
Extending XQuery With A Pattern Matching
Facility

Peter M. Fischer, Aayush Garg, and Kyumars Sheykh Esmaili

Systems Group
ETH Zurich

8092 Zurich, Switzerland
petfisch@inf.ethz.ch,garga@student.ethz.ch,kyumarss@inf.ethz.ch

Abstract. Considering the growing usage of XML for communication
and data representation, the need for more advanced analytical capabil-
ities on top of XQuery is emerging. In this regard, a pattern matching
facility can be considered as a natural extension to empower XQuery. In
this paper we first provide some use cases for XML pattern matching.
After showing that current XQuery falls short in meeting basic require-
ments, we propose an extension to XQuery which imposes no changes into
current model, while covering a wide range of important use cases. We
also implemented our proposal into the MXQuery prototype and show
through experiments that, compared to the existing pattern matching
means, our extension is not only more expressive, but also more efficient.

Keywords: XQuery, Pattern Matching

1 Introduction

There is a growing interest in the area of applications that deal with finding
patterns in data items. These applications include:

– Security applications to detect unusual behavior
– Financial applications to detect market trends
– RFID and Sensor data processing
– Complex document analysis and formatting

While expressing tree patterns is fairly natural in XPath (and XSLT for
more expressiveness), there is no comprehensive approach for sequence pattern
matching on XML that takes into account its properties, its data model(s), and
the query languages. As the FORSEQ window extension [4] shows, XQuery fits
nicely with sequence processing. The existing language features are, however,
not sufficient for expressive and effective pattern matching.

As a running example, we define the sequence S:

S = (B, A,B,C, A, B,B,B, B, C) (1)

A simple pattern which specifies the occurrence of three consecutive < B/ >
elements (written as B for brevity) would see possible instances (B, B, B) at the
positions (5, 6, 7), (6, 7, 8).

2 Extending XQuery With A Pattern Matching Facility

1.1 Example Use Case

MASTER [1] is a project which tries to solve the problem of compliance in
Service-Oriented Architecture (SOA) systems. An important part of this project
is SOA Monitoring. This is realized by observing the message flow between
services and then checking particular properties on this message sequence.

For example, upon invocation of operations of a browsing/shopping service,
the following events are captured from a service wrapper or message bus:

<event operation="Login" uid="511" time="10:00"/>

<event operation="Search" uid="101" time="10:01"/>

<event operation="Logout" uid="511" time="10:03"/>

The monitoring system is given a set of expected or not-expected patterns, which
it detects in this event sequences, (e.g. the pattern SearchNoBuy) and report
them. Since the messages are exchanged between services in XML format, rela-
tional pattern matching systems cannot be applied.

1.2 Requirements for a Pattern Matching Language

A language to describe patterns needs to cover several aspects:
Pattern Structure: Patterns can be represented in a number of ways. The
most common approaches are regular expressions, and temporal logic; we chose
regular expressions since they are more widely used. Regular expressions are
composed of a set of variables that uses quantification and grouping. Supposing
a regular expression is A∗B+ applied on S, the following pattern match instances
are generated: {B}, {A, B}, {A, B, B, B, B},{B, B, B, B}.
Variable Binding: In contrast to classical regular expressions, in which the
variable symbols directly correspond to the symbols in in the sequence, general
pattern matching requires more expressiveness: Let’s assume that we want to
detect a pattern in which there are several increasing values, followed by at least
one decreasing value. The pattern structure is A∗B+, where A is a sequence
representing increasing values (e.g. as a predicate comparing consecutive values),
and B accordingly, with a correlation to A.
Instance Relationship and Selection: In order to properly identify a pattern
instance, a user needs to specify 1) how far a pattern should extend if there are
fitting elements, and 2) where the next pattern matching instance should be
started in relation to the curent one. For example, the well known ’*’ quantifier
expresses zero or more matches. For a pattern A∗ and a sequence (A,A,A), always
returning (A,A,A) might not be the desired result. In certain scenarios, (A) and
(A,A) would also be valid results.

1.3 Paper Structure

The paper is structured as follows: Section 2 and Section 3 describe pattern
matching capabilites in the relational world and existing features of XQuery sup-
porting patterns, respectively. Section 4 describes our XQuery pattern matching
extension proposal. Section 5 describes our prototype implementation and a
summary of the evaluation. Then we conclude in Section 6.

Extending XQuery With A Pattern Matching Facility 3

2 Related Work in Relational and Streaming Databases

A lot of previous work has been done in the field of pattern matching. For this
work, the areas of relational database systems and data streams are most rele-
vant. While most of these focus on optimizations, there is a number of language-
oriented proposals. The ANSI 2007 proposal defines the MATCH RECOGNIZE
clause for SQL[3]: Patterns are defined as (restricted) regular expressions over
sequences of rows, with an extensive discussion on how to bind the variables to
columns, and how to relate match instances. SASE+[8] supports Kleene closure
over event streams, and provides a formal analysis of the expressibility of this
language. A particular emphasis has been given to event selection strategies, in
particular non-contiguous matches. Cayuga[5] presents a query language based
on Cayuga Algebra for naturally expressing complex event patterns. This query
language uses many SQL-like constructs.

Compared to these approaches, our language proposal does not re-invent the
wheel: We aim for similar pattern structure and match selection, so that imple-
mentation and optimization strategies can be utilized. A significant difference is
in the area of variable binding expressions, which are richer in the XML world.

3 Existing Pattern Matching Features In XQuery

3.1 String Matching

XPath and XQuery provide textual pattern matching based on regular expres-
sion matching, such fn:matches(string, pattern). The XQuery Fulltext fa-
cility also provides textual matching facilities, taking into account text or XML
structure. While in particular the pattern structure part of fn:matches is quite
rich, text functions are not really suitable for general pattern matching.

3.2 Tree Pattern Matching

The notion of pattern matching is often associated with tree pattern matching in
an XML environment. There is a tremendous amount of theoretical work (e.g [9])
in this area; from a practical point of view XPath expressions (for rigid tree
patterns) and XSLT (for unknown, complex structures) provide the necessary
facilities. A recent work [6] applies the new higher-order functions in XQuery 1.1
to achieve XSLT-like recursive matching. XPath or XSLT tree pattern matching
is by design limited to a single document; the expressiveness of pattern structure,
variable binding, and match selection is quite restricted.

3.3 Window Clause

The window clause of XQuery 1.1 gives the ability of selecting subsequences over
a possibly infinite stream. It added a new language construct for XQuery called
FORSEQ that integrates seamlessly into the FLWOR expression. A detailed

4 Extending XQuery With A Pattern Matching Facility

description of the FORSEQ clause can be found in [4], here we will describe its
basic features. Windows boundaries are determined using predicates, stated as
start and end expressions, which can refer to “previous”, “current”, or “next”
items at the current position as well, as the explicit position. Window instance
relationships can be specified as tumbling, sliding, and landmark

Pattern Structure Simple patterns like A+ can be expressed directly as win-
dows which open on the occurrence of an A element and close whenever the next
item is not an A element. More complex patterns need to be expressed differenly:
Pattern structure needs to be expressed as joins over windows for the individual
variables, with the window boundary positions as join criteria. Consider the fol-
lowing regular expression: A+B+C. A possible XQuery 1.1 query can be given
as:

forseq $w in $seq/stream/event sliding window
start curItem $ax, position $ap when $ax/person eq "A"
end nextItem $ay, position $aq when not($ay/person eq "A")
return
forseq $s in $seq/stream/event tumbling window

start curItem $bx, position $bp when $bx/person eq "B"
end nextItem $by, position $bq when not($by/person eq B")
where $bp eq ($aq + 1)
return
...

This query uses a FORSEQ to create a sequences of A+ variable bindings,
with their end positions expressed in $aq. Nested into this expression is another
FORSEQ expression to create a B+ sequence, which is joined on its start position
$bp. This approach can then be repeated for other variables. While it is possible
to express complex patterns this way, they are cumbersome to write and, as we
will see in the experiment section, difficult to optimize. Additional problems arise
when variables use the ”*” quantifier, since FORSEQ cannot create bindings to
empty sequences, thus necessitating a refactoring of the pattern. For details of
this refactoring and more examples, we refer to the technical report[7].

Variable Bindings While the predicate-based window boundaries of FORSEQ
are quite expressive, there is no support in the current XQuery model to close a
window based on its contents. For example, assume that a trader has a daily limit
of 50 million dollars. Expressing this specification using a tumbling window, the
windows close at the close of the day, and then an aggregation of the trades will
be performed. Clearly for this case, we will get the results only after the day has
closed, so execeeding the limit is easily possible. When using a landmark window,
it is opened for the change of the day and closed at every trade; then aggregation
is performed. Since landmark windows can almost never be discarded, the cost
for memory management and computations will be extremely high. In addition,
the underlying tumbling nature of the windows is no longer visible in the query.

Extending XQuery With A Pattern Matching Facility 5

4 Extending XQuery with a Pattern Matching Facility

4.1 Overview

Since a simple extension of XQuery is not really feasible, we propose to integrate
a PatternClause into the FLWORExpr, thus representing pattern instances (and
possibly also the parts out of which they were composed) as variables bound to
sequences, contributing to the ”‘tuple stream”’ as defined in XQuery 1.1.

FLWORExpr ::= InitialClause IntermediateClause* ReturnClause
InitialClause ::= ForClause|LetClause|WindowClause|PatternClause
PatternClause ::= "pattern" "$" VarName (WindowTypeClause)

(SelectionClause) "in" ExprSingle RegExpClause
"using" (PatternVarClause)+

Covering the requirements stated in Section 1.2, WindowTypeClause and
SelectionClause are introduced to cover Match Selection, RegExpClause for the
pattern structure, and PatternVarClausees to determine the variables used in
the RegExpClause. A pattern like A+B+C would be expressed follows:

pattern $p tumbling maximal in $seq $a $b $c using
$a as item()+ pcur $q1 when $q1 eq ‘‘A’’
$b as item()+ pcur $q2 when $q2 eq ‘‘B’’
$c as item() pcur $q3 when $q3 eq ‘‘C’’

The output on S can be written (in “tuple” notation) as:

($p = {A,B,C}, $a = {A}, $b = {B}, $c = {C})
($p = {A,B,B,B,B,C}, $a = {A}, $b = {B,B,B,B}, $c = {C})

4.2 Pattern Structure as Regular Expression

Similar to the relational approaches, we represent the structure as regular expres-
sions, where the alphabet is formed by the variables later defined in the Pattern-
VarClauses. Repetition of groups (aka nested repetitions, such as ((AB) ∗C)+)
has not gained much support in the relation world due to the possibly high
evaluation cost and the lack of use cases [10, 8, 5]. We therefore exclude nested
groups, which brings an additional benefit, as we can use normal XQuery vari-
ables as regular expression variables, simplifying the integration. In Sections 4.3
and 4.5, we show how to express nesting using the composability of XQuery and
the Pattern clause. The proposed grammar thus looks as follows:

RegExpClause ::= RegTerm | "(" RegExpClause ")" "or" "(" RegTerm ")"
RegTerm ::= RegPrimary | RegTerm RegPrimary

RegPrimary ::= VarRef | RegExpClause

Patterns are contiguous, i.e., there must be no gap in the bindings of the un-
derlying stream to pattern variables. A common case of such gaps are partitions;
these are naturally supported (see Section 4.5). For other cases, these gaps can
be simulated using dummy variables.

6 Extending XQuery With A Pattern Matching Facility

4.3 Pattern Variable Clauses

Since we use regular XQuery variables in the pattern structure, we define a
binding expression, in which a predicate is evaluated over a candidate sequence:

PatternVarClause ::= "$"VarName SequenceType (PatternVars)? "when"
ExprSingle

SequenceType contains an XQuery type, which acts as a type selector, while
its occurrence indicator becomes the quantifier. As an example, when declaring
a variable $a as part of a+, containing at least one <a/> element, we can write:

$a as element(a)+ when fn:true()

We propose five variables to express predicates over the (candidate) sequence:

– before Represents the element directly before the sequence
– after Represents the element directly after the sequence
– all Denotes all of the elements of the sequence so far
– pprev Running variable representing the previous item in the sequence
– pcur Running variable representing the current item in the sequence

pprev pcur
pprev pcur

afterbefore all

…

all

Fig. 1. Pattern Variables

The set of variables form a superset of the variables in the window clause in
[4], since all now provides access to the contents of the sequence observed after
before, not just the boundary elements. pprev and pcur are essentially syntactic
sugar that simplify writing monotonic relationships over the sequence. Instead of
using these five variables, we also provide the possibility to expose an unrestricted
sequence nested to a nested Window or Pattern Expression, on which the first
produced sequence is bound to the variable defined by nested.

To summarize the semantics: items become part of the pattern variable as
long as the type matches, the occurrence indicator allows adding more elements,
and computing the effective booleans value (EBV) of ExprSingle gives true.

Table 1 gives an example of the variable bindings for the pattern A+, where A
is an increasing value in the sequence, applied to the sequence {10, 15, 20, 25, 30, 5}.
The pattern variable clause can be written as:

$p as xs:integer+ pprev $b, pcur $c when $b lt $c

The result includes 15 to 30, since comparing () and {10} yields false.

Extending XQuery With A Pattern Matching Facility 7

before($a) pprev($b) pcur($c) all($u) after($d) ExprSingle

() () 10 (10) 15 false

10 10 15 (15) 20 true

10 15 20 (15, 20) 25 true

10 20 25 (15, 20, 25) 30 true

10 25 30 (15, 20, 25, 30) 5 true

10 30 5 (15, 20, 25, 30, 5) () false

Table 1. Evaluation Stages and Variable Bindings for A+, increasing values

4.4 Match Selection

The relationship of the individual pattern instances and the selection of the
variable parts play an important role in the semantics of the pattern clause.
Table 2 gives an example of the interaction of the individual modifiers, which
we will new explain now step by step.

Selection Policy: The SelectionClause provides three options, which determine
how much of a sequence should be matched for greedy operators such as * or +.
This is similar to MATCH RECOGNIZE; FORSEQ does not have such issues,
since fulfilling a predicate is precise.

SelectionClause ::= AllMatch | Maximal| Incremental

– AllMatch gives the all possible variants of patterns in the sequence
– Maximal mode finds only the longest matching pattern
– Incremental mode increases the match candidates incrementally by a single

item (starting from the empty sequence) and applies the Maximal match to
every such partition. The union of all such matches then forms the output

Restart Policy The WindowTypeClause specifies where to start a new pattern:

WindowTypeClause ::= Tumbling| Sliding

– Tumbling specifies that the next pattern will be searched after the last ele-
ment of the previous pattern, ensuring non-overlapping patterns.

– Sliding allows overlapping patterns. It matches the next pattern past the
first element of the previous pattern which is not part of an existing result.

The semantics of both Tumbling and Sliding clauses correspond closely
to both the clauses of the same name in the Window Extension [4], besides
suppressing already contained pattern instances, as well as the SKIP PAST
LAST ROW and SKIP TO NEXT ROW clauses in MATCH RECOGNIZE [3].

Order of Matches Results are produced by the order of the first element of the
pattern, with shorter pattern instances (generated by INCREMENTAL or ALLMATCH)
before longer matches. This is again similar to what MATCH RECOGNIZE and
the Window Clause in XQuery 1.1 do. If ordering by the end of a pattern instance
is needed, this can be achieved by using an order by clause.

8 Extending XQuery With A Pattern Matching Facility

Maximal Incremental AllMatch

Tumbling
{a1,a2,b1,b2}
{a3,b3}

{a1} {a1,a2} {a1,a2,b1}
{a1,a2,b1,b2}
{a3} {a3,b3}

{a1} {a1,a2} {a1,a2,b1}
{a1,a2,b1,b2}
{a2} {a2,b1} {a2,b1,b2}
{b1} {b1,b2} {b1,b2,a3}
{b2} {b2,a3}
{a3} {a3,b3}
{b3}

Sliding
{a1,a2,b1,b2}
{b1,b2,a3}
{a3,b3}

{a1} {a1,a2} {a1,a2,b1}
{a1,a2,b1,b2}
{b1,b2,a3}
{a3,b3}

Table 2. Selection for Pattern: (A*B*) or (B*A*); Input: a1a2b1b2a3b3

4.5 Wrapping Up

We have compiled a list of use cases that shows the expressiveness and usefulness
of our proposed pattern extension [7]. Given the space constraints, we are only
showing a few interesting aspects here:

Partitioning: A typical use case is the detection of patterns on partitions of the
original sequence, e.g., the shopping habits of an individual user in the general
clickstream of a web store. Given the integration of the pattern clause into the
FLWOR expression, this can be expressed very naturally:

for $a in $events
group by $a/user
pattern $p ... in $a
...
return <p> $p </p>

Group by splits the variable binding/tuple stream into n substreams according
to the values generated by $a/user, assigning all relevant variables, in this case
$a. The nested pattern clauses then work on each of these partitions individually.
It is also possible to apply the partitioning after detecting a pattern.

Repeating Groups and Nested Variables: As stated above, we do not allow pat-
terns like (A+B∗)∗ to be expressed directly. Given the composable nature of
XQuery, we can express this by using a nested pattern clause as input for the
full pattern clauses (similar to [5, 8]) or by variables using the nested keyword:

pattern $p in $events $v using
$v item ()* nested $n when pattern $pn in $n ($a $b) using $a

element(a)+ when fn:true() $b element (b) when
fn:true() return $pn[1]

return <p> $p </p>

The sequence of the values considered for $v (named $n) is consumed by the
nested pattern expression, yielding matches, which are then bound to to $v.

Extending XQuery With A Pattern Matching Facility 9

5 Implementation and Evaluation

We extended the Micro XQuery Engine (MXQuery) [2] and integrated an initial
implementation of our proposed pattern matching extension into it. MXQuery
lends itself well for the pattern extension, since it pioneered the XQuery Win-
dow extension [4] and the extension of XDM to infinite data [4]. Its architecture
follows a classic parser/optimizer/runtime approach: It uses an iterator-based
runtime, and a token-based representation of XDM. Given the existing MX-
Query infrastructure, the initial implementation of the pattern matching exten-
sion could be done using roughly 1500 LOC. The bulk of the extension went
to the runtime, in which the logic of a pattern structure matching, variable
binding, and match selection were encapsulated into an iterator. This iterator
follows the same implementation as the FOR, LET, and FORSEQ iterators in
terms of variable binding “mechanics”. The predicate evaluation for pattern vari-
able clauses is then mapped on existing iterators, using the variables bound by
the pattern iterator. Many optimizations are possible in the predicate evalua-
tion, but they are not implemented yet; in particular, incremental evaluation
on predicates over all would be promising. The RegExpClause, and the corre-
sponding PatternVarClauses can be translated in a fairly straightforward way
into a Non-deterministic Finite State Machine (NFA), similar to the approaches
taken in relational pattern matching [5, 8]. It should be noted that expressing the
pattern clause as a single iterator encapsulating a NFA is just one possibility to
implement it. Other approaches might express the pattern as a combination of
relational or XML iterators, similar to recent approaches in event processing [10].

In order to validate the quality and usefulness of our implementation, we car-
ried out a number of performance experiments. The main goals were to compare
the cost relative to the FORSEQ-based translations of patterns, and to estab-
lish an understanding of the impact of particular parameters on the pattern
matching implementations. Due to space restrictions, we are only summarizing
the results of two experiments here, more results can be found in the technical
report [7]. All experiments were run on an Intel Xeon 3050, 2.13 GHz with 8GB
RAM, running Windows Vista, 64 bit version and the latest Sun JVM.

We evaluated the pattern A+B+C, which can be translated to FORSEQ
fairly directly using joins, as shown in Section 3. Table 3 shows the timing result
of a (sliding, maximal) pattern matching clause and a sliding window in
the FORSEQ clause on a flat sequence of elements A,B and C. The pattern
extension is significantly more efficient than the FORSEQ translation, creating
only a linear overhead over the parsing and FLWOR execution cost, since multi-
sequence joins can be avoided. In contrast, the cost of FORSEQ increases in
a O(n2) fashion because of the two-way join for the B and C elements. We
performed similar experiments for different patterns expressed using FORSEQ,
and the pattern clause; they showed the same trends and an even greater benefit
for more complex patterns. For trivial patterns (like A+ for a simple window
condition), the costs for FORSEQ and the pattern clause were comparable, as
nearly the same work needed to be performed.

10 Extending XQuery With A Pattern Matching Facility

Sequence Length (items) 50 100 500 1000 5000 10000

Parse+FLWOR 0.006 0.01 0.02 0.027 0.092 0.172

Pattern 0.035 0.031 0.177 0.312 1.191 2.312

FORSEQ 0.14 0.051 1.429 5.906 113.671 438.73

Table 3. Processing time (s): Pattern A+B+C sliding maximal

We also performed a brief sensitivity analysis for the individual pattern struc-
ture and match selection parameters. Since these are very similar to the related
relational approaches, we saw similar tradeoffs there. For example, the differ-
ent combinations of SelectionClause and WindowClause on the same pattern
structure/variables behaved as expected: The cost of running each variant had
an almost linear relationship to the size of the output sets produced by each of
the variants, showing that even our straightforward implementation provided a
good scaleup to more complex requirements.

6 Conclusions

In this paper, we proposed our pattern matching extension for XQuery that
is seamlessly integrated with existing FLWOR. We found that pattern match-
ing is a needed and useful feature in XQuery and, since the current support
for it is not sufficient, a separate pattern matching clause is needed. The pro-
posal provides rich match selection and variable binding semantics, while bal-
ancing pattern structure expressiveness and cost in a similar way as relational
approaches. Implementing this proposal on an open-source XQuery engine, and
relevant benchmarking results prove that our extension is practical.

References

1. MASTER: Managing Assurance, Security, and Trust in sERvices.
http://www.master-fp7.eu/.

2. MXQuery. http://mxquery.org/.
3. Anonymous. Pattern matching in sequences of rows. Technical report, 2007.
4. I. Botan et al. Extending XQuery with Window Functions. In VLDB, 2007.
5. L. Brenna et al. Cayuga: a High-Performance Event Processing Engine. In SIG-

MOD, 2007.
6. W. Candillon, M. Brantner, and D. Knochenwefel. XQuery Design Patterns. In

Balisage, 2010.
7. A. Garg. Pattern Matching In XQuey. In Master’s Thesis, ETH Zurich, 2010.
8. D. Gyllstrom et al. SASE: Complex Event Processing over Streams. In CIDR,

2007.
9. J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended XML Tree Pattern Matching:

Theories and Algorithms. In TKDE, 2010.
10. Y. Mei and S. Madden. ZStream: a Cost-Based Query Processor for Adaptively

Detecting Composite Events. In SIGMOD, 2009.

