
Batched Processing for Information Filters

Peter M. Fischer, Donald Kossmann
Swiss Federal Institute of Technology (ETH) Zürich, Switzerland

{peter.fischer,kossmann}@inf.ethz.ch

Abstract

This paper describes batching, a novel technique in or-
der to improve the throughput of an information filter (e.g.
message broker or publish & subscribe system). Rather
than processing each message individually, incoming mes-
sages are reordered, grouped and a whole group of simi-
lar messages is processed. This paper presents alternative
strategies to do batching. Extensive performance experi-
ments are conducted on those strategies in order to compare
their tradeoffs.

1 Introduction

1.1 Background and motivation

In recent years, we have seen a shift in the way informa-
tion is processed. Departing from the traditional paradigm
in which information is first stored and then queried, we are
quickly moving to a new paradigm in which new informa-
tion is directly routed to the relevant recipients. This new
paradigm is being adopted by several research communi-
ties (databases being only one of them) and products are
appearing on the market place: Tibco [1], Business Con-
nector from SAP [2], BizTalk Server from Microsoft [3],
or the Message Broker and bus from BEA [4] to mention
just a few. In order to enable this new information filter-
ing paradigm, techniques from areas such as event-based
programming, publish and subscribe, continuous query pro-
cessing, and information dissemination (push) are effected.
To support information filtering, the database community
has made significant contributions on indexing profiles (aka
triggers, rules, queries) that determine how to filter and
route incoming messages or events [13, 7, 14]. The index-
ing schemes differ in the kind of messages (XML or struc-
tured tuples) and profiles (keywords, predicates, complex
queries) they support. In any case, the goal is to achieve
scalability in the number of profiles that can be indexed.
Scalability in this dimension is very important because each
user, device, or software component can specify several

hundred profiles in order to determine which information is
relevant. Based on the past work on indexing, the purpose
of this paper is to study techniques that improve the scala-
bility with regard to the number of incoming messages that
can be processed (i.e. throughput). Rather than processing
each message individually, the idea is to reorder and group
a set of incoming messages and process instead this set of
messages. We call this approach batching and, in principle,
it can be applied with any existing indexing scheme.
Batching has two advantages. First, batching improves the
throughput of an information filtering system, as we will
see, up to an order of magnitude in certain cases. Second,
batching significantly improves the behavior of a system if
the arrival of messages is bursty; it can be argued that batch-
ing is particularly effective during peak times in which tem-
porarily more messages arrive than the system can handle.
On the negative side, batching makes it more difficult to
predict the latency of a message (time from arrival to output
of the message). However, there are ways to control batch-
ing in such a way that the maximum latency can be con-
strained in non-overload situations. Another issue is that
batching may reorder messages for optimization reasons,
which could result in processing an earlier message after a
message that arrived later. If maintaining the original order
is required, there are efficient ways to do this. All results
shown in this paper always restore this order.

1.2 Contributions

In order to study batching, this paper makes the follow-
ing contributions:

1. Introduce the concept and show how it can be applied
to various existing indexing schemes.

2. Propose alternative batching strategies. The batching
strategies differ in the way they group messages and in
the way they index groups of messages.

3. Develop a cost model that helps to identify the critical
parameters that affect the performance of the alterna-
tive batching strategies and, thus, helps to study per-
formance trade-offs.

4. Present the results of performance experiments with
different workloads and indexing schemes.

5. Devise a model that allows to define an upper bound
for the latency of a message (in non-overload situa-
tions).

1.3 Structure of the paper

The remainder of this paper is structured as follows: Sec-
tion 2 describes the architecture of information filtering sys-
tems into which batching can be incorporated. Sections 3
and 4 describe the batching framework, strategies to batch
and implementation details. Section 5 gives a qualitative
cost analysis, while Section 6 presents the results of per-
formance experiments. Section 7 shows how the latency of
messages can be controlled and Section 8 discusses related
work. Section 9 concludes this work and gives avenues for
future work.

2 Information filter architecture

The purpose of an information filter is to match mes-
sages to profiles. In a relational world, such messages are
attribute/value pairs and profiles are conjunctions of pred-
icates such as equality, range or set containment [14]. A
message matches a profile, if it contains values for all the
attributes involved in predicates of the profile and these val-
ues meet the restrictions specified in these predicates. For
instance, the message [x=3,y=5,z=7] meets the profile con-
sisting of the predicates (x=3)∧ (z > 2), whereas it does not
match the profile (z≤ 0). In an XML world, messages are
XML documents, profiles are XPath [13] or XQuery state-
ments, and matches are defined accordingly.
Figure 1 gives an overview of the architecture of an infor-
mation filter, following the current state of the art. Such an
information filter has three main components: (a) indexes,
(b) merge, (c) postfilter. In addition, there is a queue that
stores incoming messages while the filter is busy. Typically,
there are several indexes for different kinds of predicates of
the profiles. For instance, there could be an index for predi-
cates on the ”sender” attribute of an incoming message, and
there could be a separate index for predicates on the ”prod-
uct” attribute. Each index takes an individual message as
input and returns a set of matching profiles. Since a profile
can involve several predicates, the sets of profiles returned
by each index need to be merged. Logically, the merging
step carries out conjunctions and disjunctions. The result
of the merging step is a set of profiles that match the mes-
sage according to all predicates that are indexed. Process-
ing the merge step can be optimized in several ways: se-
lectivity ordering, special representations of the result sets
(e.g. bitmap) and low-level optimizations (e.g. prefetching,

∧
∨

Indices Merge Postfilter

Matches for
single index

Result with
false positives

P*

P*

P*

P* P*
M{1}M*

Queue

Figure 1. Information filter architecture

cache awareness). Since a profile can involve additional
predicates that are not indexed, a postfilter step is neces-
sary in order to evaluate those predicates. We will now look
more closely at options to implement the index stage. De-
tails on the other stages will be discussed in Sections 5 and
6.

Indexing to speed up finding matching predicates has
been used in traditional information filters. These have been
subject to extensive studies in the literature [14, 13]. There
is a number of alternative ways to implement such indexes:

• index type: Hash table, B-Tree, R-Tree [16, 8], Spa-
tial/Moving Object Indexes [18], Interval Indexes [17],
custom indexes, etc.

• index target: Value indexes index the values of pred-
icates; all the indexes listed in the above examples are
typical representatives of value indexes. On the other
hand, structure indexes index the structure of the pro-
file; i.e. the attributes that are used in the index or in
a more general XML context, the XPath expressions
used in the profiles. Examples for such structure in-
dexes are YFilter [13] or Data Guide [6]

• index scopeIt is possible that an index covers all pred-
icates of all profiles. Alternatively, there could be sev-
eral indexes, each index covering all predicates that
involve a certain set of (message) attributes. Further-
more, indexing can be limited to certain ranges, as par-
tial indexes [19]. Typically, only the most selective at-
tributes are indexed for performance reasons.

3 Batching strategies

3.1 General idea

Considering the architecture laid out in Section 2, Fig-
ure 1, we can apply the following changes to enable batch-
ing, as shown in Figure 2: Theinput queueis now an inte-
gral part of the filter, as it needs to be controlled by a new

∧
∨

M*

Indices Merge Postfilter

Matches for
batch on

indiv. index

Matches for batch
on all indices

Queue

Batch
control

(M,P)*P*

P*

P*

P*

M*M*

Batch of
messages

Figure 2. Batch-enhanced IF Architecture

component, thebatch control. Its task is to collect a set
of messages from the input queue and pass it on to the next
stages as a batch. In order to improve the efficiency of those
next stages, it can reorder and group the messages. In con-
trast to the traditional approach, thepredicate indexesnow
handle a complete batch at once. Therefore they do not re-
turn the set of matching profiles for a single message, but
a set containing the union of matching profiles for all mes-
sages in the batch (calledunion setfrom now on). Those
union sets are now merged using the existingmergealgo-
rithm and finally split up into the matches for individual
messages using an improvedpostfilter. The result contains
all matching profiles for messages in the batch.
Batching is beneficial because the index is probed and the
merge is carried out only once for a batch of messages rather
than for each message individually. On the index, savings to
handle messages in a batch stem from two sources: a) Test-
ing identical values requires just a single access. b) Mes-
sages in a batch can be ordered to optimize the access pat-
tern (depending on the index type), to reduce search time or
improve I/O-operations. For example, the cache efficiency
of a B+-Tree is improved by buffering, as shown in [21].
The drawback is that postfiltering becomes more expensive,
as the union set contains more profiles than the individual
sets. The key for a good overall performance therefore is to
keep the number of profiles in the union set as low as possi-
ble while still making large enough batches.
There are two other possible improvements from batching.
One, indexing the messages to speed up postfiltering, as
messages fulfilling a certain predicate can be found faster.
Two, the delivery of messages can be improved. These two
advantages will be explained in more detail in Sections 3.3
and 3.4.

3.2 Grouping messages

Our goal is to save work on batched profile index ac-
cesses and merge while having low number of profiles in
the union set. Just naı̈vely handling the largest possible
batch is not a good strategy to achieve this goal. Instead,

we have to break up the batch into smaller subsets that have
a greater amount of similarity. The need for this improve-
ment becomes clear if one considers the effects of batching
on the union set: A large set of messages is likely to contain
matches for a large number of profiles, perhaps even all. If
the union set contains all messages, the effort of probing the
indexes and merging is wasted. Instead, the postfilter has
to do all the filtering and becomes very expensive. Small
batchsizes, on the other hand, severely limit the room for
improvements on batching.
To achieve the needed amount of similarity, the subsets are
grouped by similarity on those attributes that are used by the
predicate indexes. Each group is now being processed as a
”minibatch”. Since those minibatches are much more ho-
mogenous than the original batch, the number of profiles in
the union set of each minibatch is much lower, which in turn
allows for a more efficient postfilter operation. Compared
to handling the full batch in one piece, cost savings on the
batched stages will be lower, and grouping also has a cer-
tain cost. Additionally, message ordering is not preserved.
Nonetheless, grouping messages is the key to higher perfor-
mance, as our experiments will show.
To actually perform the grouping, we need a method that
fulfills the following requirements:

• Reaching a good balance on postfilter cost and probe
and merge savings.

• Being fast enough as not to impose an overhead when
handling thousands of messages per second

• Handling varying batchsizes

• Taking advantage of skew in message values

• Working for different profile workloads

There are many ways to group. Here are some alterna-
tives. We will study their tradeoffs in Section 6:

fixed-size: The complete batch is ordered and split into
minibatches of a fixed size (e.g. 2 messages), as shown
in Figure 3a). This method will most likely work well
if the overall batchsize does not change much, and
the values of the messages have a uniform distribu-
tion. For a varying overall batchsize, this method is
bound to generate too small minibatches on very large
batches (thus distributing similar messages to differ-
ent minibatches) and too large minibatches on very
small batches (thus grouping different messages into
the same batch).

fixed-number: The complete batch is ordered and split
into a fixed number of (equi-sized) minibatches of the
complete batch (e.g. 3 batches), shown in Figure 3, b).
This method takes into consideration that the size of

a) fixed-size: 2 msg b) fixed-number: 3 batches

M
1

1 1
M

2
1 1

M
3

1 3

M
4

1 3

M
5

1 4

M
6

2 1

M
7

2 1

M
8

2 2

M
1

1 1
M

2
1 1

M
3

1 3

M
4

1 3

M
5

1 4

M
6

2 1

M
7

2 1

M
8

2 2

M
1

1 1
M

2
1 1

M
3

1 3

M
4

1 3

M
5

1 4

M
6

2 1
M

7
2 1

M
8

2 2

M
1

1 1
M

2
1 1

M
3

1 3

M
4

1 3

M
5

1 4

M
6

2 1
M

7
2 1

M
8

2 2

c) value-based: 1 attr. d) value-based: 2 attr.

Figure 3. Minibatching strategies

minibatches has some dependency on the overall batch
size, but it does not take advantage of the distribution
of the messages. In addition, a fixed fraction might not
find the optimum for all batch sizes.

value-based: The batch is split into groups of the same
value or a value range on certain attributes. In turn,
there are several ways how to determine those values
or values ranges:

• distribution of values: uniform, skewed

• number of groups: fixed, variable over time (per-
haps with adaptive control)

• attributes to use for grouping: all indexed at-
tributes, only the first indexed attribute, any num-
ber of attributes in between

• correlation to index values: independent, corre-
lated to the index

• correlation to message values: independent, cor-
related to message values

Value based approaches have the potential of cap-
turing the actual properties of messages and profiles
to a higher degree than the previously presented ap-
proaches, but a large number of variants makes it dif-
ficult to choose the right approach. The two examples
in Figure 3 show grouping on identical values of the
first attribute (c) and grouping on the identical values
on two attributes (d).

hybrid approaches: None of the approaches might be
suitable for all message and profile workloads, so com-
binations might provide better results:

• Split the batch into 50 minibatches, but make the
minibatches no smaller than 10 messages and no
larger than 500 messages.

• Combine all messages differing not more than 50
from the designated group value, but ensure that
a minibatch has at least 20 messages in it, other-
wise merge it with the closest group

By using such hybrid approaches, it might be possible
to handle cornercases without introducing too much
complexity.

A common drawback of all these methods is that they
have tuning parameters. We will study the sensitivity of
those tuning parameters in Section 6.5 and present an ap-
proach in order to determine these parameters automati-
cally.

3.3 Indexing messages

In Figure 4, an index is built on the values of the sec-
ond attribute of the messages. This index can be used in
order to determine the matching messages for each profile
in the postfilter step. Depending on the predicates used in
the profiles, different approaches can be taken. For equi-
predicates, hashing can be used. For range predicates, we
propose to sort the messages and carry out a binary search,
as it is easy to implement and analyze. More elaborate in-
dex structures are also possible.

3.4 Delivery

Processing messages in a batch returns all matching pro-
files for all messages. Depending on the requirements of
delivery, we can split up this result. The first method is to
get all profiles for a single message, as done in traditional
information filters (Figure 5 a). This is beneficial if the fil-
ter only ”tags” the messages, forwards them over a shared
channel to later stages that do the actual delivery. The sec-
ond method is to get all messages for an individual profile
(Figure 5 b). This is useful in a unicast situation with direct

Messages
(clustered on
 Attribute 1)

Message index
on Attribute 2

M
1

1 1
M

2
1 1

M
3

1 3

M
4

1 3
M

5
1 4

M
6

2 1
M

7
2 1

M
8

2 2

1
2
3
4

Figure 4. Message index on second attribute

M2M1 M3
P2
P5
P7
P9

P1
P4
P7
P9

P2
P4
P5
P8

P1

a) Profiles per Message

P2

P3

M1 M4 M8 M9

M2 M3 M5 M9

M7 M8 M9

b) Message per Profiles

Figure 5. Delivery options for batching

delivery, as we send each client all relevant messages in a
single transfer.

3.5 Summary of batching strategies

Considering the ideas outlined in this ection, we can
classify batching strategies along three dimensions:

1. How are messages batched? The alternatives are:
no batching (Unbatched), minibatching (MiniB), full
batching (Full). (Section 3.2)

2. Is a profile index (PIx) used in the first two stages? The
alternatives are yes and no.

3. Is a message index (MIx) used in the postfilter stage?
The alternatives are yes and no. (Section 3.3).

Not all combinations within these three dimensions are pos-
sible or useful: For example, in the “unbatched” cases,
message indexing is impossible. Also not using a predi-
cate index for “unbatched” will severely limit the perfor-
mance. The combination of minibatching and message in-
dexing without a predicate index is detrimental, as it actu-
ally reduces the efficiency of message indexing. Finally,
the combination of full batching, profile indexing and mes-
sage indexing will not be considered, as the resulting per-
formance is not competitive.
Therefore, we will compare the following, detailled ap-
proaches in the rest of the paper

Unbatched/PIx/-: baseline, representing the current state
of the art

Full/PIx/-: Apply a full batch at the profile indexes

Full/-/MIx: Use only a message index to determine its ef-
ficiency (no profile index)

MiniB/PIx/-: Split batch into minibatches and apply them
to the profile indexes

MiniB/PIx/MIx: Generate message indexes on the indi-
vidual minibatches to speed up postfiltering

4 Implementation details of batching

The largest modifications necessary for batching need to
be done on the implementation of the access methods of the
profile indexes. We will now show in more detail how these
modifications help to improve performance.
To understand the changes, first consider that any predi-
cate index (regardless of the actual index type) stores pro-
file identifiers matching certain values. Depending on the
type of index structure, profiles for each value are stored
on one location or spread over several places. If a probe
is performed, the index is queried and returns this set, ei-
ther directly or by combining the partial sets. Under most
circumstances, the lookup itself is quite fast, but handling
possibly large sets of profile identifiers is expensive.
A first improvement can be done if the batch is arranged in
a way so that identical values are next to each other, e.g. by
lexicographically sorting the set. Using this arrangement, it
is easy and cheap to perform only a single lookup for iden-
tical values.
If there are not only identical values in a batch, our strat-
egy depends on the properties of the index structure. For
indexes that do not have the notion of order or containment
(such as hash tables), we are forced to perform a lookup for
each distinct value and make the union of those results to
retrieve the union result for the batch. If the index does in
fact support such an order (such as B-Trees, or Interval Skip
Lists) or containment (R-Trees), we can take advantage of
it. The probed values in the batch need to be arranged in
the corresponding pattern. Using this pattern to access the
index inside the batch, we can reduce the search cost by
continuing at the last probed value and also build the result
set incrementally.
A good example of such improvements can be shown on
the interval skip list [17], which is generally used to index
range predicates in main memory: As its name implies, it is
a list carrying the indexed values at each node, but instead of
having a single forward pointer at each node, it has a num-
ber of additional forward pointers that ”skip” over a range
of values. The additional forward pointers are ordered in

”levels”, the higher their level is the farther they reach out.
The number of levels on a node is randomly determined at
insertion time. Lower levels occur more often than higher
levels.
In order to retrieve all intervals covering a probed value, the
index is searched following the forward pointers. Starting
from the highest level, the algorithm determines all pointers
covering the probed value. The union of the intervals at that
pointers form the result.
A batched access can continue its search by starting the
search at the lowest possible forward pointer that had not
been covered before and the intermediate result of the
higher levels can be reused.

5 Qualitative analysis

5.1 Overview

The cost of processing a batch of messages can be mea-
sured in different units, but the most relevant units are

• CPU, as this affects the throughput

• memory, as it limits the scalability in terms of profiles
or batchsizes

• response time/latency, as batching introduces ”waiting
times”.

This chapter will focus on a analysis of CPU and memory
cost, as they are related to the batching methods. Latency
estimates and methods to deal with it are described in Sec-
tion 7, since they depend more on the traffic characteristics
than on one of the different batching strategies.

5.2 CPU cost

The two main cost drivers for unbatched processing are
operations on profile indexes and postfiltering. They con-
tinue to do so if batching is used. There are, however,
changes on the individual cost drivers: For profile index op-
erations and merge, clear savings can be achieved by pro-
cessing a batch rather than each message individually. The
actual savings on handling a batch of messages depends
on the index structure and the message distribution in the
batch. The higher the skew, the higher the similarity of the
messages in a batch, and thus the more effective batching
becomes.
For postfiltering, the cost model does not change signifi-
cantly, but the higher number of match candidates in the
union set can have a negative impact. Using a message in-
dex on one attribute reduces the cost of evaluating this at-
tribute fromO(num msg) to O(log(num msg)).
Although grouping and index building operations could
have a superlinear cost, their overall cost is much smaller
than the possible savings on the other operations.

5.3 Memory requirements

To handle batches of messages, we need additional mem-
ory over what a traditional information would need. The
factors contributing to those memory requirements are:

1. storing the messages in the batch

2. indexing, grouping the messages

3. representing results for each message in the batch

The first and the last are clearly linear to the number of mes-
sages, while the second can additionally cause logarithmic
overhead. Considering that on high-throughput scenarios
batches can easily consists of thousands or tens of thou-
sands of messages, the available memory can become the
limiting factor. In practice, most of the memory require-
ments very much depend on implementation and workload
specifics and can be tuned accordingly.

6 Performance experiments and results

Following the analysis in the last section, our goal is to
measure the troughput improvements of the different strate-
gies on various workloads, in order to determine the best
strategy. Variants and tuning parameters for this method are
also analyzed.

6.1 Experimental setup

To validate our analysis, we extended our already exist-
ing C++ implementation of the information filter architec-
ture with the new batching components, and modified the
existing components accordingly. To index range queries,
we use an interval skip list. The implementation we use
was taken from Hanson’s web site [17], and slightly modi-
fied to fit into our architecture. For point queries, we use a
hash table implementation from the GHT library [5]. Both
were extended as described in Section 4. For sorting values,
we used the built-inqsort() method of the C runtime li-
brary. Overall, we needed about 3K lines of code to add the
batch-related functionality.
The experiments were conducted on a Pentium 4 3,2 GHz
with 2 GB of RAM running Linux 2.4. The programs were
compiled using the standard GCC 3.3 provided by the Linux
distribution.

6.2 Workloads

We created the following profile and message workloads
and tested them against the individual batching strategies:

Parameter Description Values

P No of profiles 500K
AR No of attr. RQ 8
AttPR No of attr./profile RQ 8
AttMR No attr. per msg (RQ) 8
AP No of attr. PQ 32
AttMQ No attr. per msg (PQ) 32
AttPP No of attr./profile PQ 4
CO No of indexed attr. 2
PD distribution of profile pred. uniform
VRR Values range (RQ) [0,10000]
VRP Value range (PQ) [1,35]
MD Dist. of msg values Zipf,

uniform,
gauss

BS Batchsize 1 - 100K
MBS Minibatchsize (number) 1 - BS

2

MBS Minibatchsize (range) 1 - 1250

Table 1. Workload Parameters

1. Range Queries (RQ): Profile consist of range queries.
There are three different distributions of message val-
ues:

(a) Zipf (RQ-Z)

(b) Gaussian (RQ-G)

(c) Uniform (RQ-U)

2. Point QueriesPQ. Profiles consist of point queries,
message values have Zipf distribution

In detail, the workload parameters were determined
this way: For RQ, we used 8 possible attributes(AR),
all of which were used in all profiles(AttPR) and mes-
sages(AttMR). The profile values were floating point num-
bers quantified to 3 significant digits. The value range
(VRR) was 0 to 10000, corresponding to the experiments
in Hanson’s Skiplist work [17]. The selectivity of the at-
tributes varied from about 3 percent for the most selec-
tive attribute to about 100 percent for the least selective
(dummy) attribute. The actual overall selectivity (measured
as percentage of profiles matching a document) varied from
0.13 percent (RQ-Z) to 0.15 percent (RQ-G); RQ-U falls in
the middle with 0.147 percent. Expressed into other terms,
this means that about 700 profiles matched each message,
or a profile was matched by every 700th message. Mes-
sage values were distributed uniformly over VD forRQ-U
and the attributes of the other message workloads, if not
determined otherwise. ForRQ-Z, 50 values were drawn
uniformly from VRR for the first four attributes(MD). The
actual values for the attributes were then chosen from a Zip-
fian distribution over those values. ForRQ-G, the first two

attributes were drawn using a Gaussian distribution of me-
dian 5000 and standard deviation 250 and 350, respectively.

ForPQ, we used 32 possible attributes(AP), which were
all used in the messages(AttMP). Profiles consisted of 4 at-
tributes(AttPP), two of which were present on all profiles,
the remaining two were chosen from the other 28. The val-
ues (VRP) were chosen from a range between 1 and 35
and quantified as integers, closely following the workload
in [14]. The Zipfian distribution on all message attributes
was based on all values. The selectivity was much lower.
Using the Zipfian message workload, it is about 2.6 *106,
corresponding to 1.3 matching profiles per message or a
profile being match by every 380’000th document.

All workloads consisted of 500K profiles(P). In both
cases, indexing the two most selective attributes yielded the
best performance for the unbatched case(CO). All profile
values had a uniform value distribution(PD).
Batchsizes were varied from 1 to 100K messages per
batch(BS). For all experiments, the minibatches within a
single batch had either an equal number of messages or cov-
ered the same range of values(MBS). For minibatchsizes
based on the number of messages, we varied the number of
messages in minibatch between 1 and half the actual batch-
size. For minibatchsizes based on values, we changed the
value range from 1 to 1250, as bigger values did not yield
any benefits.

6.3 Comparison of batching strategies

6.3.1 Impact of batchsize

The purpose of our first set of experiments is to compare
the individual batching methods and determine the respec-
tive benefits. For each of these experiments we measured
the maximum throughput the filter could handle for vari-
ous batchsizes between 1 and 10K. The unbatched method
(Unbatched/PIx/-) represents the current state of the art and
was compared against the batching methods presented in
Section 3.5.

For the minibatching approaches, we chose a value-
based partitioning, more details about it will be shown next
section. The experiments were done with all the workloads
defined in the last section. Figures 6 and 7 show the results.
On RQ-Z (Figure 6a), unbatched reaches a throughput of
about 450 msg/sec. Full batching with PIx is not able
to achieve a comparable performance, it quickly degrades
when increasing the batchsize, reaching just 20 msg/sec
when the batchsize exceeds 5000 messages. This drop in
performance can be attributed to the very high number of
profiles in the union set after the batched index operations,
putting all the filtering work onto the postfilter.
Full batching using only a message index has very low per-
formace on very small batchsizes (15 msg/sec at BS 1),
but performs better at higher batchsizes. At a batchsize of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

M
es

sa
ge

s
pe

r s
ec

on
d

Batchsize (BS)

Unbatched/PIx/-
Full/PIx/-
Full/-/MIx

MiniB/PIx/-
MiniB/PIx/MIx

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 0 2000 4000 6000 8000 10000
Batchsize (BS)

Unbatched/-/-
Full/PIx/-
Full/-/MIx

MiniB/PIx/-
MiniB/PIx/MIx

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000
Batchsize (BS)

Unbatched/-/-
Full/PIx/-
Full/-/MIx

MiniB/PIx/-
MiniB/PIx/MIx

(a) RQ-Z (zipf) (b) RQ-G (gaussian) (c) RQ-U (uniform)

Figure 6. Comparing batching strategies - range profiles - varying message distributions

around 1250, the throughput is 50 percent higher than in the
unbatched case (about 675 msg/sec). When further increas-
ing the batchsize, the performance begins to drop slightly,
and falls below the unbatched performance at a batchsize
of 5000. The low performance at smaller batches in the in-
crease correspond well to the expected behavior of index,
as its efficiency increases with amount data indexed. When
the batches get even larger, the batches do not fit into the L2
cache of the processor anymore, therefore the performance
gradually declines. We verified this using the cache profiler
valgrind [20].
Minibatching with a profile index (MiniB/PIx/-) shows a
significant performance improvement over all the other ap-
proaches. At a batchsize of 150, the performance is already
twice as high as for unbatched. The gap grows with an in-
creasing batchsize: at 10000 messages the speedup is about
7.5. Bigger batchsizes result in a higher number of simi-
lar messages in the batch, which can be grouped together,
and thus to higher troughput. Grouping does not add signif-
icantly to the overall cost, as the cost breakdown in the next
section will show.
Finally, using message index in addition to minibatching
and profile indexes (MiniB/PIX/MIx) leads to relatively
similar results: On smaller batchsizes, the performance is
slightly worse, for larger batchsizes, this approach catches
up and matches (MiniB/PIx/-). This behavior can be ex-
plained by looking at the results of full batching with mes-
sage index. Considering that the message index is now built
and queried on the minibatches, the same pattern occurs
again: On small minibatches, the efficiency of the message
index is too low, when the sizes increases, the results be-
come better.
Looking at those results, it can be easily concluded that the
combination of full batching with profile and message in-
dexes will not deliver competitive performance and is there-
fore not shown.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2000 4000 6000 8000 10000

M
es

sa
ge

s
pe

r s
ec

on
d

Batchsize (BS)

Unbatched/PIx/-
Full/PIx/-
Full/-/MIx

MiniB/PIx/-
MiniB/PIx/MIx

Figure 7. Comparing batching strategies - PQ

The results for RQ-G (Figure 6b) and RQ-U (Figure 6c)
confirm our results, but deliver lower overall gains for
minibatching. With RQ-U, the maximum speedup we can
achieve is around 2, with RQ-G it is around 6.5. In both
cases, the approach of using a message index with mini-
batching and the profile indexes shows its benefits earlier.

PQ (Figure 7) completes the picture of minibatching on
profile indexes (in some instances also with a message in-
dex) being the best approach. While unbatched already per-
forms much better (2300 msg/sec) due to the cheaper index
operations, minibatching is still able to improve this result
by more then a factor of 4.

For the rest of this section and the next sections, we will
use RQ-Z as reference workload.

6.3.2 Cost breakdown

The performance numbers of the respective strategies are
verified when looking at the individual cost factors con-

Ub./P/ Full/P/- Full/-/M Mini/P/- Mini/P/M

SortMB 0 0 0 0.01 0.01
SortPIdx 0 0.01 0 0.01 0.01

PIx 14.28 1.97 0 5.51 7.87
SortMIx 0 0 0.01 0 0.01

MIx 0 0 71.58 0 12.98
PostF 6.54 77.58 28.76 8.27 6.08

Table 2. Cost breakdown of 6a) BS 75

Full/P/- Full/-/M/ MiniB/P/- MiniB/P/M

SortMB 0 0 0.03 0.03
SortPIx 0.01 0 0.01 0.01

PIx 0.05 0 0.73 0.95
SortMIx 0 0.01 0 0.01

MIx 0 15.91 0 2.83
PostF 462.79 14.9 3.29 2.45

Table 3. Cost breakdown of 6a) BS 5K

tributing to the performance. For each of the above meth-
ods, we measured the time for sorting to group the mini-
batches, sorting to build the message indexes and sorting
to optimize the index access pattern. We also measured the
cost of accessing the predicates indexes, merging the results
and accessing the message indexes. Finally we measured
the time to postfilter the remaining profiles. For reasons of
space, we only show the breakdown for the RQ-Z. Table
2 shows the cost factors in seconds for a batchsize of 75,
while table 3 shows them for a batchsize of 5000. As both
tables show, the sorting cost is almost negligible, prompting
that more expensive grouping methods might be possible.
As expected, the profile index operations (combined with
merging) are reduced drastically by the batching methods.
For Full Batching with profile index (Full/PIx/-), however,
this reduction is overcompensated by the much higher post-
filtering cost even on small batch sizes, resulting in a non-
competitive overall performance. For full batching with just
a message index, one can see its low efficiency for small
batchsizes by looking at the time it takes to do the index
probes. As the batchsize increases, the performance also
improves. For (MiniB/PIx/-), the savings on the predicate
index operations are not as big as seen on the full batching
case, but the cost of postfiltering is low, with almost no in-
crease over the unbatched case. At both batchsizes, using a
message index incurs an additional cost, and does not help
in speeding up the overall performance. For higher batch-
sizes, however, the investment into the message index pays
off.

6.3.3 Scaleup for larger BS

In this experiment, we further increased the batchsize up to
100K messages (table 4), again using RQ-Z. We compared

1K 5 K 10 K 25 K 50 K 100 K

MiniB/P/- 3,01 5,82 7,48 9,59 11,35 13,07
MiniB/P/M 2,86 4,7 7,58 10,47 12,37 15

Table 4. Speedup for bigger BS vs unbatched

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000

M
es

sa
ge

s
pe

r s
ec

on
d

Batchsize (BS)

Fix No
Val Att1
Val Att2

Val Att2+

Figure 8. Competing grouping approaches for
Minibatching

the methods based on minibatching (which show the best
performance) to Unbatched/PIx/- an observered that the
speedup increased with a larger batchsize. Furthermore, the
additional message index is becoming more important with
a growing batchsize. In the extreme case, MiniB/PIx/MIx
is a factor of 15 faster than traditional unbatched processing
and 15 percent faster than MiniB/PIx/-.

6.4 Comparing minibatching methods

Following the discussion in Section 3.2, we compared
the following four simple grouping methods to determine
their suitability using RQ-Z: a) fixed number of messages
(Fix No) , b) fixed value range on the first attribute (Val Att
1), c) fixed (identical) value range on both indexed attributes
(Val Att 2), d) fixed value ranges on both indexed attributes
(second with bigger range than first) (Val Att 2+). All meth-
ods require the messages to be sorted lexicographically on
the indexed attributes, as proposed in Section 4. Figure 8
shows the performance of the competing approaches. (Fix
No) performs relatively well and beats both naive value-
based approaches. Grouping based just on the values of the
first attribute (Val Att 1) performs well for smaller batches,
but levels off very soon, as the resulting minibatches get
too large. In contrast, grouping on both attributes with the
same value range (Val Att 2) tends to create too small mini-
batches, which leads to generally lower performance, espe-
cially on smaller batchsizes. Based on these observations,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100 120 140 160

M
es

sa
ge

s
pe

r s
ec

on
d

Minibatchsize (MBS)

Fix No
Val Att2+

Figure 9. Tuning MBS

the hybrid approach of using a bigger value range on the
second attribute (Val Att 2+) looks most promising. As the
graph shows, this is in fact the best approach, though not
by a large margin. For the other message distributions, the
differences are even smaller, thus making it impossible to
declare a clear winner.

6.5 Sensitivity analysis

As we stated in the previous Sections, balancing the in-
fluences of message distribution, profile distribution and
batch size to get the best grouping results requires tuning.
The relevant parameter is either the number of messages per
minibatch or the value range per minibatch. Figure 9 shows
the effects of varying those on an overall batchsize of 10000
for the previous experiment. For both approaches, the over-
all result is the same: A single throughput maximum can
be determined from performance declines when increasing
or decreasing the minibatchsize. The approach grouping a
fixed number of messages has lower overall maximum, and
a lower minimum. Its advantage is that the decline is very
gradual. The value-grouping approach, on the other hand,
shows a very steep decline once the best possible size has
been exceeded. Since it yields the better performance, it is
nonetheless preferable.
Since both methods do not show any local minima, a ma-
chine learning technique like gradient descent can be ap-
plied to reach the best size. Slightly simplified, this means
that if we decrease cost by changing the minibatchsize into
one directions (e.g. decreasing), we can further improve it
by further changing it into the same direction until the cost
increases. If the cost increases at the first attempt, we have
to change our direction or we are already at the cost mini-
mum.

6.6 Summary

Batching provides significant throughput enhancements,
even under circumstances where messages have a limited
amount of similarity. Increasing similarity and batchsize
further improve the result. The comparison of batching
strategies shows Minibatching to be the clear winner for
all message and profile workloads, with some additional
improvements using message indexing. Both number- and
range-based methods perform well, with slight advantages
for the range-based approach. The more important factor is
the actual size of a minibatch.

7 Latency analysis

Latency is the time that it takes to process a message
from the point where the message is put into the input queue
until the point the message is ready for delivery to the indi-
vidual profiles. The complete latency of processing a mes-
sage or a batch of message would also have to include de-
livery. Since delivery depends on the particular architecture
and system environment, we do not explicitly consider it in
the rest of this Section.

7.1 Latency model

Processing messages in batches can increase the latency,
for two reasons:

1. messages need to be queued until a sufficiently big
batch has been collected (AvgQueing)

2. matching profiles for an individual message can only
be determined when all messages have been processed
(Matching)

For a steady-state system, the average time of these two fac-
tors can be estimated as follows:

Avg Queuing =
Batchsize

2

Arrival Rate

Matching =
Batchsize ∗matching single

speedup

The first formula describes that on a system where the
arrival rate does not fluctuate much, the average latency
for queuing is half the maximum latency caused to get the
desired batchsize. The second formula, in turn, describes
the time to do the matching profiles. We model the
performance benefits of batching by using the unbatched
speed and applying a speedup factor that depends on the
factors shown in the last Section.

Latency (ms) 10 100 1000 10000
Speedup 1.1 1.3 2.28 9.2

Table 5. Max. speedup for given latency

The average latency is thenAvg Queuing+Matching,
the maximum latency2∗Avg Queuing +Matching. The
maximum latency occurs for a message that is queued as
the first, thus taking twice the average time in queuing and
delivery. The minimum latency, on the other hand , is for a
message that is immediately processed in a batch, and con-
sists only ofMatching.

7.2 Policies to control latency

In some applications, it might be necessary to limit the
latency of all messages. This can be done by controlling the
batchsize, and thus, the time a message is queued. Using
the formulae from the previous Section, the latency can be
constrained toacceptable latency by choosing a batchsize
according to the following formula:

batchsize <
acceptable latency

(1
Arrival Rate + matching single

speedup)

Obviously, constraining the batchsize also limits the
throughput benefits that can be achieved by batching. Ta-
ble 5 shows the possible speedups when a certain latency is
tolerable. The setting from RQ-Z in Section 6 is used, and
as expected, the maximum possible throughput grows when
allowing more latency. For a latency of 10 ms, the speedup
is merely a factor of 1.1. At 1000 ms, the speedup is already
2.28, further growing to 9.2 at 10000ms.

7.3 Latency improvements for bursty traffic

So far, our discussion was focused on the adverse ef-
fects of batching on the latency of an information filter, es-
pecially when a system is dealing with a constant arrival
rate. In most real-life scenarios, however, traffic is anything
but constant. More typically, longer periods of relatively
low traffic alternate with bursts of messages that arrive at
much higher rates, causing the systems to be temporarily
overloaded. Examples of this are mobile phone systems be-
coming unavailable on New Years Eve as everybody calls,
web sites breaking down on the sudden interest of people on
the information they provide (think of disasters!), or mail
servers being hit by a spam attack.
Batching is particularly effective here. Traditionally, on a
traffic burst, the messages are being queued up until the
ressources to store them are exhausted. At this point the sys-
tem either breaks down or has to discard messages, neither
of which is a very desirable behavior. In any case, there is a

significant increase in latency since all the messages queued
up need to be handled first before a newly arrived message
can he handled. Often, this additional latency will persist
even after the end of the burst - until the queue has been
cleared. While it is often possible to lessen such effects by
significantly overprovisioning the ressources, this approach
is very costly. In contrast to that, adaptive batching is a

Burst Duration 10 100 1000 10000
unbatched avg 30.8 282.7 2802.8 28002.7

max 59.4 563.2 5603.4 56003.3
batched avg 29.7 196.3 985.4 2668

max 47 301.9 1592.3 4451.3

Table 6. Latencies for bursty traffic (in ms)

much more effective way: The system can accommodate
the normal traffic without batching. At a burst, the system
switches over to batched operation, thereby increasing its
throughput capabilities and ”leveling” the burst. As mes-
sages are queuing up already, batching does not cause any
additional latency, but reduces it by emptying the queues
much faster. As table 6 shows, those savings can be signif-
icant. We took RQ-Z workload from the first experiment in
Section 6 and computed the average and maximum laten-
cies for temporary bursts with a rate of 3000 msg/sec while
the system was able to handle about 450 msg/sec without
batching. The duration of the burst is varied between 10 ms
and 10000 ms. While there is not much benefit at a burst of
10 ms (only the maximum latency goes down by about 20
percent, performance benefits of batching increase sharply
with the duration of the burst. At a burst length of 10 sec-
onds, both the average and maximum latencies are more
then ten-times lower.

8 Related Work

Our work and the benefits it provides are based on the
significant work in the database community on information
filtering. This work includes index structures and merge
strategies for publish/subscribe systems, scalable trigger
processing, and continuous query processing. Examples
are LeSubscribe [14], Siena [7], XML filters such as YFil-
ter [13], and work on interval skip lists for predicate index-
ing [17]. Furthermore, techniques to optimize indexes for
moving object indexes (e.g., [18]) are related and can be ex-
ploited. The purpose of our work is also to show how these
systems can be extended in order to make use of batching.

Batched processing has been studied in various contexts
for database systems and in particular for operations on in-
dexes. A related idea to bundle probes to indexes has been
studied by Zhou and Ross [21]; the focus of that study,
however, is to optimize processor cache hit rates and that

work was carried out in a completely different context (tra-
ditional database index structures such as B-Trees, rather
than information filters). Batched update operations on in-
dexes has been studied in [12, 15], bulk loading of (multi-
dimensional) indexes in [9], and bulk join processing has
been studied in [10].

One of the key ideas of batched processing of messages
is to treat messages just like profiles and compute a join be-
tween messages and profiles and exploit all traditional join
processing techniques such as partitioning and dynamic in-
dexing. Such ideas have been exploited at several occasions
in the context of data dissemination systems. One promi-
nent example is the PSoup system [11].

9 Conclusion

This paper presented and studied a novel technique for
information filter systems: batching. On a high level of ab-
straction, the idea presented here is fairly straightforward.
Rather than processing each message individually a whole
set of messages is processed. The advantage is that the cost
for index probing can be reduced significantly and that ad-
ditional benefits can be achieved during the postfilter and
message delivery phases of an information filter. On the
negative side, postfiltering can become more expensive. In
order to exploit the benefits and limit the extra cost dur-
ing postfiltering, we proposedminibatching; minibatching
takes a potentially large number of messages and then forms
smaller groups of messages that are very similar. The per-
formance experiments show that this approach results in
significant throughput gains as compared to traditional, un-
batched processing, as carried out by state-of-the art infor-
mation filters. Furthermore, the performance experiments
demonstrate the stability of this approach towards different
profile workloads, indexing techniques, value distributions
of the messages, and tuning parameter settings.

There are several avenues for future work. First, we
would like to study batching for a larger class of pub/sub
techniques (e.g., YFilter). Furthermore, we plan to study
more sophisticated ways to group messages into mini-
batches; for instance, such techniques could be based on
feedback from the postfiltering step in order to adjust the
size and value ranges of the minibatches. Another point of
interest is the batching of update operations to the profiles;
such updates arise in context-sensitive filters if boundaries
of predicates (e.g., predicates on the location of a user) are
updated and these updates need to be propagated to the in-
dex. Finally, we plan to incorporate our techniques into ex-
isting publish & subscribe and message broker products.

Acknowledgements: We thank Nadine Schmidt for the
discussions on the concept of batching and her help when
implementing and benchmarking the methods.

References

[1] http://www.tibco.com .
[2] http://www.sap.de .
[3] http://www.microsoft.com/biztalk/ .
[4] http://www.bea.com .
[5] http://www.ipd.bth.se/ska/sim_home/

libghthash.html .
[6] S. Abiteboul. Querying Semi-Structured Data. InICDT,

1997.
[7] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chan-

dra. Matching Events in a Content-Based Subscription Sys-
tem. InSymposium on Principles of Distributed Computing,
pages 53–61, 1999.

[8] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R*-Tree: An Efficient and Robust Access Method for Points
and Rectangles. InSIGMOD, 1990.

[9] J. Bercken and B. Seeger. An Evaluation of Generic Bulk
Loading Techniques. InVLDB, 2001.

[10] J. Bercken, B. Seeger, and P. Widmayer. The bulk index join:
A generic approach to processing non-equijoins. InICDE,
1999.

[11] S. Chandresakaran and M. Franklin. Streaming Queries over
Streaming Data. InVLDB, 2002.

[12] R. Choubey, L. Chen, and E. Rundensteiner. GBI: A Gener-
alized R-Tree Bulk-Insertion Strategy. InSSD, 1999.

[13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fis-
cher. Path Sharing and Predicate Evaluation for High-
Performance XML Filtering.TODS, 2003.

[14] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe Systems. InSIGMOD, 2001.

[15] A. Gärtner, A. Kemper, D. Kossmann, and B. Zeller. Effi-
cient Bulk Deletes in Relational Databases. InICDE, 2001.

[16] A. Guttman. R-Trees: A Dynamic Index Structure for Spa-
tial Searching. InSIGMOD, 1984.

[17] E. Hanson and T. Johnson. Selection Predicate Indexing
for Active Databases Using Interval Skip Lists.Information
Systems, 21(3):269–298, 1996.

[18] A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Model-
ing and Querying Moving Objects. InICDE, 1997.

[19] M. Stonebraker. The Case for Partial Indexes.SIGMOD
Record, 18(4):4–11, 1989.

[20] http://valgrind.kde.org/ .
[21] J. Zhou and K. A. Ross. Buffering Accesses to Memory-

Resident Index Structures. InVLDB, 2003.

