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ABSTRACT
Many stream processing applications require access to a multitude
of streaming as well as stored data sources. Yet there is no clear
semantics for correct continuous query execution over these data
sources in the face of concurrent access and failures. Instead, to-
day’s Stream Processing Systems (SPSs) hard-code transactional
concepts in their execution models, making them both hard to un-
derstand and inflexible to use. In this paper, we show that we can
successfully reuse the traditional transactional theory (with some
minimal extensions) in order to cleanly define the correct inter-
action of a set of continuous and one-time queries concurrently
accessing both streaming and stored data sources. The result is
a unified transactional model (UTM) for query processing over
streams as well as traditional databases. We present a transaction
manager that implements this model on top of an existing storage
manager for streams (MXQuery/SMS). Experiments on the Linear
Road Benchmark show that our transaction manager flexibly en-
sures correctness in case of concurrency and failures, without sacri-
ficing from performance. Moreover, this model is powerful enough
to express the implicit transactional behaviors of a representative
set of state-of-the-art SPSs.

1. INTRODUCTION
Stream processing has become the base technology for an in-

creasing variety of applications. These applications often times in-
volve access to multiple data sources, including not only purely
streaming ones, but also stored ones, e.g., for correlating streams
with historical data or for enriching them with additional metadata.
As the scale and complexity of these applications increase, it be-
comes harder to ensure their correct execution in the presence of
concurrent processing or failures over these multiple data sources.
This paper investigates this challenge.

To illustrate the problem, let us consider a simple scenario. Sup-
pose that there is a set of devices whose functioning is sensitive
to temperature. Each of these devices has a minimum and a max-
imum temperature specification, defining the interval in which it
functions properly. These specifications are stored in a database ta-
ble (R). Furthermore, a set of sensors take real-time temperature
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Figure 1: Example Scenario
measurements (on a Celsius scale) for these devices and make them
available as an input stream (IS). We would like to generate an
alert, whenever a temperature reading falls outside the acceptable
temperature interval of the corresponding device. A typical Stream
Processing System (SPS) would model this with the following con-
tinuous query, as shown Figure 1: for each incoming temperature
reading event in IS, probe the specifications table R, and raise an
alarm whenever a violation is detected (e.g., as in the case of event
(D2, 24, 4) which generates alarm (D2, 24)).

Now suppose that, after the arrival of event (D2, 24, 4), the tem-
perature readings scale of the sensors was changed to Fahrenheit.
Of course, the specifications in R must also be updated to reflect
the change in temperature scale; but if the updates on the table do
not happen before the new sensor measurements arrive, false alarms
can be generated. For example, in Figure 1, event (D3, 50, 5) gen-
erates a false alarm, while in fact 50 ◦F represents 10 ◦C, which
happens to be in the accepted range for device D3. In order to ob-
tain a correct execution, an SPS should be able to order the updates
on table R and the temperature readings in stream IS. Today, this
task cannot directly be achieved by any SPS.

In addition to the update problem illustrated above, failures can
lead to incorrect executions, while many streaming applications re-
quire that continuous queries be persistent over system crashes. For
example, in our scenario, assume that while processing event (D2,
24, 4), the SPS experiences a failure. Since all the temporary state
created by this event is lost, the alarm it would have generated in
a normal execution scenario, (D2, 24), will never be generated.
Therefore, it is important to be able to specify that this event should
only be processed to completion (until the results are committed to
the output), or reprocessed in case of a failure.

The fundamental problem presented above stems from the differ-
ences between the two query processing worlds: stream processing
operates on events, while traditional stored data sources work with
operations (read/write). While there is an ordering defined among
events (e.g., based on timestamps, arrival order, etc.) and a possi-
ble ordering among the operations (e.g., defined by a transactional
model), there is no well-defined order across events and operations,
which makes it impossible to compare them directly. Moreover,
traditionally, queries are one-time, while stream processing uses
long-running, continuous queries.



Intuitively, there are two alternative solutions to this problem:
(i) either non-streaming sources can be transformed into streams
(e.g., by creating an event for each DB operation), or (ii) streaming
sources can be treated as data sources with regular read/write op-
erations. Most of today’s SPSs implement solution (i). The main
problem with this approach is that each engine has embedded the
transactional properties into their execution models and operator
semantics, making them hard to understand and inflexible to use.
Furthermore, because of the high degree of heterogeneity in these
systems’ query execution models [11], each ended up proposing its
own implicit “transactional model”.

In this paper, we propose a unified transactional model (UTM)
for streaming and stored data sources based on solution (ii). Our
approach reuses decades of research on transactional database the-
ory and exploits the traditional transactional model [29], to define
correct executions of both continuous and one-time queries over an
arbitrary mix of stored and streaming data sources. The basic in-
sight is that we treat streaming and stored inputs uniformly: they
are just data sources to the continuous queries with reads and up-
dates. Moreover, a continuous query is modeled as a possibly infi-
nite sequence of one-time queries. This way, the problem becomes
similar to the one solved by the traditional transactional model.

We first analyze the page model [29] regarding its expressive
power of allowing the correct execution of streaming applications.
We then extend traditional transactions with: (i) events, which are
represented by write operations, and (ii) continuous queries, which
are represented by read and write operations on the data sources (in-
cluding both inputs and outputs). As such, events and/or individual
continuous query executions can be grouped together into transac-
tions, thus flexibly defining isolation units not bound to any spe-
cific query execution model or operator semantics. We wanted our
model to be general enough to be applicable to any query language
(e.g., CQL[6], CCL[1], XQuery, StreamSQL [3], etc.), by adding
basic primitives such as commit and abort. Nevertheless, design-
ing the right syntax to define transactions for continuous queries is
beyond the scope of this paper.

We propose conflict-serializability to the correct interleaving of
operations belonging to these transactions, but similar to the tra-
ditional case, weaker constraints on the ordering can be defined.
The result is a clean semantics for continuous query execution over
streaming and stored data sources even in the presence of failures.
Moreover, our analysis of a series of state-of-the-art commercial
and academic SPSs showed that their transactional behavior can be
described using our model.

In summary, this paper makes the following contributions:
• It defines the space of possible executions of continuous and

one-time queries over combinations of streaming and stored
data sources under concurrent processing and failures.
• It shows how events and operations can be arbitrarily grouped

into transactions, and that conflict-serializability can be readily
applied as a criterion for defining correct executions. As such,
this paper proposes a unified transactional model (UTM).
• It shows the performance of the first implementation of a uni-

fied transaction manager as part of MXQuery/SMS [10], a stor-
age manager for streaming and stored data sources, using the
Linear Road Benchmark [5].
• It describes the implicit transactional behaviors of state-of-the-

art SPSs expressed in the execution space.
The remainder of this paper is organized as follows: We define

the transactional stream processing design space and present our
unified transactional model (UTM) in Section 2, and illustrate the
practical uses of this model in Section 3. In Section 4, we present

the implementation of a transaction manager on top of SMS, a stor-
age management system for streams [10]. After describing the de-
tails of our experimental setup, which includes the implementation
of the Linear Road Benchmark in MXQuery [9] in Section 5, we
present our experimental results in Section 6. Section 7 provides an
analysis of the implicit transactional behaviors of five academic and
commercial SPSs, while Section 8 compares our work with related
work. We conclude the paper in Section 9.

2. TRANSACTIONAL STREAM PROCESS-
ING

In this section, we first present our analysis of the traditional
page model [29] with respect to the expressive power that it has in
order to meet the requirements of data stream processing applica-
tions, and then propose the necessary extensions to turn it into our
unified transactional model (UTM).

The main challenge in dealing with streaming and stored (e.g.,
relational) data sources is that the former operate with events, while
the basic execution unit for the latter is an operation (i.e., either a
read (r) or a write (w)). Moreover, continuous queries have differ-
ent semantics than one-time queries. The problem is how to make
these different data and query models comparable, so as to be able
to define correct executions that involve both.

2.1 The Data Model
In order to apply the page model, we need to first characterize

our design space with respect to the data sources (query inputs)
and sinks (query outputs), and their corresponding operations.

We propose to treat all the data sources (streaming, relational,
stored non-relational, etc.) uniformly: they are all sets of data
items on which operations (reads and writes) are executed, closely
following the page model [29]. As a result, a relation, which tradi-
tionally is defined as an unordered set of tuples (data items) shar-
ing the same schema, is easily integrated into this design space.
The operations exposed by a relation are: insert (add new tuples to
the relation), delete (remove tuples), value update (replace existing
tuples’ attribute values), and read (obtain the values of tuples).

As a special type of data source, the stream has been previously
defined in many different ways. The difference lies in the interpre-
tation of a stream, which depends on the application [23]. More-
over, a stream’s definition embeds both the data and update seman-
tics of that stream. In order to apply the page model, we need to
abstract away from a stream’s semantics. Thus, we adopt the fol-
lowing general definition: a stream is a possibly infinite partially
ordered set of events, where an event can be interpreted as a tuple
with a special ordering attribute. More formally, a stream is de-
fined by the pair S = (E,≤S), where E is a set of events and
≤S⊆ E × E is a partial order on the set E.

As a result, a stream can be viewed as an unbounded set of tuples
(with a special attribute for order) on which the only possible up-
date operation is an insert. As such, we convert each event arrival
to a write operation (insert→ write), thereby allowing the compar-
ison of events with other data access operations. As an example, in
Figure 1, the arrival of event (D3, 50, 5) (having 5 as the value of
its ordering attribute, T ime) will be represented by a write on the
input stream IS (w(IS)).

A stream’s state is represented by its content which can be re-
trieved through a read operation. For example, in Figure 1, a read
operation on IS after the arrival of event (D2, 24, 4) will return the
state of the stream IS as {(D3, 10, 3), (D2, 24, 4)}, while a read
operation after the arrival of event (D3, 50, 5) will return the state
as {(D3, 10, 3), (D2, 24, 4), ..., (D3, 50, 5)}, and so on.



We consider the most general case in which there are multiple
writers (processes which try to concurrently append new events to
the stream) and multiple readers (continuous queries which pro-
cess the events in the data streams). In the same way, other types
of data sources with different sets of supported access operations
(which could be represented through read or write operations) can
be included in this general design space.

2.2 The Query Model
Another challenge arises when dealing with continuous queries.

Continuous queries [27] are issued once and run continually, send-
ing newly generated results to the user application which registered
them. Given their continuous nature, streaming queries are not a
good match for a transactional model, as transactions are closely
tied to a one-time query model.

Our proposal is to represent a continuous query as a (possibly
infinite) sequence of one-time queries which are fired as a result of
the data sources being modified (e.g., arrival of new events, update
of existing inputs, etc.) or by periodic execution (e.g., every sec-
ond). Basically, a one-time execution of a continuous query can
be translated into read operations on all its input data sources plus
(possibly) a number of write operations, corresponding to the re-
sults that it may generate. Such an approach has also been proposed
in the context of temporal databases [26].

For example, in the example scenario of Figure 1, suppose that
the arrival of event (D2, 24, 4) triggers the query execution. The
join execution is then represented by a read on the input stream
(r(IS)) and a read on the table (r(R)), followed by a write on the
output stream (w(OS)), generating of the output event (D2, 24).

As a result, our design space is composed of one-time queries
only, among which the ones corresponding to continuous execution
have a predefined structure.

2.3 The Unified Transactional Model (UTM)
A transaction in our design space obeys the traditional definition

(a partially ordered sequence of operations), but we adapt it in order
to accommodate events and continuous queries. More formally:

Definition 1 (Transaction) Given a set of data sources and sinks
DS={Si, So, ...}, composed of data items DI , a transaction is
represented by the pair T=(OT ,≤T ), where OT is a finite set of
operations (of the form r or w) on the sources and sinks in DS and
≤T is a partial order on the operations such that:

• Each new streaming event ep, is represented by a write opera-
tion on the corresponding stream (w(Si)) and each (one-time)
continuous query execution is represented by a read on all the
input data sources of the query possibly followed by a sequence
of writes on the sink(s) (w(So)).

• ∀op, oq ∈ OT which access the same data item and one of
which is a write, either op ≤T oq or oq ≤T op (i.e., operations
on the same data item are ordered).

For example, in Figure 1, the arrival of event (D2, 24, 4) gener-
ates the join operation execution over the stream IS and the rela-
tion R which produces event (D2, 24) to the output stream OS as
explained earlier. Suppose the application implementing this sce-
nario specifies that all these tasks (arrival of event, query execution,
output of results) should be grouped in a single transaction. The re-
sulting transaction will have the following structure: T1 = (w1(IS)
r1(IS) r1(R) w1(OS)). That is, the event’s arrival in the input
stream (w1(IS)), followed by a one-time continuous query execu-
tion (r1(IS) r1(R) w1(OS)).

Traditionally, transactions can end in two ways: successfully or
not. To express the termination of a certain transaction (when that
state is known), two special operations are used: commit and abort.
As such, a transaction can be in one of three basic states: active (is
currently running and has not yet reached a final state), committed
or aborted (corresponding to the two possible termination states).

In our design space, Commit is an operation which defines the
successful termination of a transaction (all the operations in the
transaction have been executed with no error) such that the result
generated can be made visible to other transactions. In the case
of stored data sources, Commit also specifies that these results are
made permanent.

An Abort operation expresses that while processing a transac-
tion, something happened (a violation of consistency, system crash,
etc.) which interfered with the normal execution. As aborted trans-
actions may leave the data sources in an inconsistent state, their
effect should be undone. As a result, the data in the sources appear
as if this transaction had never been executed at all.

Suppose that while executing transaction T1, the SPS encounters
an error, such that operation w(OS) cannot be executed. Never-
theless, the event (D2, 24, 4) is written in the input, and is most
probably part of the state of the join operator, but an alert will not
be generated. To ensure that no alert is missed, the SPS should
return to the state before the triggering event arrived in the stream
(r(IS)={(D3, 10, 3)}) and possibly re-execute the transaction.

In terms of transaction visibility, many DBMSs relax isolation to
improve performance [8]. In this respect, for our UTM, the streams
need some special consideration: since we restrict the operations on
streams to insert, data cannot be recalled or modified. In the most
strict sense, the use of streams calls for serializability. If weaker
isolation levels are required, instead of a stream, another type of
data source that supports cascading deletes and/or compensations
should be used. Such data sources would closely resemble those
proposed in revision processing [25].

The definitions for (serial) execution history, schedule, conflict,
conflict-equivalence, and conflict-serializability can be reused with-
out change [29]. For completeness, we list these definitions here:

Definition 2 (History) Given T = {T1, T2, ..., Tn} a (finite) set of
transactions where each Ti ∈ T has the form Ti = (OTi, ≤Ti), a
history is a pair H = (Oh, ≤h), such that:

• Oh ⊆
⋃i=1

n OTi ∪
⋃i=1

n {Ci, Ai} and
⋃i=1

n OTi ⊆ Oh (the
operations belonging to the transactions are all contained in
the history plus a control event (C or A) for each transaction)

• ∀i, 1 ≤ i ≤ n,Ci ∈ Oh ⇔ Ai /∈ Oh (for each transaction
there is either a commit or an abort, but not both)

•
⋃i=1

n ≤Ti⊆≤h (all transaction orders are contained in the
history order)

• ∀i, 1 ≤ i ≤ n,∀op ∈ OTi, op ≤h Ai or op ≤h Ci (the
control operation (A or C) is always the last operation of a
transaction)

• Every pair (opr , opw) of operations, opr, opw ∈ Oh from dis-
tinct transactions, accessing the same data item, one of which is
a write, are ordered in H in such a way that either opr ≤h opw
or opw ≤h opr .

Definition 3 (Conflict) Two operations on the same data item, so
that at least one is a write, are said to be in conflict.

Definition 4 (Schedule) A schedule represents a history prefix.



Definition 5 (Serial History) SH = (Osh, <sh) is a serial his-
tory if ∀Ti(Oi,≤i), Tj(Oj ,≤j), Ti 6= Tj , Ti, Tj ∈ SH , ∀opik ∈
Oi and ∀opjl ∈ Oj , either all opik <sh opjl or all opjl <sh opik
(a history SH is serial if for any two distinct transactions Ti and Tj

contained in SH, all the operations belonging to Ti are ordered in
SH before all the operations in Tj or vice versa).

Definition 6 (Conflict-Equivalence) ∀Hi, Hj , Hi = (Ohi, <hi

), Hj = (Ohj , <hj), Hi ≡ Hj ⇔ Ohi \ {A,C} = Ohj \
{A,C} = O and ∀ok, ol ∈ O s.t. ok, ol are in conflict, then
ok <hi ol ⇔ ok <hj ol (two histories Hi and Hj are said to
be conflict-equivalent iff they contain the same operations and they
order all the conflicts in the same way).

Definition 7 (Conflict-Serializability (CS)) A history H is said to
be conflict-serializable if it is conflict-equivalent to a serial history.

Testing a history for its membership to the conflict-serializable
class can be done efficiently by using conflict graphs. A conflict
graph is a directed graph which contains the transactions as nodes
and the edges represent conflicts between the transactions. The
orientation of the edges follows the order of conflicting operations
in the history. A cycle in the graph indicates that the underlying
history is not conflict-serializable.

Before presenting our correctness definition, we also define two
notions: global schedule and global conflict-serializability. In a
multi-source environment, a global schedule represents the union
of schedules executed at each source. A global schedule is globally
conflict-serializable if the conflict-serializability property holds.

2.4 Execution Correctness
Our problem can now be described as follows: given a finite set

of data sources and sinks (DSi, 1 ≤ i ≤ n), an infinite set of
updates on the data sources (Uj , 1 ≤ j), and an infinite sequence
of one-time queries accessing the sources, some of which (updates
and/or queries) may be grouped into transactions, what defines a
correct execution?

In this work, we propose to use conflict-serializability as a crite-
rion to specify correct interleaving of operations. Our main moti-
vation behind this choice is to provide a general definition of this
interleaving. Alternatively, we have also considered using other
criteria such as snapshot isolation [8] or view / final state serial-
izability, but found problems with these. More specifically, the
latter is impractical to implement since schedules are not mono-
tone [29] in that a new operation can transform an illegal schedule
into a legal one [24]. The former is not suitable because it is un-
clear how to define snapshots and assign timestamps to them in a
heterogeneous environment such as an SPS. On the other hand, in
the context of serializability, there are widely used protocols which
generate ’globally’ serializable schedules (see Section 4).

As a result, we define correct executions as follows:

Definition 8 (CS-based Correct Execution) A history of opera-
tions belonging to a set of transactions T = {T1, T2, ..., Tn, ...}
generated as a result of executing a set of queries (one-time and
continuous) Q over a set of data sources and sinks DS is correct if
it is globally conflict-serializable.

Conflict-serializability is an example of how our model can be
used to define correct execution. As needed, it may be restricted
or relaxed, and as in [30], different correctness levels can be de-
fined. For example, processing the events in their arrival order in a

stream is important for the correct implementation of many stream-
ing applications. Moreover, the majority of SPSs rely their execu-
tion models on the arrival order of the events. As serializability
means equivalence to any serial execution, the correctness condi-
tion should only accept schedules which obey the arrival ordering.
As a result, a more constrained level of correctness can be defined
(similar to Strong Consistency in the above-cited work):

Definition 9 (CS with Arrival Ordering (CSAO)) A history H is
said to be conflict-serializable with arrival ordering if it is conflict-
equivalent to a serial history in which the order of transactions
generated by sequences of events (stream updates and correspond-
ing continuous queries executions) obeys the events’ arrival order
in their respective streams.

Definition 10 (CSAO-based Correct Execution) A history of op-
erations belonging to a set of transactions T = {T1, T2, ..., Tn, ...}
generated as a result of executing a set of queries (one-time and
continuous) Q over a set of data sources and sinks DS is correct
if it is globally conflict-serializable and conflict-serializable with
arrival ordering.

2.5 ACID for Streams
Serializability is based on the notion that the transactions obey

the ACID (Atomicity, Consistency, Isolation, and Durability) prop-
erties. In this subsection, we analyze these from a streaming per-
spective.

Atomicity and Isolation are already covered by our UTM.
Traditionally, Consistency refers to maintaining integrity con-

straints of a database. In the case of streams, Stream Schema [14]
can be used to model stream constraints (and validate consistency).

The most interesting property from a streaming point of view
is Durability. Traditionally, durability specifies that the changes
made by a transaction are made persistent if the transaction is com-
mitted. As streams are not persistent, it appears that the durability
is not relevant for streaming transactions. Nevertheless, if we con-
sider it as stating that operations of a committed transaction survive
failures, the durability semantics for streams is then: the events of
committed transactions will never be reprocessed or duplicated.

3. THE UTM IN ACTION
We can now analyze an individual processing model (namely

STREAM/CQL [6]) and a concrete workload with respect to our
UTM. In a first step, we outline how the mapping from a single
continuous query to a sequence of one-time queries, as outlined in
Section 2.2, can be performed. In a second step, we show how
transactions can be defined to achieve the same transactional se-
mantics and correctness guarantees as this processing model.

3.1 Mapping Streaming Operations
As outlined before, a key aspect in our UTM is to represent a

continuous query as an equivalent sequence of one-time queries.
Since query semantics and execution models differ greatly between
streaming systems [11], a single solution for all models is not pos-
sible. We therefore show how the most relevant operators on repre-
sentative models can be translated into one-time query executions.
This particularly includes operators which consider more than one
item to produce an output item (e.g., window-based aggregation).
Other operators (without windows) are typically very similar for
continuous and one-time systems and have a trivial translation:
pick the last item or timestamp group and perform the operation.

The main challenges in this translation are to achieve equiva-
lent results (same tuples, same order), to ensure termination of



the resulting one-time queries, and to transfer information between
different instances of one-time queries for coordination (e.g., in-
stance/slide selection).

There are two complementary approaches to perform this trans-
lation:
• Creating a sequence of (finite) snapshots of the stream, treating

them as relations and running the query on them (like CQL’s
stream-to-relation mapping)
• Rewriting the queries with additional predicates/expressions

We are now going to explain how this translation can be applied
on STREAM/CQL. The series of one-time queries and the snap-
shots they are run can be created in an iterative fashion for each
timestamp ti. As a prerequiste, we define Ri−1 as the set of items
that have been read in the previous execution at timestamp ti−1.
Then: Ri−1 =

⋃
(r(X)) at execution ti−1, X being any resource

accessed by the query. Following the processing model of CQL,
each execution is triggered by a new timestamp. The execution
then works as follows:
• Create a suffix stream (snapshot/view) including timestamp tx

to ti, where tx is smallest tn ∈ Ri−1+1 + window slide or 0 if
Rt−1 empty, thus advancing the snapshot by slide timestamps.
• Construct the window according to the (unchanged) formal def-

inition of CQL (all tuples t’ between ti and ti − T ).
• This will generate exactly one window per execution, since ti−

(ti − T ) = T . In turn, concatenating the window results leads
to the same order as the continuous query. Therefore, we have
a correct translation which expresses all its coordination needs
using the snapshot generation.

Let us illustrate the above translation on a concrete example:

SELECT AVG(Temp)
FROM Stream [RANGE 4 SECOND SLIDE 1 SECOND]

Consider the following input data:

Input(DevID,Temp,Time)={(D3,10,3),(D3,50,5),(D3,25,6),
(D3,30,7),(D3,35,8)}

For the continuous query, we would expect the following result:

Output(Temp,Time) = {(3,10),(5,30),(6,28.3),(7,35),
(8,35)}

The following snapshots are generated:
ti = 3, tx = 0; (D3, 10, 3) => (3, 10)
ti = 5, tx = 3 (R1 = {T1}); (D3, 10, 3) (D3, 50, 5) => (5, 30)
ti = 6, tx = 3 (R2 = {T1, T2}); (D3, 10, 3) ... (D3, 25, 6) => (6, 28.3)
ti = 7, tx = 4 (R3 = {T1, T2, T3}) ...
Other stream processing models can be translated along the same

lines, but need more complex adaptations in snapshots and queries.

3.2 Defining Transactions
Using our UTM instead of model- or application-specific syn-

chronization primitives provides abstraction and additional flexi-
bility for transaction boundaries, but raises the issue of how to set
these transaction boundaries. Continuous queries do not naturally
lend themselves to obvious boundaries, and in cases like predicate-
based windows, such a boundary may even be unknown in advance.

From a conceptual point of view, such flexibility is needed to
express the different boundary models of existing SPS, as we show
in Section 7. This is not possible with a more restricted model.

From a practical point of view, we envision some options which
a system designer or application developer could choose from: A
system might define its default boundaries, as existing systems do,
either in a fixed form or as some kind of "autocommit". When users

want to set their own boundaries, aligning with operator semantics
(as in Truviso [4]) or punctuations (as CTIs in StreamInsight [2])
would be typical approaches to overcome the problem of bound-
aries being unkown in advance.

For the window-based query in the previous section, we can
place a commit at the end of each query run over a snapshot, and
thereby express the synchronization on timestamps in CQL.

For our example scenario of Section 1, we have chosen the sim-
plest transaction grouping that will produce the correct result. Let
us present this example in more detail.

As previously assumed, for each new event, the SPS probes the
database table for specifications and outputs alerts in case of viola-
tions. Suppose the arrival order of the streaming events is the one
depicted in Figure 1 by looking at the stream’s representation from
right to left (event (D3, 10, 3) followed by (D2, 24, 4), followed by
(D3, 50, 5), etc).

The application’s requirement is that each device temperature
measurement has to be compared to the device specifications in
the required scale (the assumption we make is that once the first
Fahrenheit measurement for a certain device arrives, all the follow-
ing will have values on the same scale). More specifically, the up-
date on the table has to happen before the first Fahrenheit measure-
ment for the respective device arrives and no Celsius measurements
should see specifications in the Fahrenheit scale.

One way to meet the above requirements is to group the device’s
specification update and the corresponding first event in the Fahren-
heit scale into the same transaction, with the update on the table
preceding the processing of the event. This way we obtain the de-
sired visibility of the table update by taking advantage of the order-
ing of conflicting operations in a transaction. In fact, this grouping
also ensures that the specification update and the processing of the
event happen atomically. As a result, we obtain four transactions:

T1 = (w1(IS)r1(IS)r1(R)C1) (for event (D3, 10, 3))
T2 = (w2(IS)r2(IS)r2(R)w2(OS)C2) (for event (D2, 24, 4))
T3 = (w3(IS)w3(R)r3(IS)r3(R)C3) (for event (D3, 50, 5)

and the update of D3’s specification)
T4 = (w4(IS)w4(R)r4(IS)r4(R)C4) (for event (D2, 61, 5)

and the update of D2’s specification)
Processing the events in the order of arrival guarantees that no

Celsius measurement will be compared with Fahrenheit specifica-
tions. Therefore, the correct histories for our example application
will be Conflict-serializable with Arrival Ordering (i.e., any his-
tory which is conflict-equivalent to the following serial execution:
T1 → T2 → T3 → T4).

4. IMPLEMENTATION
In this section, we present the implementation of the Transaction

Manager we built on top of SMS [10], a general-purpose storage
manager for Stream Processing Systems.

4.1 Transaction Manager Implementation
The job of a transaction manager is to both order the storage

access operations it receives from the streaming system, in order to
obtain correct histories (accepted under the correctness definition)
as well as to provide rollback execution to aborted transactions. In
our case, this translates to designing a transaction manager which
generates histories obeying the CSAO-based correctness criterion
defined in Section 2.4.

Just like in the traditional case, we designed the Transaction
Manager (TM) as an additional component between the query pro-
cessing and the data access layers, as shown in Figure 2.

We implemented the SS2PL (Strong Strict 2-Phase Locking) pro-
tocol in our TM [29]. SS2PL defines an acquiring phase in which
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a transaction is only allowed to acquire locks for the resources it
is about to access. These locks are all released when the trans-
action commits, as opposed to other 2PL protocol variants which
allow early releases. SS2PL is the protocol of choice for many
general-purpose database systems, because of its desirable proper-
ties: commit ordering which provides global serializability (a prop-
erty required by our correctness criterion as explained in Section 2)
and recoverability (a property which specifies that the resources
modified by a transaction can be brought back to the states before
the transaction started in case of an abort operation).

We adopt the design presented in [29]. Two types of data struc-
tures were used to implement the lock manager: RCB (Resource
Control Block) and TCB (Transaction Control Block).

An RCB is defined for each resource being concurrently ac-
cessed by transactions. It maintains a list of transactions currently
holding a lock on it and the mode of the lock (shared or exclusive).
A hash table maps each resource object to its corresponding RCB.
When a lock request for a certain resource is received, there has
to be a way to check whether another transaction already holds a
conflicting lock on this resource. The RCB offers an efficient way
to execute this check operation.

The TCB (Transaction Control Block) maintains a list of all re-
sources a transaction has accessed, including the mode (shared or
exclusive). This enables efficient lookup and release of the re-
sources of the transaction at termination (commit or abort).

4.2 Transaction Manager Interface
The TM interface exposes five methods:
startTransaction(): Whenever a new transaction is started, this

method has to be called before the execution of any operation. In-
ternally, the method creates a new transaction object which will be
assigned an ID and added to the list of active transactions. Each
transaction object (Transaction Control Block) maintains a list of
objects it has locked and in which mode (shared or exclusive).

write(resource R, transaction TID): When calling this method,
a transaction attempts to access the resource given as parameter
in write mode. First, the RCB corresponding to resource R is ob-
tained. Then, the TM has to check whether this transaction should
be allowed (at this point) to access the resource or should be put
on hold until the access conditions are met: the resource is not
locked by any other transaction and the defined ordering on the
transactions, if any, is not violated by the execution of the current
operation. If the request permission is granted, then the transaction
sets an exclusive lock on the resource (if not already holding it),
the RCB of the resource is updated, and the transaction is allowed
to execute the update. Otherwise, the operation is put on hold. If
an application failure happens, the transaction is aborted and a roll-
back procedure is executed (see Section 4.4 for details).

read(resource R, transaction TID): A transaction with the given
TID attempts to read a resource. First the RCB of this resource is
obtained and the TM checks if any of the transactions accessing this

resource has an exclusive lock. If so, the request is put on hold until
the resource is freed. Otherwise, if executing the read operation still
maintains the defined ordering of transactions, then the transaction
obtains a read-lock on the store and is allowed to access it (multiple
readers are allowed to access the store at the same time).

commit(transaction TID): This method is called by a transaction
when it requests a commit operation. At this point all the locks held
by this transaction are released and its changes are made persistent
(depending on the type of resource, this action means making all
the writes persistent, discarding rollback information, etc.). As the
resources accessed by this transaction are released, the TM can pro-
ceed to schedule the next operations.

abort(transaction TID): The engine specifies that the given trans-
action should be aborted. The modifications made by this transac-
tion are undone through a rollback operation and all the locks it
acquired are released.

4.3 Defining the Transactions
Transactions are defined by the streaming engine given the ap-

plication requirements. One special characteristic of our TM im-
plementation is the fact that it enables predefined orderings on the
received transactions. For example, one can define the order of the
transactions (given by the ordering of their conflicting operations)
to be the increasing order of the transaction IDs, and the TM will
enforce this ordering.

To provide a flexible way of defining individual transactions, we
chose to use punctuations to specify transaction boundaries. We
injected these punctuations in the streams to be processed by the
streaming engine along with the other tuples. When the engine has
to process a punctuation, it calls the corresponding method (start-
Transaction, commit) exported by the TM. If the transactions are
not composed of sequences of events (e.g., events with the same
value for a certain attribute), then other methods (e.g., adding a
special attribute to keep the transaction ID) can be used.

4.4 Recoverability and Recovery
Our model allows to define correct executions in the presence

of failures as well. Recoverability is a property of a concurrency
control algorithm which defines whether it generates recoverable
schedules or not. A recoverable schedule is one in which the effects
of an aborted transactions can be undone and the system can be
brought back to the state before this transaction has occurred.

Using SS2PL (Strong Strict 2-Phase Locking), a recoverable pro-
tocol, ensures that our TM allows correct recovery from failures.

In our TM implementation, for each write operation, the change
performed is logged: the modified resource plus the function ap-
plied. When a transaction is aborted, the following steps are taken:
for each write operation belonging to the aborted transaction, an in-
verse operation is executed (e.g., if the write operation added value
10 to a column in a table, then the inverse operation will deduct
10). The resources which were only read as part of this transaction
are not affected by the abort. After this phase, all the locks held by
the transaction are released. The SS2PL protocol is recoverable be-
cause the locks are only released at the termination of a transaction
and therefore no other transaction will read a dirty value.

4.5 Performance Optimizations
Many streaming applications have strict constraints on through-

put or response time [5]. As a result, the performance of the Trans-
action Manager is important for meeting applications’ performance
requirements.



4.5.1 Increased Parallelism
The page model is general enough to describe many implemen-

tation related issues. Nevertheless, its major drawback is that it
does not take into account the semantics of the data access on the
sources. That is, one could use the access pattern of the queries
on the data to implement different locking granularities (a tuple, a
group of tuples, etc.) and therefore reduce contention and increase
the execution parallelism.

For example, the state of the art in relational database systems is
record-level locking in combination with index locking [29]. As the
write operations in a stream are actually appends, it results that read
operations will practically not interfere with them. As a result, to
reduce lock contention, different lock granularities can be defined:
e.g., one could change the scope of the read and write operations
from the whole stream to individual events. Another solution is
to use ranges: events having ids in a certain range are locked for
reading or writing (similar to predicate locking [29]).

4.5.2 Low-overhead Recovery
Recovery can be a time-consuming process as all the changes

made by aborted transactions have to be undone.
Nevertheless, by using the semantics of the data source the roll-

back process can be optimized in some cases: when the data sources
are streams and the transactions are defined as sequences of inputs,
inconsistencies from aborted transactions can only occur from in-
complete execution of the last active transaction. As a result, re-
turning the stream to the previous state merely requires undoing a
number of append operations.

5. EXPERIMENTAL SETUP
In this section, we present the details of our experimental setup:

the benchmark description, the implementation details, the hard-
ware on which we ran the experiments, as well as the metrics used.

The goal of our performance study is two-fold:
• to show that even with the overhead generated by the presence

of a transaction manager, we can achieve an acceptable perfor-
mance, i.e., very close to the one obtained with an implemen-
tation with specialized synchronization methods (the kind that
other streaming systems use), and
• to show that a streaming application implementation can ben-

efit from the presence of a transaction manager: the correct-
ness requirements of a given application can be easily translated
into isolation properties and implemented with very little effort
only by specifying transaction boundaries (which can be easily
modified). Moreover, the application developer does not have
to deal with failures as this task is successfully handled in the
transaction manager.

5.1 The Linear Road Benchmark
Our experimental study is based on the Linear Road Benchmark

[5]. Linear Road simulates the traffic on a set of highways divided
into segments and provides variable tolling depending on traffic
statistics and accident occurrences. The input stream is composed
of car position reports (each car reports its position every 30 sec-
onds) and queries. An engine that implements the benchmark has
to distinguish between the different types of streaming items and
execute the queries accordingly.

The benchmark involves all in all, five queries: Accident No-
tification - drivers are notified of accidents in their vicinity when
crossing to another segment on the highway; Toll Notification -
drivers are notified of the toll corresponding to the segment they
are entering; Balance Request - a driver can request its current bal-

ance of assessed tolls; Daily Expenditure Query - how much has
a driver spent on a particular day in the past 10 weeks; One more
query for travel time estimation which is not included in any pub-
lished implementation so far.

The measure of this benchmark is given by the Load level, rep-
resenting the number of highways that can be handled by the query
processing engine. A certain load level is considered to be achieved,
when all the queries involved in the benchmark are answered within
at most 5 seconds after the request entered the system.

An engine which implements the queries correctly has to gener-
ate the exact number of alerts and correct alert values, which are
verified using a validator [5].

For our experiments, we used the Linear Road Benchmark im-
plementation in MXQuery [9], a Java-based open-source stream-
ing engine which extends XQuery with window functions. One
of MXQuery’s design decisions was the separation of query pro-
cessing from storage management. MXQuery uses SMS [10] as its
underlying storage manager. We created two versions of the imple-
mentation (ADHOC and TM), which will be presented next.

5.2 The ADHOC Implementation
This Linear Road implementation uses a version of SMS with no

transactional capabilities, but synchronization methods. We imple-
mented two variants: ADHOC SERIALIZABLE, which orders the
operations on the stores so that the execution behaves like a seri-
alizable one, and ADHOC NOT SERIALIZABLE, where the only
restriction is that the writers have exclusive access to the object
(i.e., store) they modify.

This implementation contains a set of queries connected by stores
as shown in Figure 3 (the rectangles represent the queries, while the
cylinders represent the stores). The arrows express the data flow
between the different queries. It is important to also note that as
a result of the benchmark’s requirements, the stores expose high
heterogeneity: there are streams (e.g., containing car position re-
ports), in-memory relations (the BALANCE store), a static relation
stored in database system (HISTORICAL TOLLS), as well as files
in which the results of the queries are written.

Two queries are particularly challenging because of their require-
ments: Accident Notification and Toll Notification. The first query
generates a notification for each driver who reports a position from
a new segment in the vicinity of an accident. The query description
specifies that alerts should be sent for all active accidents up to and
including the minute before the car position report. As the informa-
tion about the accidents which happened in the past minute may not
be available when a certain car crosses a segment (due to the fact
that the events come on different processing paths with different
speeds), we need to keep the request waiting until the most recent
accident data is available. This logic is implemented through built-
in synchronization methods in the stores themselves: a read opera-
tion is blocked until a predicate is evaluated to true. In the second
query, for computing the toll of a specific segment on a highway,
the traffic statistics of that segment are used. Statistics are obtained
every minute from analyzing a five minute window worth of traffic
information (number of cars, speed, etc.). Again, if the tolls com-
puted for a certain minute are not yet written to the TOLLS store,
the Toll Notification query is delayed until that data is available.

The ADHOC implementation requires that the developer has a
good understanding of both the application semantics as well as the
synchronization primitives. The next implementation shows how
the requirements of the benchmark are met by defining transactions
and the order among them.
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Figure 3: Linear Road Benchmark Implementation

5.3 The TM implementation
For this Linear Road implementation, SMS was enhanced with a

transaction manager, as described in the previous section.
In the TM implementation, we basically replace the built-in syn-

chronization methods with a transaction manager which orders the
operations according to the correctness requirements of the queries.
Moreover, we implemented a mechanism in the storage manager
which allows it to recognize the particular events specifying trans-
action boundaries (start transaction, commit, abort etc.). As in the
ADHOC case, we have TM SERIALIZABLE and TM NOT SERI-
ALIZABLE variants.

The Toll Notification query is triggered for every position report
sent by a car entering a new segment (each translated to a write op-
eration on the CARS SEGM CHANGE store). As required by the
benchmark, we would like that none of the notifications is lost and
that the correct toll value is charged to each car. For that, we group
all the operations of a one-time Toll Notification query execution
in the same transaction, which will then be composed of four op-
erations: read the car position report, r(CAR SEGM CHANGE),
extract the toll for that car, r(TOLLS), update the driver’s balance
with the new assessed toll, w(BALANCE), and generate the toll
alert, w(TOLL_ALERTS) . The transaction is committed after the
last operation.

Moreover, all the toll values computed for a certain minute are
written to the TOLL store as part of the same transaction, whose
structure will then be: r(POSITION REPORTS) to read the position
reports, followed by looking up the accidents store r(ACCIDENTS)
and then writing the toll values w(TOLLS). If the execution of these
transactions is serializable, we make sure that all the toll values
read by the Toll Notification query are a result of the most recent
computation and that there is no mix of old and new values.

We do the same for the Accident Notification query: r(CAR
SEGM CHANGE) to get the most recent car position report, fol-
lowed by r(ACCIDENTS) to select all the accidents in the recently
entered segment and possibly w(ACCIDENT_ALERTS) if a no-
tification needs to be sent. Again, all the accident events detected
during a minute are grouped in the same transaction: {r(POSITION
REPORTS) w(ACCIDENTS)}.

For the Balance Request query, a transaction is composed of a
read on the INPUT store to obtain the most recent car position re-
port, r(INPUT), followed by a lookup on the BALANCE store to
retrieve the driver’s balance, r(BALANCE), and finally generate
the balance report, w(BALANCE_REPORTS). While the first two
queries require a strict ordering of the transactions, this third query
allows a more relaxed ordering: a driver can be notified of her most
recent (or the one-minute old) balance of assessed tolls. This prop-
erty accepts more schedules, permitting the Balance Request query
to lower latency.

All other transactions have a simple structure, basically a read
on an input store followed by a write on an output store.
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5.4 Setup Details and Metrics
The experiments were run on 2 x Quad Core AMD Opteron 2376

with 2.3GHz processor machines. We ran Linear Road to comple-
tion at load factor L=4.0, which is the highest that can be achieved
by the ADHOC implementation.

The experimental results are presented using two metrics: the
maximum response time and the correctness of results. We also
looked at other measures of performance, such as average response
time and the percentage of alerts of the total number that had a
response time over the benchmark’s limit of 5 seconds.

The response time (latency) of the queries was measured as the
difference between the time the generated result is written to the file
(or committed in the case of transactions) and the time the request
enters the system. We repeated each experiment 15 times and the
maximum response time values are presented as an average of those
runs, plus an error bar representing the standard deviation.

We chose to measure the latency of the Toll and Accident Noti-
fication queries, because they are the ones on the processing paths
with the highest load, and transactions they define are complex.

The correctness of results is represented as the number of wrong
(which did not have the values expected by the validator), dupli-
cated, or missing results.

6. EXPERIMENTAL RESULTS
In this section, we show the results of running the Linear Road

Benchmark on top of the setup presented in the previous section.

6.1 Performance
First, we measured the overhead of the Transaction Manager.

We wanted to understand how much the presence of the TM (com-
pared to the ADHOC implementation) and enforcing the serializ-
ability property (compared to the not-serializable implementations)
increase the latency of the results.

Figure 4 shows the maximum response times when running the
TM and ADHOC setups in both the serializable and not-serializable



ADHOC NOT ADHOC TM NOT TM Total Number
SERIALIZABLE SERIALIZABLE SERIALIZABLE SERIALIZABLE of Alerts

Accidents Notification (missing alerts) 94 0 99 0 9’115’887
Tolls Notification (wrong alerts) 52’618 0 32’226 0 142’433

Table 1: Result Correctness: Number of Wrong/Missing Alerts

versions. Comparing the ADHOC NOT SERIALIZABLE and the
TM NOT SERIALIZABLE setups shows the overhead generated
as a result of maintaining transactions. As expected, the presence
of the TM increases the maximum response time, but the perfor-
mance penalty is quite low. The overhead of providing serializabil-
ity can be observed by comparing the TM NOT SERIALIZABLE
and the TM SERIALIZABLE setups (as well as ADHOC NOT SE-
RIALIZABLE against ADHOC SERIALIZABLE). The maximum
latency is lower for the not-serializable versions (about 250ms on
average) as the read operations do not wait for the correct data to be
available, but rather return results based on whatever is contained
in the store at the time of execution.

Nevertheless, the differences between the ADHOC and the TM
setups (the serializable versions) are small and the majority of the
alerts have low response times, meeting the requirements of the
benchmark. More specifically, in the TM SERIALIZABLE setup,
on average, 95.4% of the accident alerts and 96.1% of the toll alerts
have response times lower than 5 seconds.

We also measured the average response times, where the relative
cost shows the same changes as for maximum response times. We
decided to include maximum response times in the paper, as they
correspond to the benchmark specification and they provide a bet-
ter indication of overhead as the system is most stressed. While
we have not performed an explicit test for the maximum through-
put, the existing results already give clear indications that there is
only a small slowdown introduced by the transaction implementa-
tion: The chosen Linear Road load factor of 4.0 was the maximum
that could be handled in the ADHOC SERIALIZABLE implemen-
tation, while a load factor of 4.5 violated the requirements. Given
that the LR implementation was well optimized, we had thus been
very close to the throughput maximum. As a result, the increase in
maximum response times and number of events above the 5-second
limit can be attributed to the small throughput reduction.

6.2 Correctness of Results
Although it incurs some performance penalty, serializability is

important for providing correct results. To get a better understand-
ing of its importance, we measured the correctness of the results.
We randomly picked one run of the Linear Road benchmark with
the not-serializable implementation (for both the TM and the AD-
HOC setups) and compared the results with the expected ones (ob-
tained with a serializable implementation). Results are presented
in Table 1. As shown, in the not-serializable version, the ADHOC
setup misses 94 accident alerts (because of accident information
not being available at the time of request), similar to the TM setup
which misses 99 accident alerts. Moreover, 52’618 toll alerts are
wrong when the ADHOC implementation does not provide seri-
alizability, while the TM NOT SERIALIZABLE setup generates
32’226 wrong toll alerts.

6.3 Failure Handling
An important advantage of having a Transaction Manager is that

the client application does not have to deal with failures. One of
the features that a TM provides is automatic rollback (the objects
modified by a transaction are brought back to the state before the
transaction started) - a process which is not possible when transac-
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tion support is missing. To illustrate this, we present the following
scenario: suppose that because of faulty behavior, every 2 seconds a
position report (for a car which crosses a segment) is duplicated. As
a result, duplicate toll and accident alerts are generated. Moreover,
the balance for those cars will be wrong as the same toll will be
charged twice. The problem is that, when detecting this error, the
ADHOC implementation has no way to rollback the execution of
the query generated by the duplicated event. Furthermore, whereas
the duplicated alerts may just not be published to the output, the
BALANCE store would still contain erroneous values which lead
to wrong alerts in the Balance Request query. More specifically,
as can be observed in Table 2, comparing the Balance reports ob-
tained when the input has duplicates (‘ADHOC SERIALIZABLE
(duplicates)‘ in the table) with the correct ones, we could observe
that on average about 8’000 (of a total of 242’458) were wrong.

This is not a problem for the TM SERIALIZABLE setup: when
detecting the duplicate, the current transaction is rolled back and
the car balance is restored to the previous value, i.e., before the
transaction started. Moreover, this benefit comes with almost no
performance penalty as the results in Table 2 show: the maximum
response time is practically not affected by rolling back 5’395 Toll
Notification transactions. Note that, for the Accident Notification
query, the duplicated events had no impact on the output, as the
duplicated events did not lead to accident alerts.

6.4 Sensitivity to Transaction Size
In the next experiment, we measured the sensitivity of TM’s per-

formance to transaction size, varying the transaction boundaries to
not just contain a single event (as before), but span longer periods
of times (and thus more events).

As a baseline (and in the same way as the previous experiments),
each one-time query execution was part of a distinct transaction
(1 event). As a first step, we group all the one-time query exe-
cutions corresponding to car position reports with the same times-
tamp (which arrive in the same 1 second, with approximately 850
events). The intuition is that some query executions will not pay the
penalty of acquiring the necessary locks, especially for the transac-
tions executed at minute boundaries (right after a commit of new
toll values or accident information).

Furthermore, we grouped all queries corresponding to events ar-
riving in subsequent time intervals of 2 or 3 seconds, which re-
sulted in approximately 1’700 and 2’500 events respectively. This



Query Metric ADHOC ADHOC SERIALIZABLE TM TM SERIALIZABLE
SERIALIZABLE (duplicates) SERIALIZABLE (duplicates)

Tolls Notification # Duplicated Alerts 0 5’395 0 0
Maximum Response Time
(ms) / Std. Deviation

5’108 / 147.5 4’954 / 301.6 5’902 / 349.9 6’048 / 397.7

Balance Request # Wrong Balance 0 8’000 0 0

Table 2: Failure Handling: Performance vs. Correctness

coarser-grained grouping was done by moving the punctuations
from a per query-level to after every second, every second or third
second. Moreover, grouping the queries does not affect the correct-
ness of results as long as the transaction size does not exceed one
minute (all one-time query executions corresponding to events with
timestamps in the same minute). We did not try other transaction
sizes, as the maximum response time exceeded 7 seconds when
defining transactions composed of one-time query executions cor-
responding to alerts arriving in sequences of 3 seconds.

The results are presented Figure 5. As expected, the maximum
response time increases with the size of the transaction. There
seems to be no statistical difference in the maximum response time
when defining the transactions at 1-second boundaries, compared to
having one transaction for each event, since in this case, the over-
head incurred by acquiring locks was low to begin with.

7. ANALYZING REAL-WORLD SYSTEMS
In this section, we present the result of our analysis of a repre-

sentative set of state-of-the-art SPSs. As previously noted, for most
of these systems, no explicit transactional properties have been de-
fined; therefore, the content we show is based on our interpretation
of their behavior, after having experimented with these systems,
having read the provided documentation, and discussions with the
authors. A summary is presented in Table 3.

When dealing with multiple inputs, the streaming systems offer
the application developer a set of primitives which she can use to
define isolation units as well as ordering among them. These prim-
itives differ among systems and are typically embedded in the pro-
cessing model or operator semantics, as shown in the Transactions
and Synchronization Primitives columns of Table 3.

Most of SPSs today allow access to non-streaming data sources.
For example, when dealing with remotely stored inputs like tables
in RDBMSs, the application developer has two options: one option
is to use an adapter to transform the table into a locally recognized
type of data source (e.g., stream), and in combination with other
ordering primitives, to implement the desired isolation properties.
A second option is to retrieve data from the stored input for each
new event in a stream, restricting the isolation unit to a single event.

The reader can observe that what defines a transaction differs
from one engine to another. Moreover, the synchronization prim-
itives are embedded in a given engine’s processing model (i.e., its
execution model [11] plus any other special execution rules that the
engine defines) as well as in its operator semantics. Because of the
tight dependence of these primitives to the processing models of
the engines, very often a change in the isolation properties requires
the modification of an entire query plan, or it may even be impos-
sible to implement. The studied systems also offer mechanisms
for recovery from failures, though it is not always clear how these
mechanisms relate to the defined isolation units.

By reusing the traditional transactional model, our model defines
a clean semantics for concurrent access and recovery from failures
not bound to any specific model. Being general, it supports all
the histories generated by the analyzed streaming engines, thereby
allowing a superset.

Next, we present a details of each engine’s methods to define iso-
lation units, ordering, and recovery from failures, using our UTM:
Coral8 [1] defines explicit transactional properties for continuous
query processing. That is, it specifies that the minimum recovery
unit in case of a failure is the timeslice. Although timeslices may be
processed concurrently, it appears that each timeslice is executed
separately and the order between them is preserved. A timeslice
represents a row or a sequence of rows having the same timestamp
and arriving in the same stream or window. Moreover, the times-
lice is different from the engine’s execution model unit, which in
Coral8’s case is a batch [11].

If all events with the same timeslice are made part of the same
transaction, a history generated by Coral8 is conflict-equivalent to a
serial history in which transactions are increasingly ordered by their
timestamp values. Moreover, as defined by Coral8’s processing
model, a transaction on a window having the same timestamp as
another transaction on a stream is executed before that transaction.

If some events arrive out of order (e.g., events with timestamp t-1
arriving after an event with timestamp t), they are discarded. This
can be expressed as aborted transactions.

When joining a stream and a table located in an RDBMS, Coral8
offers two options: it either restricts the isolation unit to a single
event (this way, the situation becomes simple as serializability is
guaranteed), or the user could write an adapter which transforms
the content of the database and its future updates into a stream. In
the former case, the stream (i.e., no window) is the only accepted
data source which can be joined with the remote input.

For dealing with failures, Coral8 offers mechanism like State
Persistence and Guaranteed Delivery. State Persistence basically
offers the possibility to checkpoint the processing state periodi-
cally. The minimum unit is the timeslice. Nevertheless, it does
not guarantee that events are not lost in case of failures. Guaran-
teed Delivery makes sure that an event is received by its destination
at least once. In our UTM terms, Guaranteed Delivery may violate
the Durability property by possibly duplicating events.
STREAM [6] accepts streams and time-varying relations as inputs,
and treats them uniformly. A time-varying relation is a relation in
the traditional sense, but, in addition, it contains a notion of time.
That is, a time-varying relation R represents a mapping from a time
domain T to a finite but unbounded bag of tuples belonging to the
schema of R. Furthermore, STREAM’s processing model is time-
driven: time advances to t from t-1 when all the events with times-
tamp t-1 have been processed. This behavior translates to a transac-
tional model in which all events with the same timestamp belong to
the same transaction, regardless of whether they arrive on the same
stream or not. In this context, a history generated by STREAM is
conflict-equivalent to a serial history in which transactions are in-
creasingly ordered according to the generating events’ timestamps.
StreamBase [3] is a tuple-driven system [11]. In UTM terms, a
continuous query is (re)executed whenever a new event arrives in
one of the query’s streaming inputs.

One guarantee that StreamBase provides is that the order of ar-
rival in a streaming input is the exact order of processing. Never-
theless, there is no predefined inter-stream ordering: if two events
are enqueued on two inputs, e.g., on Input1 and then on Input2 in
quick succession, it is still possible that the event on Input2 will



SPS Transactions Synchronization Primitives Producible Histories
Coral8 Single event (remote inputs);

Timeslice (explicit isolation
and recovery unit)

Processing Model; Operator Se-
mantics

Conflict-equivalent to a serial history in which transactions in-
volving events are increasingly ordered by the events’ timeslice
values (only local inputs)

STREAM Events sharing the same
timestamp

Processing Model Conflict-equivalent to a serial history in which transactions are
increasingly ordered by the events’ timestamps

StreamBase Single event; Group of events Processing Model; Operator Se-
mantics

Conflict-equivalent to a serial history in which transactions in-
volving events appear in the order of the events arrival in a
stream

StreamInsight Single event (remote inputs);
Sequences of events between
consecutive CTIs

Processing Model; Operator Se-
mantics

Conflict-equivalent to a serial history in which transactions in-
volving events are ordered by the CTI events’ values (only local
inputs)

Truviso Window of events (explicit
isolation and recovery unit)

? ?

Table 3: Transactional Properties of Stream Processing Systems

be processed before the one in Input1. Therefore, if an application
requires a certain ordering for its input streaming events, the devel-
oper should make sure that they are placed on the same stream, or
that she uses specialized operators to order them (e.g, the operator
which merges two streams).

StreamBase supports both streams and tables as inputs. The ta-
bles can be defined locally in the engine and updated through new
events arriving in a stream. StreamBase also provides a lock op-
erator so the application developer can do table-level locking. The
lock key is an arbitrary expression and it is the responsibility of the
programmer to ensure the desired synchronization.

Another type of data source that StreamBase accepts is repre-
sented by tables located in relational databases. For example, a
stream can be joined with a table residing in a relational database
system, in which case for each new event arriving in the stream, a
new database lookup is executed.

In terms of the streaming transactional model, in StreamBase,
each event defines its own transaction (multiple events can be also
logically grouped in transactions by using lock/unlock operators
to guard access to tables). In this context, a history generated by a
StreamBase engine is conflict-equivalent to a serial history in which
transactions generated by events being appended to streams appear
in the events’ order of arrival. StreamBase also offers high avail-
ability features to enable fast recovery from failures.
StreamInsight [2] models streams as changing relations [7]. Each
event is composed of a payload (i.e., the tuple value) plus appli-
cation timestamp attributes defining an event’s validity interval.
StreamInsight reacts whenever it reaches a special event, called CTI
(Current Time Increment). Basically, the CTIs allow the engine to
advance the time by specifying that all events with a timestamp
smaller than the CTI have arrived. When reaching a CTI, a query
is notified that the results corresponding to that part of the stream
(composed of all the events with timestamps smaller than the CTI)
will not change anymore and can be safely committed as output.

When a table located in an RDBMS is involved in a join with
a stream in StreamInsight, there are two options: either for each
event in the stream, a table lookup is executed, or the content of the
database table is transformed into a stream by specifying a validity
interval for each row. Further updates on the tables will change
validity intervals or add new events. By assigning timestamps to
rows and updates, StreamInsight can order events and operations.

StreamInsight offers as synchronization primitive the semantics
of operators. For example, the join operator matches events from
input streams which have overlapping validity intervals.

Given the previous observations, if we consider all the sequences
of events between two CTIs as being part of the same transaction, a
history generated in the StreamInsight engine is conflict-equivalent
to a serial history in which transactions generated by events arriv-

ing in a stream between two CTIs (assuming they are assigned the
timestamp of the CTI) are ordered by the CTI values.
Truviso [4] is a commercial engine which extends a relational data-
base system. As such, the transactional system of an RDBMS is
also extended to continuous processing [15, 22]. In this respect,
the authors follow the same approach as ours: streaming and stored
data are not intrinsincally different and the traditional transactional
model can be reused. One difference to our model is that continu-
ous queries are defined as long-running transactions. Moreover, the
authors propose the window as the isolation unit for the interaction
of streams and relations [13], which also represents the durability
unit for stream archival. We take a step further and formally de-
fine the interactions, while allowing the definition of more flexible
transactional boundaries. Unfortunately, the information we were
able to find about Truviso was not sufficient enough to make any
further statements about its transactional behavior.

8. RELATED WORK
Conceptually, the transactional stream processing model we pro-

pose in this paper relates to the previous work in two main areas:
Traditional database and data warehousing systems. The sim-
ilarity between stream processing and materialized view mainte-
nance [18] has long been recognized. Materialized views are like
continuous queries since a view has to be updated in response to
changes in its base relations. By treating streaming and stored in-
puts uniformly, our problem becomes similar to materialized view
maintenance. We found three lines of work that are closest to ours:

First, Zhuge et al propose a set of algorithms to maintain the
consistency of a data warehouse at various levels of correctness,
when the view computation is disconnected from the updates at the
sources [30]. While we focus more on capturing isolation proper-
ties as a definition of correctness, this work focuses on the algo-
rithms to ensure a predefined set of consistency levels.

Second, Chen et al propose a transactional model that defines
the view maintenance process as a special transaction consisting of
two parts which can commit separately: the update at the source
and the view maintenance query [12]. In this case, the warehouse
update anomaly problem can be rephrased as the serializability of
these transactions. Our work is more general: the update and the
continuous query may or may not be part of the same transaction.

Third, Jagadish et al propose the chronicle data model which
extends materialized views to include chronicles – a form of data
streams [21]. A chronicle algebra over relations and streams in-
cludes a join operator that synchronizes each tuple from the chron-
icle with the relation version which existed at the temporal instant
of that tuple. The focus of this work is on ensuring that the views
defined in the chronicle algebra can be maintained incrementally,
without having to store the chronicles.



Stream processing systems. There is only a handful of related
work on transactional concepts for stream processing:

The semantic difference between relations and streams as well
as unclear role of relations in continuous queries were previously
pointed out by Golab and Ozsu [17]. Their work proposes to model
relations as look-up time-varying relations and defines the follow-
ing order for events and updates: any update on the relation at time
t will affect only the stream events which arrive after t.

A follow-up study by the same authors focuses specifically on
the concurrency control problems that arise in SPSs when window
of a long-running query may slide while being accessed by another
on-demand snapshot query, resulting in a read-write conflict [16].
This work considers sub-windows to be atomic units of data access,
shows that conflict serializability is not strong enough to guarantee
correct and up-to-date query results for the considered SPS access
patterns, and proposes two stronger isolation levels. These are im-
plemented as part of a transaction scheduler which minimizes the
number of aborted transactions. Different from this work, we not
only consider streaming data sources (and periodic window queries
over them), but relations (and general continuous queries) as well,
and accordingly provide a more general transactional model.

Transactional concepts for streams have also arisen in the con-
text of fault tolerance and high availability in distributed stream
processing systems [19, 20]. Previous work has defined some prop-
erties (e.g., repeatable / deterministic operators) and recovery meth-
ods, which can be used to implement recovery protocols in case of
failures, but no general transactional stream processing model.

More recently, Wang et al. have proposed a stream-oriented
transactional model for providing active rule support to complex
event processing systems [28]. In this work, active rules monitor
continuous query outputs and issue reads and updates to a table,
while other continuous queries are concurrently reading from this
shared table. These concurrent read and write operations may in
turn lead to anomalies (read-too-late, write-too-late). This work de-
fines a stream transaction as a sequence of system state changes that
are triggered by a single input event and redefines the correspond-
ing ACID properties. Correct concurrent executions are achieved
through special scheduling algorithms that enforce a timestamp-
based notion of correctness, which requires the execution order to
follow operations’ application timestamps. Our work mainly dif-
fers from this work in its goal to define a common and general
transactional model for concurrency control and failure recovery
over streams and relations by reusing the traditional foundations
with minimal extensions. As such, the concurrency scenario that
Wang et al. focus on is one of the many that our model can capture.

9. CONCLUSIONS
In this paper, we presented a unified transactional model for

streaming applications over an arbitrary mix of streaming as well
stored data sources, where serializability can be used as a criterion
to define correct executions. As shown experimentally, our model
relieves the application developer from the task of dealing with con-
currency control and failure recovery, and all this with very modest
performance overhead. Our model is also general enough to ex-
press the implicit transactional behaviors of real-world SPSs.
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