe
systems. In EDBT, 2006.

[14] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. TODS, 2003.

[15] J. Dittrich, P. M. Fischer, and D. Kossmann. AGILE:
Adaptive Indexing for Context-Aware Information Filters.
In SIGMOD, 2005.

[16] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A.
Ross, and D. Shasha. Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe Systems.
In SIGMOD, 2001.

[17] P. M. Fischer. Adaptive Optimization Techniques for
Context-Aware Information Filters. PhD thesis, ETH
Zurich, 2006.

[18] P. M. Fischer and D. Kossmann. Batched Processing for
Information Filters. In ICDE, 2005.

[19] S. Floyd and V. Jacobson. Random early Detection

Gateways for Congestion Avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, 1993.

[20] A. K. Gupta and D. Suciu. Stream Processing of XPath
Queries with Predicates. In SIGMOD, 2003.

[21] J. Nagle. RFC 896: Congestion control in IP/TCP
Internetworks, 1984.

[22] P. Pietzuch and S. Bhola. Congestion Control in a Reliable
Scalable Message-Oriented Middleware. In ACM/IFIP/
USENIX International Middleware Conference, 2003.

[23] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream Manager.
In VLDB, 2003.

[24] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In SIGMOD, 2006.

6

46

Amol Deshpande
Rectangle

