Flexible and Scalable Storage Management
for Data-intensive Stream Processing

Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, Nesime Tatbul
Systems Group, Department of Computer Science, ETH Zurich

{irina.botan, alonso, peter.fischer, kossmann, tatbul}@inf.ethz.ch

ABSTRACT

Data Stream Management Systems (DSMS) operate under strict
performance requirements. Key to meeting such requirements is
to efficiently handle time-critical tasks such as managing internal
states of continuous query operators, traffic on the queues between
operators, as well as providing storage support for shared com-
putation and archived data. In this paper, we introduce a general
purpose storage management framework for DSMSs that performs
these tasks based on a clean, loosely-coupled, and flexible system
design that also facilitates performance optimization. An important
contribution of the framework is that, in analogy to buffer man-
agement techniques in relational database systems, it uses infor-
mation about the access patterns of streaming applications to tune
and customize the performance of the storage manager. In the pa-
per, we first analyze typical application requirements at different
granularities in order to identify important tunable parameters and
their corresponding values. Based on these parameters, we define
a general-purpose storage management interface. Using the inter-
face, a developer can use our SMS (Storage Manager for Streams)
to generate a customized storage manager for streaming applica-
tions. We explore the performance and potential of SMS through a
set of experiments using the Linear Road benchmark.

1. INTRODUCTION

Modern data stream processing applications involve multiple con-
tinuous queries that run in parallel, join live data with stored his-
torical information, and are highly data-intensive, requiring tem-
porary materialization of large windows as well as maintenance of
large and highly dynamic operator state. Examples include high-
way traffic monitoring [3], Internet traffic analysis [9], log monitor-
ing/mining [10], and scientific data processing [13]. These appli-
cations often operate under very strict performance requirements.

Although many DSMS solutions have been offered to date (e.g.,
[1, 2, 6]), none of them provide a clean and systematic approach

*This work was supported in part by the National Competence
Center in Research on Mobile Information and Communication
Systems NCCR-MICS, a center supported by the Swiss National
Science Foundation under grant number 5005-67322.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24-26, 2009, Saint Petersburg, Russia.

Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

to storage management. In these systems, the storage manager is
tightly coupled with the query processing engine. Such a design
not only makes the storage manager adhoc and inflexible, but it also
severely limits exploiting the optimization opportunities of the ap-
plications to their full potential since a hard-coded implementation
does not leave much room for optimization. In practice, being able
to customize and tailor the storage manager to the requirements of
the application is key to achieving good performance.

Interestingly, using a tunable storage manager separated from the
query engine has been a fundamental design principle of traditional
DBMS architectures and has been the basis for many useful perfor-
mance optimizations (e.g., [8]). A first contribution of this paper is
to argue that a similar design is needed for data streams. Hence, in
the paper we propose such a separate storage manager and prove its
advantages by showing how to make a storage manager tunable. By
analyzing the patterns observable on data streams and the queries
over these data streams, we have identified a set of important pa-
rameters that can be used to tune the performance of the storage
manager. Based on this analysis, we have developed an advanced
interface that can be used to generate highly efficient, customized
storage managers.

Our approach of a tunable, customizable storage manager clearly
borrows ideas successfully exploited for buffer management in tra-
ditional databases [8]. In this area, the paper makes additional
contributions as the problem is quite different in the case of data
streams. As in relational databases, the read patterns of streaming
queries can be predicted in advance and can be used to select data
structures, access paths, and indices. This approach makes even
more sense in a streaming system, where continuous queries are
known a priori and their more accurate static analysis is possible.
Unlike relational databases though (where data is relatively more
static and updates are less frequent), in a streaming system, the up-
date patterns also play a key role, as they affect decisions on data
layout to better support highly dynamic data movement. Consider-
ing update patterns in the optimization strategies is nontrivial and
the paper discusses in great detail which parameters are relevant
and how to use them to tune the storage manager.

The final two contributions of the paper are the system itself and
its performance evaluation. The system we describe is called SMS
(Storage Manager for Streams). SMS is a general-purpose stor-
age manager for DSMSs that uses the storage parameters defined
through our analysis and delivers a method for tuning them for per-
formance. SMS is built on a well-defined and powerful interface
so that SMS can easily and effectively be tailored to different ap-
plication needs and can potentially serve as the underlying storage
manager for any DSMS. To prove the advantages of SMS and the
feasibility of the ideas explored in the paper, we have implemented
the Linear Road benchmark on top of SMS. Our experiments show

that SMS can achieve a 2-6 factor of improvement over a “one-size-
fits-all" baseline store implementation (i.e., not tuned well to appli-
cation needs), measured using three different performance metrics.

This paper is structured as follows: In Section 2, some motivat-
ing application scenarios are described together with their storage
requirements. In Section 3, we present our fine-grained analysis
to identify the key storage requirements and their respective pa-
rameters. Section 4 focuses on the access pattern parameters and
discusses a framework for the possible values these parameters can
take. Section 5 presents our SMS architecture. In Section 6, we de-
scribe the implementation of the SMS store instances for different
storage parameters, based on state-of-the-art techniques. Section 7
proves, through a benchmark study, that SMS can meet the storage
requirements very well, and can significantly improve the query
processing performance. Section 8 presents an overview of the re-
lated work. Finally, we conclude the paper with a discussion of
avenues for future work in Section 9.

2. APPLICATION SCENARIOS

We are targeting data-intensive streaming applications, including
but not restricted to applications that need to manage a large state
during stream processing. Examples of such applications are:

Internet Traffic Analysis: Correlation of packet streams over
wide-area networks requires keeping a significant amount of data
available for joining over time/location/protocol [9].

Log Monitoring/Mining: Discovering new patterns or check-
ing the presence of pre-defined patterns in data log streams involve
managing large processing state [10].

Scientific Data Processing: Very high data rates of scientific
experiments need to be processed under fairly tight time constraints
in order not to overload the storage and network capabilities [13].

One challenging application scenario that we study in detail in
this paper, is the Linear Road Benchmark [3], which was devel-
oped to evaluate the performance of a DSMS.

Linear Road simulates the traffic on a set of highways with seg-
ments, and provides variable tolling depending on traffic statistics
and accident occurrences. Input stream consists of car position re-
ports and queries. The system has to react to different patterns in
the reports and answer the queries accordingly.

Linear Road’s design goal has been to stress all possible com-
ponents of a DSMS, not just some operator or scheduling imple-
mentation. In particular, it provides a fairly comprehensive set of
requirements to stream storage, some of which we briefly outline
here:

- For computing the toll for a specific segment on a highway,
the traffic statistics of that segment are used. Statistics are ob-
tained from analyzing a window with traffic information (number
of cars, speed etc) created for the past five minutes with a slide of
one minute. Therefore, the traffic statistics information expire in
the order that they were generated.

- Once an accident is detected, every vehicle that enters into a
segment in the vicinity of that accident must be notified. This re-
quires storing the accidents until they are cleared. Cleared acci-
dents are determined by new values in the streaming data (i.e., cars
that had previously stopped, started to move).

- Tolls assessed to a specific car need to be stored for the drivers
to be able to later request their current balance of toll spendings.
One solution for storing this information is to create (key, value)
pairs, while using the new tolls to update the balance that has the
appropriate key (the car id).

- The car position reports are used by multiple queries: accident
detection, segment crossing detection and segment statistics com-
putation. These three queries maintain windows of different sizes

on the same data, which for performance reasons could be shared.

- For the daily expenditure query, ten weeks worth of data needs
to be stored (the tolls spent by all drivers in this time interval).
Given its static nature and the fact that it is quite large, a solution is
to use a relational database for storing it.

- As the information about the accidents in the past minute may
not be available when a certain car crosses a segment, a synchro-
nization condition on the store contents is required to keep the re-
quest waiting until the most recent accident data is available.

As discussed above, Linear Road presents a clear evidence that
data-intensive stream processing applications may come with a wide
variety of storage requirements. Providing a flexible and config-
urable storage management solution is key to meeting these re-
quirements in the most effective and scalable way.

In the next sections, we will describe the three major building
blocks of a decoupled storage manager for streams: (i) the lan-
guage for specifying storage requirements (represented with a set
of parameters) in Sections 3 and 4, (ii) the interface to communi-
cate them in Section 5, and (iii) their internal implementations in
Section 6.

3. MODELING STORAGE MANAGEMENT
FOR STREAM PROCESSING

We first conduct a requirement analysis in order to identify the
set of tunable parameters that a Stream Processing Engine (SPE')
can use to communicate its needs to a storage manager.

These parameters have threefold importance: (i) they provide the
required data access functionality (i.e., basic per-item operations),
(ii) they support the SPE in query processing and optimization (e.g.,
predicate push-down, push/pull models), and (iii) they offer support
for reducing the storage management costs (e.g., lowering response
times and memory consumption).

3.1 Architectural Parameters

A DSMS can be architected in two ways in terms of its process-
ing model: push-based and pull-based. In the former way, input
stream items are pushed through the query network (e.g., Aurora
[1]), whereas the latter follows a more traditional way in which
stream items are pulled from the source input stream, processed
and stored in a result container to be further pulled by other opera-
tors (e.g., MXQuery [5]). A general-purpose storage system has to
be able to support and combine both processing models under the
same framework. Therefore, the first part of our analysis refers to
how the data items get into the storage structures as well as from
there back into the SPE, behavior captured by two parameters:

Role: This property shows how the data gets materialized from
a stream into a store (Figure 1). A store can be either active or
passive. An active store is directly connected to the source stream
and pulls the items from it. In the case of a passive store, on the
other hand, the SPE receives the items from the input stream and
pushes them to be materialized in the store.

Access Model: This property shows how the data gets from
a store to the SPE. There are two ways: pull-model and push-
model. Pull-based stores wait for requests from operators, while
push-based stores notify the engine about new available results.

3.2 Functional Parameters

In addition to architectural parameters, there are also certain prop-
erties that arise from a special functional requirement of an SPE:

'"We use the term SPE to refer to the query processing part of a
DSMS.

[Parameter | Description | Possible Values | Default Values |
Role How the data is materialized in a store Active, Passive Passive
Access Model How the data gets from a store to the SPE Push, Pull Pull
Synchronization If the store acts as a synchronization point False, Synchronization condition False (no wait)
Schema Schema knowledge: number, names, type of attributes No schema, Schema information No schema
Persistence Where the data is materialized (disk or memory) Persistent, Transient Transient
Read Pattern Requests for reads from a store Sequential, Random, Clustered Random
Update Pattern Requests for updates to a store FIFO, RANDOM, IN-PLACE RANDOM
Sharing If the store is shared by multiple operators executing reads Shared, Not shared Not Shared

Table 1: SMS tunable parameters

Synchronization and Schema: SPEs usually have a scheduler
whose job is to run operators in a certain order. One task that they
cannot achieve though is to delay execution of an operator until a
condition based on item values is met. An example extracted from
the Linear Road benchmark is accident notification. A driver en-
tering a new segment of a certain highway should be notified by
accidents in the vicinity, an information which should be up to date
(from the last minute); if not, the notification would be delayed
until the condition is met. For implementing this requirement in
Aurora, the authors had to add a new operator box, named Wait-
For [4]. A materialized store with some synchronization capability
would have made the creation of such an operator box unnecessary.
That is, the SPE may specify a condition on the store which needs
to be met before the consumer operator is allowed to retrieve data.
Usually this condition is on some attribute values, which means
that it is important to know the schema of the streaming items (if
available). From this we extract two parameters: Synchronization
whose value is represented by the synchronization condition and
Schema representing the stored data’s schema knowledge: if all
the stored items comply to the same schema or not, number of at-
tributes, attributes names and types for each of the schemas. The
schema information is also important for predicate push-down op-
timizations. Besides functionality, as it will be shown later in the
paper, knowing that all items comply to the same schema helps the
storage manager in making some implementation decisions.

Persistence: Queries involving archived data sometimes need
items which are already stored in a relational database. Addition-
ally, an SPE, based on the characteristics of the data (volume and/or
how often it is updated, etc), could also specify that it should be
stored on disk rather than in main memory. To account for these
scenarios, we introduced a parameter named Persistence, with two
possible values: persistent and transient.

3.3 Performance-related Parameters

Apart from providing the necessary architectural support and
functionality, the storage manager should also provide performance.
As stated before, we target data-intensive applications which have
low response time and low memory consumption requirements. As
we will show later in the paper, certain pieces of information help
the storage manager to make decisions about how to help the SPE
in meeting these requirements. The access patterns of the opera-
tors and sharing of materialized data are two of the most important
parameters because, given their values, the storage manager will
implement specific mechanisms for speeding up store operations.

Access Patterns (Read and Update): An operator’s storage re-
quirements can be characterized by its data access patterns. By ob-
serving the read and update behavior of an operator on its internal
state (or on intermediate results), we can depict some general pat-
terns, which can be then used in implementations for performance.
We will present a more detailed, fine-grained analysis of the read

Input

stream Operator

Insert|Update

stream

a) Active store b) Passive store

Figure 1: Role store property

and update patterns in Section 4.

Sharing: Continuous queries show high similarities and this
observation was used by the SPEs for multiquery optimization.
The performance of running multiple continuous queries in par-
allel could be improved by sharing computation, and therefore, in-
termediate results and operator states. As an example, we consider
computing the accidents in Linear Road. As outlined in Section 2,
there are two queries which share the accidents information: the
one which notifies other cars about the accidents, and another one
which computes the tolls assigned to a segment based on accident
vicinity. The Sharing parameter can be used to support an SPE in
performing its sharing-based query optimizations.

Table 1 provides a summary of the SMS parameters that we iden-
tified in this section. In the next section, we will further elaborate
on access patterns and sharing, and show how they can be set to
capture performance-related behaviors. We only concentrate on
the performance-related parameters as they are tunable and have
a high impact on performance. The architectural and functional pa-
rameters have generally binary values and the decisions for their
implementations are straightforward.

4. ACCESS PATTERNS

In a DSMS, there is a continuous flow of data items that enter the
system, get processed through the queries to further produce results
that leave the system. During this process, the data items may get
materialized (either permanently or temporarily) in different types
of stores. Additionally, in case of temporary materialization, after
a while, the data items become outdated (i.e., no longer needed
by the queries) and therefore must be deleted from the stores. An
SPE needs to access each of these stores in different ways during
query processing, determined by the access patterns of the query
operators. In this section, we present the access pattern parameters
together with the possible values that they can take.

We consider streams as possibly infinite sequences of data items.
Each item has a set of attributes, which are the same for all items
in a stream if they comply to the same schema. When materialized
into a store, each data item is assigned a unique id, which is further
used to identify the item in the store as are all its attributes.

SELECT Attrl, Attr2 SELECT Attrl, Attr2 ON Stream S
FROM Stream FROM Stream DELETE FROM Store W
WINDOW 24 HOURS WHERE W.Attrl = S.Attrl

a. Never Expire b. Ordered Expire c. Unordered Expire

SELECT Attrl, Attr2 SELECT FIRST(S.Attrl), SELECT Attrl, Attr2

FROM Store LAST(S.Attrl) FROM Store

WINDOW 24 HOURS FROM Store S WINDOW 24 HOURS
WINDOW 24 HOURS

f. Ordered Consume g. Eager Consume h. Sequential Read

ON Stream S SELECT *
UPDATE Store W FROM Store
SET W.Attr2 = W.Attr2 + S.Attr2

WHERE W.Attr]l = S.Attrl

d. Replaced Expire e. Never Consume

SELECT Attrl, AVG(Attr2) SELECT S.Attrl

FROM Store FROM Store S

WINDOW 24 HOURS WHERE PREV(S.Attrl) != S.Attrl
GROUP BY Attrl AND S.Attrl < NEXT(S.Attrl)

i. Random Read j- Clustered Read

Table 2: Query examples for each access pattern

Data items in a store can be accessed in two alternative ways:
value-based and id-based. In the value-based access, given a set of
attribute values, the matching items are returned; in the id-based
access, the item with the corresponding id is returned.

Furthermore, there are two major categories of access patterns:
read patterns and update patterns. Read patterns refer to the way
data items get retrieved by the operators, while update patterns refer
to how operator states and inter-operator stores get modified as a
result of new data arrival, query processing, as well as outdated
data eviction.

4.1 Update Patterns

Since data stream items arrive and need to be processed in a pre-
defined order (either order of arrival, or given by the SPE), new
data items’ insertion into a store is always done in an append-only
manner. Therefore, in this section, we will only focus on the update
patterns which occur in the form of deletes and value replacements.

A store gets updated with deletes or value replacements in two
occasions: (i) as a result of data expiration, and (ii) as a result of
data consumption.

Our analysis of data expiration is similar to that of Golab and
Ozsu [12]. The fundamental difference is that we are using the
results of our analysis to determine how to configure the stores,
while the related work uses them for operator implementation as
part of an SPE.

To illustrate, consider two operators (Producer and Consumer)
connected as shown in Figure 2. The Store between them tem-
porarily keeps the intermediate query results that are generated by
the Producer to be later used by the Consumer. The Producer, in ad-
dition to the regular append-only insertion of new data items, has
an update pattern on the Store denoted by UPD1, while the Con-
sumer has an update pattern on the Store denoted by UPD2 and a
read pattern denoted by READ. UPD1 is a result of data expiration,
while UPD?2 is a result of data consumption.

Next, we will present the possible update operations that the Pro-
ducer (UPD1) and the Consumer (UPD2) operators may impose on
the store and their semantics (for each of the patterns we provide a
simple query example written in an SQL-like language in Table 2).
The combinations of these patterns will become the update patterns
of the Store itself.

READ Stream
Stream UPD1 bl
— Producer Store Consumer

UPD2

Figure 2: Operations on a store

4.1.1 Producer Operator Update Patterns

Data items in a store may expire in four different ways:

Never Expire. The Producer generates a stream of results which
are materialized in Store, but never expire. This means that there is
no UPDI. For example, if it performs a selection operation (Table
2.a.), the selected items are inserted in the Store as regular append-
only, and they never expire. In theory, the resulting data items could
be kept in the Store forever. In practice, the Consumer operator is
to determine when some items are no longer needed and can be
deleted (will be described in the next subsection).

Ordered Expire. In this case, the data items in the Store become
outdated, and therefore deleted, in the order that they were created.
For example, if the Producer operator selects some attribute values
from a moving window of 24 hours, the query results materialized
in the store will expire as the window moves forward (Table 2.b.).

Unordered Expire. In some cases, the update pattern may de-
pend on the values of the newly arriving input rather than its arrival
order. In other words, the outdated items are determined by the
values of some attributes. Since insertions are always append-only,
the items in the store will not necessarily be physically clustered by
their key values. Therefore, value-based delete requests will usu-
ally be translated into randomly ordered deletes (i.e., two succes-
sive delete requests will not follow a specific order). An example
is provided by the statement in Table 2.c., which deletes from the
Store the items having the same values for attribute "Attrl" as the
items in the input stream.

Replaced Expire. Some store items expire when a new item
replaces their attribute values. (e.g., if the Producer executes the
query in Table 2.d., it will update the value of attribute "Attr2" in
Store with new data from the input stream).

Note that Unordered Expire and Replaced Expire patterns re-
quire value-based access to the data items in the Store.

4.1.2 Consumer Operator Update Patterns

The updates are generated not only as data items expire, but also
as they get consumed. Some of the consumer operators follow the
usual stream-based semantics, i.e., they “look" at the input only
once. In this case, some data items may redundantly remain in the
system, resulting in waste of memory space. We solve this prob-
lem by having the consumer operators mark the processed items
as “consumed"”. Unlike in data expiration, these items need not be
eagerly deleted; but instead, they could be removed from the stores
lazily. Lazy removal is achieved by periodically running a “garbage
collection" process to remove the marked items from the store.

Data items in a store, which have already been processed by all
of its consumer operators, can be marked for eviction in three dif-
ferent ways:

Never Consume. In some cases, the Consumer operator may not
be able to decide if any of its consumed items will be needed in the
future. If this is the case, then no item is marked as consumed. An

[Never Consume [Ordered Consume | Eager Consume |

Table 3: Store update patterns

example would be when the Consumer operator executes a repeated
scan of the store (Table 2.e.).

Ordered Consume. When a sliding window operator moves
the window, the outdated items are marked as consumed (if for
example the Consumer operator executes the query in Table 2.f.).
This is done in a FIFO manner, since older items are consumed
earlier than the newer ones.

Eager Consume. In some cases, a windowed Consumer oper-
ator can take an eager approach in marking the consumed items
in the window. For example, when the window (materialized in the
store) grows to large sizes, the operator may determine that some of
the items inside the window will no longer be needed and therefore,
can be immediately marked as consumed. This approach not only
reduces memory consumption, but also decreases query processing
time, since window lookups for smaller windows take less time. An
example is provided in Table 2.g., in which the query only requires
the first and the last items in a window (all items in between could
be marked for removal).

4.1.3 Store Update Patterns

The update patterns of the Producer and Consumer operators can
be combined to assign a single update pattern to a given Store. For
our example in Figure 2, the patterns for UPD1 and UPD2 would
determine the update pattern of Store. In this section, we consider
all combinations of update patterns due to expiry and due to con-
sumption, and come up with a number of possible update patterns
for stores. Table 3 presents these combinations.

In general, the update pattern of the Store is determined by the
update pattern of the Producer operator. The reason is that expired
data items must be immediately removed from the Store to make
sure that the Consumer operator has accurate inputs. On the other
hand, if the Producer has the Never Expire pattern, then the up-
date pattern of the Store is determined by the update pattern of the
Consumer operator.

Except for Replaced Expire, all other Producer updates are in
the form of delete operations. Therefore, for the value replace-
ment case, we need a special store update pattern, which we call
IN-PLACE. For the other pattern combinations, we always choose
as the store pattern, the operator update pattern with the most con-
straints. For example, a combination of Unordered Expire producer
update pattern and Ordered Consume consumer update pattern will
result in a RANDOM store update pattern, since the former im-
poses the support for deletes in random order.

From the producer-consumer update pattern combinations, we
identify four types of store update patterns:

o NO-UPDATE. This store update pattern has no fixed behav-
ior imposed by the Producer-Consumer operators. This is a
special case for which a couple of different approaches can be
taken, like: to archive materialized data (on disk) or to consider
a FIFO pattern with some lifetime specification.

o IN-PLACE. This store update pattern is for stores that allow
value replacements by key. If the key of an updated item does
not already exist in the store, then that item is inserted.

o RANDOM. This store update pattern is called RANDOM to

Never Expire NO-UPDATE FIFO FIFO/RANDOM SR Stroam,
Ordered Expire FIFO FIFO FIFO/RANDOM Stream UPD2
Unordered Expire RANDOM RANDOM RANDOM Producer
Replaced Expire IN-PLACE IN-PLACE IN-PLACE Stream
Consumer nF——*

Figure 3: Shared store

account for the unordered execution of the delete operations.

e FIFO. The most common combination of operator update pat-
terns observed in streaming applications is represented by a mix
of inserts at the end and deletions from the beginning. For this
specific behavior, we define FIFO, a store update pattern which
favors queue-like operations. In this type of stores, either items
never expire, or they expire in an ordered fashion. For Eager
Consume, we can take two approaches: FIFO, when memory
consumption is low and we can ignore items being marked as
outdated, or RANDOM, to support eager deletion of items.

The implementation of the store update patterns listed above will
be described in Section 6.

4.2 Read Patterns

As in related work [8], we do an analysis of the read patterns, in
our case, in a streaming environment.

As shown in Figure 2, the way the Consumer operator requests
items from the store determines the read pattern. Although win-
dows are usually stored in main memory, executing a repeated scan
of the complete window to find the requested items is not an effi-
cient solution. Depending on the Consumer operator’s read access
patterns, certain optimizations can be applied. In this subsection,
we identify these patterns and in Section 6 we discuss their opti-
mized implementation.

Streaming operators read data items from a store in three differ-
ent ways:

Sequential. Some Consumer operators access the data items in
a store sequentially. Selection inside a window is an example for
sequential read. In this case, the items in the specified window will
be accessed one after another (e.g., the query in Table 2.h.).

Random. Some operators access the data items in a store in
a random order. For example, an Consumer operator executing a
windowed group-by aggregate operation will access the items of a
window in random order of the groups (Table 2.i.).

Clustered. In a clustered read access, there is locality of requests
grouped around some items. For example, the query in Table 2.j.
executes a series of read operations for previous, current and next
item given the current position of a sequential cursor.

4.3 Sharing and Access Patterns

In the previous subsections, we made an enumeration of different
read and update patterns. We were considering the simple case
in which there was only one consumer operator. For optimization
purposes though, stores can be shared among multiple consumers
which require access to the same input data (Figure 3).

For determining the update pattern of a shared store, we propose
a simple and safe (i.e., that meets all the constraints and produces
correct answers) algorithm: we first determine the combined update
pattern of the consumer operators, and then use Table 3 to obtain
the final update pattern representing that store.

The three update patterns on the consumer side (i.e., Never Con-
sume, Ordered Consume, or Eager Consume) yield the following
possible combinations:

* If at least one of the consumer operators has a Never Consume
update pattern, then the combined update pattern should be Never
Consume.

* If all consumers follow an Eager Consumer update pattern,
then the combined update pattern may also be Eager Consume for
performance reasons (less memory consumption). On the other
hand, a less constrained pattern (e.g., FIFO) could be used when
there is enough memory.

* All other cases generate Ordered Consume update pattern.

Sharing has an important impact on performance. This is be-
cause different operators need different subsets of the input, and
therefore, there may be many items in the store that are not needed
by a certain operator. In this case, knowing how each operator
reads the data is important for speeding up the search. Therefore,
the read pattern of a store is determined by the read patterns of each
of its consumer operators. In other words, the store must provide
the storage structures (e.g., indices) to support the read patterns of
all of its consumers.

5. SMS ARCHITECTURE

As outlined in the introduction, our work does not stop at identi-
fying the parameters needed to tune storage in a DSMS, but it takes
the next logical step to establish an architecture for decoupling the
storage concerns from the processing concerns in order to allow for
better optimization, generality and extensibility.

Figure 4 shows how a DSMS can be split in two components: the
stream processing engine (SPE) and the stream storage, which we
call SMS. The SPE is mainly in charge of query processing and op-
timizations, and uses SMS to perform all of its storage-related tasks
(i.e., storing and retrieving data items as needed by the queries). As
such, SPE and SMS together act as a complete DSMS.

Given an application, it is the SPE’s responsibility to analyze
its requirements and then implement it (usually through a query
network). During this process, the SPE uses our analysis of the
parameters to determine the access patterns of the operators and to
express its own architectural and functional requirements using the
parameter values provided by SMS. The resulting combinations of
values are then communicated through the dedicated interface to
SMS, which, in turn will create store instances that meet the SPEs
requirements.

In this section, we will present how SPE and SMS interact and
how the detailed architecture of SMS looks like.

SMS consists of four main components:

Store Instance

A Store Instance represents a data source. It is characterized by the
way its data is inserted, organized and updated. A store instance is
configured to provide the required functionality through the set of

| SPE |

R| |u R| U Rl [u

Requested [Properties

IAccess IF | Lifecycle Interface)

‘Access IF 1‘ ‘Access IF 2‘

Store Store Store Store Factory
Instance Instance Instance
(Flso) {Random,
Random] Sequen!lal
Create Store Instance SMS

Figure 4: DSMS architecture with SMS

parameters specified at its creation time (some examples are shown
in parenthesis in Figure 4). Furthermore, the implementation of a
store instance ensures that both the response time and the mem-
ory footprint are low. We would like to note that a store instance
could either reside in memory or on disk, which is a property that
is specified through the Persistence parameter at creation time.

Lifecycle Interface

The Lifecycle Interface is used by the SPE to create and gain access
to store instances. Through this interface, the SPE communicates
to SMS the properties of the store instances that it would like to cre-
ate through a set of parameters such as the access patterns. These
parameters have been identified as a result of the detailed analysis
conducted in the previous sections.

This interface exports a set of operations that are used for the
management of store instances:

createStore(Properties) returns a StoreInstance that rep-
resents the implementation of the required properties. The new
store instance is added to the list of currently available stores.

removeStore(Storelnstance) Destroys a store instance as re-
quested by the SPE.

register Index(IndexSchema, StoreInstance) This method
is used for specifying an index schema, that is used for creating in-
dexes, to allow value-based replacements and reads (the IndexSchema
will be described later in the paper).

Store Factory

As its name implies, the Store Factory is the component of the
architecture that is in charge of creating, managing, and deleting
store instances. The decisions regarding the implementation of the
store instances are made by the Store Factory, which receives the
requested parameter values through the lifecycle interface and uses
rules for creating different store instances given the combinations
of the parameters’ values. (e.g., if a FIFO update pattern is speci-
fied in the properties, then the Store Factory applies the respective
implementation for this type of update pattern).

Access Interface

The Access Interface enables the SPE to access a specific store
instance. It provides basic per-item (and per-attribute) operations
such as read and update. The supported operations depend on the
actual parameter settings done at the instance creation time.

In the following we will present the interfaces exported when
giving values to the store parameters. The Sharing and the Syn-
chronization condition do not export any interface, as they are used
for organizing the internals of the implementation.

Insertion.

Inter face PassiveRole { buf ferItem(Item) }

The bufferitem method is exported if the Role parameter is set
to Passive value. Otherwise, this method is used internally by the
store instance.

Update. In Table 4 we present the interfaces for each of the three
store update patterns (NO-UPDATE obviously does not export any
interface explicitly).

In practice, we don’t expose an explicit consumption interface to
the consumer operator, since the store update pattern and the read
operations determine consumption.

The update method is exported if IN-PLACE value for the up-
date pattern is received. Values are applied on the index deter-
mined by the IndexSchema to search for the item to be replaced
with Newltem.

Read. In Table 5 the read interfaces are presented.

The retrieve method is exported if the requirements specify that

[[FIFO [RANDOM [IN-PLACE |
Exported methods | deleteUpTo | deleteltems | update

Parameters TtemlId ItemIdsList | IndexSchema,
Newltem,
Values
Table 4: Update interface
[[IndexRead | RandomRead] SequentialRead]

Exported | retrieve getltem getNextltem

methods getAttribute | getNextAttr

Parameters | IndexSchema, ItemId -

Values Attributeld
Return ResultSet Item Item
values Attribute Attribute

Table 5: Read interface

further requests will use an index. Values are applied on the index
determined by the IndexSchema to search for the items returned as
a result. The ResultSet can be further iterated to extract individual
items.

Out SMS architecture provides a clean separation between the
processing and the storage aspects of a DSMS. The ability to in-
stantiate multiple, differently tuned store instances allows the fine-
grained adaptation to the storage needs of an application, while en-
abling global storage optimizations via the store factory.

6. STORE INSTANCE CREATION AND IM-
PLEMENTATION

We have presented so far the "language" that the SPE can use
for communicating with SMS and the interface it can use to do so.
The next logical step is to follow the decision process that SMS
executes when interpreting the received information. Given the pa-
rameter values, the storage manager configures a store instance that
meets the requirements, while trying to provide an optimized im-
plementation.

In the following we will present the decisions and actions that
SMS takes when faced with each of the parameter values. Due to
space constraints, some implementation details are not included.

6.1 Architectural Parameters

Role and Access Model: A passive value for the role, determines
the store instance to export the "bufferltem" method to be used by
the SPE to push items. When the value is set to active, the SMS will
call a predefined API provided by the SPE to retrieve data items
from the input stream. This interface should also provide a push
operation to an output stream when the access model of the store is
set to push. A pull value for the access model determines the store
manager to export the read operations determined by the registered
read pattern(s). The default values for the role and access model
parameters are passive and pull respectively.

6.2 Functional Parameters

Persistence: 'When receiving value Persistent in a createStore
call, the storage manager expects some information regarding the
RDBMS: server URL, port, table name etc. It therefore creates a
special kind of store whose job is to redirect all the requests from
the SPE to the specified database. One challenge in the implemen-
tation is to translate the requests into SQL queries. Our current
solution offers a simple mapping from (attribute name,value) pairs

Directors -

N A O 5

Blocks []]
Deleted

Currently
being
written

Marked as
consumed

Figure 5: RANDOM store update pattern implementation

to SELECT statements as well as key-based updates. The storage
manager has the flexibility to decide on when to persistently store
the items, if it should keep them locally using caching techniques.
That way, it relieves the SPE from the burden of managing these
tasks itself (in the future we plan to further investigate the challenge
of correctly and efficiently supporting join operations between per-
sistent and live data) The value transient tells the storage manager
to create its own main-memory based implementation of the store.
The default value for the persistence parameter is transient.

Synchronization: If a synchronization condition is present, a spe-
cial mechanism based on blocking/notification is employed for de-
laying reads until the condition is met. For example, a synchro-
nization condition may look like: ("minute", eq, <minute_value>),
meaning that the store should notify whenever there is data for the
given minute (<minute_value>).

Schema: The next parameter evaluated is the schema(s) infor-
mation (if present). The metadata about the attributes and types is
stored. One important piece of information is if all the items in
the stream comply to the same schema. If no schema information
is available, the default action we take is to consider that the con-
tained items may have different schemas and no further assumption
is made.

6.3 Performance-related Parameters

In implementing the internals of a store, we used state-of-the-art
techniques to speed up access operations as well as to keep low
memory consumption. The memory usage vs response time trade-
off applies here as well and we do have in mind dynamic decisions
based on runtime statistics, but for the purpose of this paper we
only focus on a best-effort static decision based solely on query
analysis.

6.3.1 Implementation of the Update Patterns

The four basic write operations involved in any update pattern
are: insertion, deletion, value replacement and garbage collection.
We call garbage collection the process of physically removing the
consumed and/or expired items from the store’s internal structures.
Each of the update patterns requires only a subset of the first three,
while garbage collection is a required operation for avoiding un-
necessary memory usage.

RANDOM Store implementation

Our RANDOM store implementation is depicted in Figure 5. This
update pattern has the most constraints as it requires delete opera-
tions anywhere on the live (items that are neither expired nor yet
consumed) part of the stored data as well as insertions and garbage
collection.

The most suitable data structure for a RANDOM store is a linked
list, because it is very flexible and easy to manage in the face of
high-speed updates (i.e., insert and delete operations). A linked list
allows the size of the materialized data to dynamically grow and
shrink as needed. Furthermore, processing updates one item at a
time is not a good option when dealing with fast updates (creating a

Circular List of Directors

[
Blocks
Currently

Cleared, €
ready All items Full, ready V\ljstltnegn
for new data consumed for queries

Figure 6: FIFO store update pattern implementation

new entry for each arrival dramatically decreases performance). In
order to support high insert rates, we use a linked list of directors to
blocks of items, in which items are ordered by their insertion times
2. A block itself is implemented as an array of items. Not only
is the array implementation simple, but also provides fast random
access. Each block has a fixed size, representing the number of
items that it can accommodate . When a new item is to be inserted,
it is redirected to the most recently created block in the first free
position. If all blocks are full, a new one is created and the process
continues.

When an item is to be marked as expired, its corresponding block
is located using the list of directors and inside the block the item
is marked as deleted. Any subsequent request for an expired item
will fail. For fast access to a certain item we use a combination of
logical (used by the SPE in requests) and physical Ids (used inter-
nally) with simple mappings based on arithmetical operations for
reducing overhead.

An item or a set of items, can be marked as consumed in the
same manner as expired items. Expired and consumed items are
physically deleted from the store lazily, when the system becomes
short of memory to make space for the newly arriving items. There
are two approaches to garbage-collect the marked items: (i) only
blocks which are fully consumed (i.e., all items in the block are
marked) are removed from the linked list by removing the respec-
tive directors; or (ii) all the blocks are shrinked to physically re-
move all the consumed items in the system. The second approach is
more aggressive as it also garbage-collects the partially-consumed
blocks. Outdated items in a shared store are determined as the in-
tersection of the item ids marked as consumed by all the consumer
operators.

FIFO Store Implementation

One of the shortcomings of the RANDOM implementation is that
in its context, blocks are continuously deleted and created. Further-
more, a block has to be locked for access, because a read operation
may be requested for a block which is concurrently being written.
This has a very important impact on performance with the continu-
ous flow of items.

A consequence of having a FIFO update pattern is that consumed
blocks may be reused instead of being deleted. That is, a block
which has all its items marked as consumed, can be reused by re-
placing the consumed items with the new-coming ones, therefore
avoiding deleting it and probably creating a new one later on. This
is achieved by creating a circular linked list of blocks (Figure 6).

Furthermore, a read can only be executed after the requested item
has been materialized (“read-behind"). In this case, the synchro-
nization is achieved based on the id of the last materialized item.
Therefore, we can make the block lock-free.

Specifying which items are consumed is a very simple task: the

This is somewhat similar to the “sub-window" implementation in
related work [11].

‘Read Request

Id-Index
D’@D . - Cache
N\
Underlying data structure
(e.g., linked list)

Figure 7: Speed-up read operations

smallest id of the last reported consumed items (in the sharing case)
is computed, and all items up to that id are considered ready for
garbage collection.

IN-PLACE Store Implementation

In the case of the IN-PLACE update pattern, we have no deletions,
sometimes inserts and mainly replacements and reads. If we would
use a single block for all the data items, reads would be executed
really fast, but the block would have to be locked as replacements
can occur in the meantime. Therefore we use a set of blocks, to
reduce congestion (this resembles to horizontal partitioning in re-
lational databases). This update pattern supposes the existence of
a value-based index for locating the items that need to be updated.
The value-based index is presented in the following subsection.

6.3.2 Implementation of the Read Patterns

To avoid a rescan with each new request for an item, the access
pattern can be used to build specific indexing and caching structures
on top of the layout.

Value-based Indices

As in the case of value replacement, value-based access requests
the existence of a special structure which we call a value-based
index. The schema information becomes very important for the
implementation.

A value-based index is created using the predicate push-down
feature. That is, the SPE pushes the where clause of a query opera-
tor to the storage level. First of all, the predicate is translated into an
index schema, which the SPE registers on the store instance. This
means that the engine specifies a set of attributes (i.e., columns)
and logical operator pairs.

For example, consider the following query: What is the previous
minute’s “min" toll for the segment “seg" in direction “dir"?

The conjunction-based predicate is translated into an index schema
with the following structure: ((min, eq), (seg, eq), (dir, eq)). The
store will then create an index structure based on the three attributes.
When a request identified by the index schema is sent, the values
are applied to the index using the logical operators and the items
are returned.

Read Patterns

Redirecting the item requests to the appropriate blocks may lead
to overhead. Therefore, as shown in Figure 7, a store implementa-
tion uses a cache which holds the last block which was involved in a
read operation. When an item is requested from the store, this cache
is probed if it contains the corresponding block. If so, the cached
item is returned. On the other hand, if there is a “cache miss", then
we need to locate the block which contains the requested item from
the linked list. Because we want to avoid a complete scan of the list
of blocks, we use a special structure which we call id_index. This
index is a tree-based implementation of a map that is optimized

for locating the block an item belongs to. Consequently, the cor-
responding block replaces the current one in the cache. Sequential
reads are facilitated by the presence of the cache, in which case the
same block can be used for all subsequent requests going to that
specific block. Having the actual information though determines
that the id-index is removed, as it is not needed anymore: when an
item is not in the current processed block, the linked list naviga-
tion methods can be used to move to the next block. Removing the
index reduces the number of operations executed for a read, and
avoids one synchronization point.

In the case that there are more readers subscribed to a store, each
of them will have its own last accessed block saved in the cache.

Random access is facilitated by the id-index. In this case, we can
skip probing the cache, as any block could be accessed next.

Having information about the schema of the input items is of
great help when the SPE requests for the value of a certain at-
tribute. This is achieved by allowing an identification scheme that
locates attributes inside items. Our previous description about lo-
cating items does not work in this case. For this reason we create
another structure for directly locating attributes. This implementa-
tion only works if all the items comply to the same schema.

The clustered read access is a pseudorandom access with some
locality. Therefore, of great help will be the id-index backed up by
the caching technique because two subsequent requests have a high
chance of reaching the same block.

7. PERFORMANCE STUDY

In this section, we will show the performance of our approach
through an experimental study on the Linear Road stream data man-
agement benchmark [3]. The benchmark is run on MXQuery [5],
a Java-based open-source XQuery engine extended with window
functions for stream processing. MXQuery uses SMS as its under-
lying storage manager for all of its storage-related tasks.

There are two main goals of this performance study:

o We would like to show that our fine-grained parameter analysis
meets a broad range of requirements, while value tuning im-
proves the overall query processing performance in terms of
response time and memory consumption.

o We would like to analyze the sensitivity of the query processing
performance to changes in some of the storage parameters.

7.1 Performance with Linear Road Benchmark

7.1.1 Linear Road Benchmark

In Linear Road, the input stream is composed of car position re-
ports (each car reports its position every 30 seconds) and queries.
An engine that implements the benchmark has to distinguish be-
tween the different types of streaming items and execute the queries
accordingly.

The benchmark involves all in all, five queries: Accident No-
tification - drivers are notified of accidents in their vicinity when
crossing to another segment on the highway; Toll Notification -
drivers are notified by the toll of the segment they are entering;
Balance Query - a driver can request its current balance of assessed
tolls; Daily Expenditure Query - how much has a driver spent on a
particular day in the past 10 weeks (Travel Time Estimation query
was not included in any published implementation so far).

The measure of this benchmark is given by the load level, repre-
senting the number of highways that can be handled by the query
processing engine. A certain load level is considered to be achieved,
when all the queries involved in the benchmark are answered within
at most 5 seconds after the request entered the system.

7.1.2 Experimental Setup

Our Linear Road implementation contains a set of queries con-
nected by SMS stores as shown in Figure 8. Except for "Historical
Tolls", all other stores reside in main memory.

There are three major types of SMS stores involved in our im-
plementation: a persistent historical store for the tolls assessed to
cars in the previous 10 weeks; two stores, which because of their
nature, are implemented as main memory relations (allowing key-
based updates and reads); and a set of “streaming" stores.

For the "Historical Tolls" we have created a Store Instance which
has value Persistent for its Persistence parameter. Through our de-
sign, we have offered therefore a means for storing the data on disk,
in this particular case using a MySQL database instance.

The two main memory relations (noted with I and II in Figure 8),
both store items that are updated and/or retrieved by key (vehicle
id) Given these requirements, the most suitable implementation is
offered by the one corresponding to the IN-PLACE update pattern.
These two stores have value "passive” for the Role parameter.

All the "streaming" stores are implemented as "active" stores
(they pull items from their input streams of items):

Input Store holds items from the input stream sent by the Lin-
ear Road’s data generator. It is shared by three queries (i.e., Car
Positions query, Balance query, Daily Expenditure query).

Car Positions Store holds the car position reports used for com-
puting the accidents and the per-minute statistics, as well as to de-
termine which cars are crossing to a new segment. Therefore, three
overlapping windows are open on top of this store. The largest win-
dow is the one for computing the statistics per segment (5 minutes).

Car Positions to Respond Store contains the position reports of
the cars which changed their segment so that the drivers can be
notified about relevant events (accidents or tolls charged).

Accidents Store keeps the data items that describe the accidents.
It is shared by the accident notification query and the query that
calculates the tolls.

Segment Tolls Store contains the per-minute, per-segment tolls.
The "Accidents" and "Segment Tolls" stores are examples of using
synchronization as both contain a condition on time (a request in a
certain minute is blocked until data is available for that minute).

The streaming stores are the ones we focus on in this perfor-
mance study, as this type of store is typical in general stream process-
ing settings, and moreover, they do not have specific requirements,
leaving room for different implementations and optimizations.

The experiments were run on a Linux machine with a 2.2GHz
AMD Opteron processor and 4GB of main memory. SMS has been
implemented in Java. For this study, we used Sun JVM Version
1.5.0_09 (we kept the default settings of Java garbage collection).
The maximum heap size that represents the available memory was
set to 3GB.

One experiment runs for 3 hours, until all items from the input
are processed, unless the maximum amount of memory allowed is
exceeded. The input load (number of streaming items per second
entering the system) increases during the execution. In order to
be able to demonstrate the full impact of our algorithms, in the
experiments, we set the benchmark load level to 2.5 (sufficient to
stress the system such that it had to fully utilize the allocated system
resources).

In our first set of experiments, we used several metrics as per-
formance measures, including: the average and maximum query
response time, the number of alerts which exceeded the 5 sec-
onds threshold, and the total amount of memory consumed.

The query response times are measured for the toll alerts, as they
represent the majority of the alerts in the system and are generated
on the query path with the highest computational load.

Boxes — Queries é?;é?;"é Aggigt — ot
Orange — Streaming stores (1 — 5) P
2 I
Toll Result
Car Events Output
positions
Car positions
1 to Respond —_—
Segment /' Calculation
Input Statistics for
stream everyIminute Balance Result
Query Output
Historical A Daily
f ; istorica Historical
Gray —Main memory relations (I, 1l) | o oy Tolls Expenditure _,gﬁtsulltI
White — Persistent storage (A) — Query P
Figure 8: Linear Road implementation
Our first attempt was to implement a simple queue as the un- Results. Con- | Average Te- Maximum Alerts over 5 | Percentage
. . . y . figuration sponse time | response seconds of total
derlying structure. The continuous items’ deletes and inserts, as (seconds) time (sec- alerts
well as numerous read operations (MXQuery is a pull-based en- onds)
gine) made the store very inefficient as no special optimizations Baseline 3.17 57 767,182 134
were conducted to support them. Of course, this implementation OP;imiZed for | 0.715 29 190,753 33
failed. Therefore, we used as the Baseline, an optimized version g‘;;fif:gegr o - = —
of a general streaming store(Figure 9). It is based on a RANDOM update and ’ ’ '
update pattern implementation (the most general, no assumptions), read patterns

containing both an id-index for random access as well as caching
techniques for speeding up reads (again, no assumption about the
read patterns).

In the experiments we compare three different configurations:

e Baseline In this configuration all the stores in the query network
are implemented as Baseline

e Baseline + Update pattern. In this configuration, we use the
information about the update patterns and change the imple-
mentation of each store to reflect its actual update pattern (read
pattern stays Random for all).

o Baseline + Update pattern + Read pattern. This configu-
ration adds the read pattern knowledge, therefore determining
some of the storages to change implementation to either Se-
quential or Clustered.

7.1.3 Performance

In this subsection we examine the performance of SMS when ac-
cess patterns are tuned to the query requirements. First we consider
the Baseline and run the benchmark in this configuration. Next we
introduce the update pattern and present the new configuration. Fi-
nally we add read pattern knowledge.

Generic Read
Optimizations

Read Request
Id-Index

)
EEE% EEIJC”—D__!_\
Marked as
Random Store Coaie] [Deleted]

Figure 9: Baseline implementation

Cache

Currently
being
Written

Table 6: Average and maximum response times

Analyzing the queries, we determine that the streaming stores
1, 3, and 5 (i.e., Input Store, Car Positions Store, Car Positions
to Respond Store, and Segment Tolls Store) have a FIFO update
pattern, whereas store 4 (i.e., Accidents Store) has a RANDOM
update pattern (see Figure 8) since accidents are not necessarily
cleared in the order that they were detected. As the Baseline con-
siders RANDOM update pattern, we keep this implementation for
the Accidents Store. Knowing that the access pattern is FIFO helps
reducing the congestion, as individual blocks need not be synchro-
nized anymore.

Next we tune our stores to exploit the read pattern knowledge.
For this, stores 1 and 3 are configured as FIFO update and Sequen-
tial read; store 2 is configured as FIFO update and is shared, there-
fore offering three access patterns for each of the consuming oper-
ators: Random (for the "Segment Statistics for every minute" box),
Sequential (for the "Car Positions to Respond" box) and Clustered
(for the "Accident Segments" box); store 5 is configured as FIFO
update and Random read; and store 4 is configured as RANDOM
update and Random read.

Table 6 shows the performance results of our SMS approach
compared to the Baseline (we present the median results of mul-
tiple runs for the experiments). As expected, the Baseline config-
uration behaves very poorly, because over 13% of the alerts come
too late. The optimizations made possible by our parameter tuning
reduced the average response time by a factor of 6 (factor of 2 for
maximum response time). Furthermore, the number of toll alerts
that exceed the 5 seconds threshold is reduced from 13% to 2%.

For the three configurations, we computed the average memory
consumption: every minute, we checked the amount of memory
used, sum that up and divide it by the number of minutes (180
for three hours). The average memory consumption is approxi-
mately the same for all the configurations. The maximum memory

Effect of Access Patterns Fine Tuning
on Performance
70000
60000
50000
40000
30000
20000
10000 -
0

Random read +
FIFO update

Throughput (tuples/second)

Clustered read +
FIFO update

Sequential read
+FIFO update

m Throughput 15431.14 5878641 65505.95

Figure 10: Effect of read patterns on performance

used for (i) Baseline was 1.3GB, for (ii) Baseline with update pat-
tern knowledge was 1.2GB and for (iii) Baseline with read and up-
date knowledge, was 1.4GB. Because the Baseline is implemented
with eager garbage collection, it should have had the lowest mem-
ory consumption. As its response time performance is low, some
items need to stay in the system for a longer period of time, which
explains why the second configuration behaves better. The lazy
approach in garbage collection, the high block sizes determined
by read patterns knowledge and also the data structure maintained
for clustered reads slightly increased memory consumption for the
third configuration. What these numbers suggest is that while the
response time seriously improves, the changes in memory con-
sumption are very low.

7.2 Effect of Fine Tuning

In the next experiments we conducted a more detailed analysis
of the influence imposed by some parameter values on the perfor-
mance. For this purpose, we generated a couple of scenarios using
parts of the Linear Road implementation.

7.2.1 Even Finer Tuning

For the purpose of this experiment we simplified the "Accident
Segments" query to only select the cars which have speed O on a per
minute basis. This means that the query maintains a window on the
car position reports it receives as input and accesses it in a sequen-
tial manner. For that we use an SMS Store Instance which should
behave best for a FIFO update pattern and a Sequential read pattern
(Figure 11), but we show results with different configurations as
well (Random read and Clustered read patterns).

The input consists of over 6 million car position reports. Given
different configurations of the Store, we measure how long it takes
for the query to consume the input. We then divide the running time
to the number of the items in the input to determine the throughput.

The results are presented in Figure 10. In this plot we can see
that giving even slightly "wrong" configurations to the Store, the
performance degrades. The most interesting one is probably the
difference between having a Clustered and a Sequential read pat-
tern: the Clustered implementation behaves like the sequential one
as long as the requests fall in the same block. Whenever a request

Car Position Speed0 | Output
Reports Input Query Stream

Stream

Figure 11: Speed 0 Experiment

Shared Not Shared
Average Memory Used 835MB 900MB
Average Throughput (tuples/s) | 23,474 15,600

Table 7: Effect of sharing

has to go to another block, instead of moving to the next one in the
list, the Clustered implementation uses the id-index to locate the
block. Using a Random pattern has such a low performance be-
cause of the continuous probing of the id-index with every request.

7.2.2 Effect of sharing

Next, we examine the effect of using the Sharing parameter.
For this purpose, we designed a test scenario using two queries:
the Speed0 query presented in the previous experiment and the
"Segment Statistics for every minute" query (it also requires a one
minute window). They both use as input the car position reports.
Not shared is a test in which the input stream is generated twice
and therefore a different store instance is created for each of the
queries. In the Shared scenario, both queries connect to one sin-
gle store instance (a "Shared" store) which materializes the input
stream (Figure 12). The same number of input items was used and
again we measured throughput and this time memory consumption
as well. As expected, the No share setup consumes more memory
(Table 7). Apart from higher memory consumption, the Not Shared
setup had to do more computation: generate the input stream twice
and materialize it into two storage instances. Therefore, it is no
wonder that throughput was higher for the Shared scenario as op-
posed to the No Share one (Table 7). This experiment proves how
important is for performance to allow and execute intermediate re-
sults sharing.

8. RELATED WORK

While there has been an extensive amount of recent work in the
area of data stream management systems, the subject of stream data
storage management has not seen much attention. Several research
prototypes for DSMS have been built (e.g., Aurora [1], STREAM
[15], TelegraphCQ [6]), all of which proposed different ways to
deal with the above outlined storage requirements. However, all
of these systems only support a limited set of the requirements. In
addition, they have a tight coupling between query processing and
storage management by embedding storage management within the
stream processing engine, which is in contrast to the proposed sep-
aration of concerns in this paper. In this section, we briefly sum-
marize the storage-related solutions that were proposed by the pre-
vious streaming systems.

Aurora uses two main forms of storage structures [1]: (i) tuple
queues (FIFO, append-only) for storing intermediate results of con-
tinuous queries, and (ii) connection points as a persistent cache to
store stream tuples for historical/ad-hoc queries as well as to plug
in static tables for hybrid queries. Sharing is supported by allowing
multiple operators to access the output queue of an upstream oper-
ator. If queues do not fit in main memory, the system spills them to

Speed0 | OuPut Car Position Speedo | Outrut
Query Streant Reports Input Store Query Streant
Stream
Output —— Output
Segm Car Position Segm
Stats Stream Reports Input Stats Streant
Stream

a) Shared b) Not Shared

Car Position
Reports nput
Stream

Figure 12: Effect of Sharing Setup

disk selectively, based on the processing priorities of the operators.

STREAM also provides two basic storage structures [2]: (i) inter-
operator queues to connect the operators, and (ii) synopses to main-
tain operator state (also used for approximation). Sharing on tuple
queues is supported in the same way as in Aurora. For synopsis
sharing, STREAM provides a single physical store for the tuples,
but multiple stubs (representing multiple views) for access. Queues
and synopses are allowed to overflow to disk in case of memory
limitations, but no sophisticated algorithms are provided.

TelegraphCQ builds on several different types of dataflow mod-
ules, each with a different functionality [6]. A State Module (SteM)
is used to temporarily store tuples for stateful operators (e.g., join),
and supports build-probe-eviction operations as well as indexed and
shared data access [16]. Furthermore, the Fjord API allows multi-
ple modules to be connected via pull or push queues [14]. Finally,
the PSoup extension on SteMs enables historical data access [7].

More recently, Golab et al have proposed storage techniques and
index structures for sliding windows over data streams [11]. Basic
windows are implemented as a linked list of tuples, while sliding
windows are implemented as a circular array of pointers to these
basic windows. On top of this, higher level storage structures based
on attribute value aggregation are proposed. This work showed
that indexing sliding windows over data streams can increase query
processing efficiency. A follow-up to this work observed that dif-
ferent operators have different update patterns to their internal state,
and this can be exploited for efficient query execution [12]. Query
plans are annotated with update patterns of their constituent op-
erators, and these annotations drive the use of different operator
implementations as well as different data structures for state main-
tenance and result storage. Our SMS approach also exploits read
patterns in addition to the update patterns. Furthermore, SMS is not
concerned with using different operator implementations due to its
decoupled design from the query processor.

9. CONCLUSIONS AND FUTURE WORK

This paper addresses the requirements of data-intensive stream
processing applications. Such streaming applications do not only
stress the processing engine of a DSMS, but put up new challenges
for the management of data: large, quickly changing datasets need
to be handled with low overhead in terms of memory and CPU
while providing efficient access and low response times guarantees.

To address these challenges, we conducted a detailed require-
ments analysis. As a result of this analysis, we identified a key set
of storage parameters together with the possible values that they
should take under different situations.

The values of these parameters (in particular read and update pat-
terns) provide the means to optimize stream storage to achieve the
desired performance goals. We also describe their implementations
based on state-of-the-art techniques.

While some of these implementations have already been used in
an ad-hoc manner within existing DSMS, our work takes the next
logical step and decouples storage management from the process-
ing engine. Similar to traditional relational database systems, this
approach provides flexibility, adaptation to specific requirements
and optimizability. Our implementation of the storage manager,
called SMS, provides a general-purpose storage system for DSMS
and offers well-defined interfaces so that it can be tailored to dif-
ferent applications needs according to the storage parameters.

An experimental study of SMS on the Linear Road benchmark
shows that significant improvements in query response time can
be achieved by tuning the access pattern parameters differently for
different stores involved in the benchmark. In the study, we also
analyze the effect of fine-tuning with the help of simpler test sce-

narios. The results obtained are very promising to prove that our
decoupled design can greatly improve performance.

As future work, we would like to continue our investigation to
determine whether our work applies to Complex Event Processing
(CEP) engines as well. Another direction is to analyze the seman-
tics of joining live and archived data and its the impact on the stor-
age management. Finally, we are planning to extend our techniques
to distributed settings.

10. REFERENCES
[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey,

S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New
Model and Architecture for Data Stream Management. VLDB
Journal, Special Issue on Best Papers of VLDB 2002, 12(2), 2003.

[2] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,

R. Motwani, U. Srivastava, and J. Widom. STREAM: The Stanford

Data Stream Management System. In M. Garofalakis, J. Gehrke, and

R. Rastogi, editors, Data Stream Management: Processing

High-Speed Data Streams. Springer, 2007.

A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,

E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear Road: A Stream

Data Management Benchmark. In VLDB Conference, Toronto,

Canada, September 2004.

H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,

M. Cherniack, C. Convey, E. Galvez, J. Salz, M. Stonebraker,

N. Tatbul, R. Tibbetts, and S. Zdonik. Retrospective on Aurora.

VLDB Journal Special Issue on Data Stream Processing, 13(4), 2004.

1. Botan, P. M. Fischer, D. Florescu, D. Kossmann, T. Kraska, and

R. Tamosevicius. Extending XQuery with Window Functions. In

VLDB Conference, Vienna, Austria, September 2007.

S. Chandrasekaran, A. Deshpande, M. Franklin, J. Hellerstein,

W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and

M. Shah. TelegraphCQ: Continuous Dataflow Processing for an

Uncertain World. In CIDR Conference, Asilomar, CA, January 2003.

[7] S. Chandrasekaran and M. J. Franklin. PSoup: A System for

Streaming Queries over Streaming Data. VLDB Journal, Special

Issue on Best Papers of VLDB 2002, 12(2), 2003.

H. Chou and D. J. DeWitt. An Evaluation of Buffer Management

Strategies for Relational Database Systems. In VLDB Conference,

Stockholm, Sweden, August 1985.

C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.

Gigascope: A Stream Database for Network Applications. In ACM

SIGMOD Conference, San Diego, CA, June 2003.

[10] N. Glance, M. Hurst, and T. Tomokiyo. BlogPulse: Automated Trend
Discovery for Weblogs. In WWW Workshop on the Weblogging
Ecosystem: Aggregation, Analysis and Dynamics, New York, NY,
May 2004.

[11] L. Golab, S. Garg, and M. T. Ozsu. On Indexing Sliding Windows
over Online Data Streams. In EDBT Conference, Crete, Greece,
March 2004.

[12] L. Golab and M. T. Ozsu. Update-Pattern-Aware Modeling and
Processing of Continuous Queries. In ACM SIGMOD Conference,
Baltimore, MD, June 2005.

[13] R. Kuntschke, T. Scholl, S. Huber, A. Kemper, A. Reiser, H.-M.
Adorf, G. Lemson, and W. Voges. Grid-based Data Stream
Processing in e-Science. In IEEE International Conference on
e-Science and Grid Computing (eScience 2006), Amsterdam, The
Netherlands, December 2006.

[14] S. Madden and M. J. Franklin. Fjording the Stream: An Architecture
for Queries Over Streaming Sensor Data. In JEEE ICDE Conference,
San Jose, CA, February 2002.

[15] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query
Processing, Approximation, and Resource Management in a Data
Stream Management System. In CIDR Conference, Asilomar, CA,
January 2003.

[16] V.Raman, A. Deshpande, and J. M. Hellerstein. Using State Modules
for Adaptive Query Processing. In IEEE ICDE Conference,
Bangalore, India, March 2003.

3

[l

[4

=

[5

—_

[6

=

[8

=

=
X

