
XQBench – A XQuery Benchmarking
Service

Peter M. Fischer
ETH Zurich

<peter.fischer@inf.ethz.ch>

Abstract

Benchmarks have been a driving factor for acceptance and progress in the re-
lational database area, as they gave researchers and engineers directions on
the issues to tackle, and marketers the leverage to sell progress on these issues
to customers. For more than two decades, standard benchmarks coveringmost
application area of relational database have existed, with the most prominent
example being the TPC suite.

XQuery has not (yet) reached this level of maturity. Benchmarks do exist
for particular application scenarios (XMark, TPoX), microbenchmarking
(MeMBer, TheMichigan Benchmark), butmost of the results shown by vendors
and academics alike are specific to customers, implementations or usage
scenarios, with little attempts to generalize them and compare over a wider
range of implementations. In the first half of this decade, there was a short
period in which academia showed interest in XQuery benchmarks, leading to
series of proposals (XMark, XMach-1, XOO7, XBench). This interest has
waned rather quickly, and industry has not really picked up the challenge
(TPoX being the sole exception).

Instead of proposing another benchmark workload, we are working to
provide a public service to run XQuery benchmarking workloads on a well-
defined environment, including an installation of the most commonly used
(open-source) XQuery implementation on a stable hardware and OS setting.
By doing so, two main goals can be achieved: (1) Workloads can easily be
compared on multiple implementations, leading to a broader coverage and
applicability (2) A comprehensive collection of workloads can be established,
highlighting performance aspects in particular areas and possibly leading to
a general benchmark suite.

Currently, nearly all of the features of the benchmarking service are imple-
mented. The service undergoes internal testing to ensure stability and correct-
ness, and also some more work is needed on documentation. We expect the
service to become publicly available around the time of the XML Prague
workshop. Preliminary result have been established running XMark on Saxon
B/HE, MonetDB, eXist, BerkeleyDB XML, Sedna, xQuilla and Zorba; we

341

also plan to run TPoX, MeMBer and some custom benchmarks until the
general release.

The benchmarking service will be available on http://xqbench.org

Keywords: XQuery, Benchmark, Service

1. Benchmarking Service Requirements
The XQuery benchmarking service requires a system on which users can tests a set
of queries and documents against a set of XQuery engines. Such as system needs
to provide means for managing the queries and documents, specifying experiments,
executing them reliably and reproducably and finally presenting and evaluating
the results.

2. Data and Metadata Model

2.1. Overall Model

Engine

Dataset

QueryDocument

Experimentexecute

contains contains

belongs tobelongs to

N M

1 1

N N

N N

M M

Outcome

produces

N

1

Figure 1. Overall Data Model of the Benchmarking Service

342

XQBench – A XQuery Benchmarking Service

http://xqbench.org

In order to maintain the data sets, specify experiments and evaluate the experiment
results, extensive data and metadata is collected. Figure 1 shows the relationships
in the data model behind the benchmarking service, based on the data model of
XCheck[11]. An experiment contains documents and queries, which are executed
on the documents. Documents and Queries belong to a Dataset specifation, (e.g.
XMark), so that queries are only executed on matching documents. Experiments
are executed on a set of XQuery engines, for every execution an outcome is produced.

In the following, the individual entities are explained on examples, the accom-
panying schemas are available on the benchmarking service.

2.2. Documents and Data Sets

Example 1. Sample document metadata

<documentEntries>
<document>
<docId>XMark_10.0</docId>
<name>XMark 0.1 (1MB)</name>
<dataset>XMark</dataset>
<description>XMark , Scale Factor 0.1</description>
<created>2008-06-23</created>
<author>XMark</author>
<generatorInfo>xmlgen.Linux -f 0.1 -o XMark_0.1.xml</generatorInfo>
<file>XMark_0.1.xml</file>
<size>10.0MB</size>
</document>
<document>
...
</documentEntries>

For a document, an identifier, a name and a description are saved. In addition, each
document carries its dataset identifier, the date when the document was created
and its author, the document generator information, the XML file name and the file
size.

2.3. Queries

Example 2. Sample query metadata

<query>
<name>XMark query 1</name>
<id>XMark1</id>
<descr>Return the name of the person with ID `person0'</descr>
<dataset>XMark</dataset>

343

XQBench – A XQuery Benchmarking Service

<created>2008-06-23</created>
<author>XMark</author>
<language>XQuery 1.0</language>
<categories>

<cat>xpath</cat>
<cat>flwor</cat>
<cat>join</cat>

</categories>
<query file='query1.xq'>

<![CDATA[
let $auction := doc() return
for $b in $auction/site/people/person[@id = "person0"]
return $b/name/text()
]]>
</query>
<expectedresult document='XMark_0.01'>
query1.xdm

</expectedresult>
</query>

For queries, again a name, an identifier and a description are stored, as well as the
a creation date and the author. To further describe the properties of the query, the
language requirements (XQuery 1.0) and the categorization in terms of the operations
can be provided. Finally, the query text (both inline and as file reference) and a ex-
pected result (based on a given document) are to be provided.

2.4. Engines

Example 3. Sample engine metadata

<engines>
<engine id="Zorba" type="xquery">

<name>Zorba</name>
<version>0.9.8</version>
<language>XQuery 1.0</language>
<language>XQuery 1.1</language>
<language>XQuery Update 1.0</language>
<language>XQuery Scripting 1.0</language>
<homepage>http://www.zorba-xquery.com</homepage>
<description>Zorba is a general purpose XQuery
processor implementing in C++
the W3C family of specifications.</description>
<adapter>bin/CLAdapter.pl -e zorba-0.9.8.xml</adapter>
<path>/local/zorba-0.9.8/build/bin</path>
<cpu_time>n</cpu_time>

</engine>

344

XQBench – A XQuery Benchmarking Service

...
</engines>

For every XQuery implementation, there is an entry (with a unique identifier) that
provides the name, the version, the supported languages, a home page and a de-
scription. To facilitate the actual execution of this "engine", information about the
wrapper with the actual invocation information (called "adapter", see Example 7),
and the install path in the file system are provided.

2.5. Experiments

Example 4. Sample Experiment Metadata

<experiment>
<name>2010-01-28T12_45_59</name>
<description>XCheck 2010-01-28T12_45_59</description>
<engines>
<engine>Zorba</engine><engine>XQuilla</engine></engines>
<documents>

<document id="XMark_10.0">
<description>XMark , Scale Factor 0.1</description>
<file>XMark0_1.xml</file>

</document>
</documents>
<queries>

<query id="q1">
<description>Return the name of the

person with ID `person0'</description>
<filequery engine="all">

XMark/query1.xq
</filequery>

</query>
</queries>
<groups>
<group id="g0"><enginelist refs="all"/>
<documentlist refs="XMark_10.0"/>
<querylist refs="q1"/></group>

</groups>
<customName>PaperExample</customName>
</experiment>

An experiment contains the internal name, a description, the list of engines (identified
by the engine, see Section 2.4), the list of documents (identified by the docId, see
Section 2.2) and the list of queries (identified by the query id, see Section 2.3). In
addition to these identifers, explicit descriptions and file paths are given, in order

345

XQBench – A XQuery Benchmarking Service

to make the evaluation more robust and transparent. Since slight variations in the
syntax or semantics supported by various engines might require different versions
of a query, alternative versions can be given, annotated with the engines on which
they should be used. The total set of combinations of datasets, queries and engines
can partitioned into groups, which are executed separately. This is useful for
graphical evaluations (as to reduce the number of dimensions) and separating
workloads containing different datasets.

2.6. Experiment Results

Example 5. Sample experiment result

<outcomes>
<engine id="Zorba">
<document id="XMark_10.0" size="11669705">
<query id="q1">
<result size="17171"></result>
<doc_processing_time sd="0.000">0.000</doc_processing_time>
<query_compile_time sd="0.001">0.015</query_compile_time>
<query_exec_time sd="0.283">36.109</query_exec_time>
<total_time sd="0.280">36.503</total_time>

</query>
</document>

</engine>
<engine id="XQilla">
<document id="XMark_10.0" size="11669705">
<query id="q1">
<result size="17607"></result>
<total_time sd="0.055">16.503</total_time>

</query>
</document>

</engine>
<info>
<start>Thu Jan 28 12:46:44 2010</start>
<finish>Thu Jan 28 13:20:32 2010</finish>
<duration>2028</duration>
<iterations>3</iterations>
<cpu>AMD Opteron(tm) Processor 248</cpu>
<ram>8240816 kB</ram>
<system>Linux 2.6.18</system>
<file_bench>/projects/xqbench/XCheck-0.2.0/experiments/

2010-01-28T12_45_59/experiment.xml</file_bench>
<save_results>false</save_results>

</info>
</outcomes>

346

XQBench – A XQuery Benchmarking Service

Each execution of an experiments generates an outcome, either by successfully
completing or by an unplanned termination. On success, the captured information
is expressed as XML, HTML and a series of graphical plots. The XML file contains
the complete information in a low-level, detailed form, whereas the other formats
build on it and show a more human-readable and easy to understand presentation.

Given the execution strategy of XCheck, the results are grouped by engine, and
then by document, each identified in the same way as in the experiment description.
Document sizes, result sizes and total execution time will always be recorded, more
fine-grained information like document loading time, query compilation time or
query execution time only if the engine exposed it. In the example above, these
times are available for Zorba, but not for XQuilla.

In addition to the measured outcomes, additional information on the execution
circumstances are recorded, such as start and time, the number of iterations over
which the results have been averaged, CPU, memory and operating system inform-
ation and the file path of the experiment.

3. Benchmark Service Architecture

3.1. Overall Architecture
Given the long-running nature of many benchmarks, scalability is an import concern
for the benchmarking service. As a result, the benchmarking service is split into a
management frontend, repositories for both workloads and experiment results and
a collection of backend nodes that perform the actual execution of the experiments.
Figure 2 shows this architecture and the interactions of the components. The repos-
itories and the frontend are fairly tightly coupled, whereas there is a more loose
coupling among the backend nodes and among the backend and the rest of the
system:
• Each node contains a (partial) replica of the XML documents and the queries

needed for the experiments. This eliminites access delay and contention when
accessing the main repository, thus making the experiments more predictable.
In addition, changes in the repository (such new documents or modified queries)
can be carried out from the frontend immediately. Before a new experiment is
running on a backend node, synchronization will to reflect the updates on the
repository.

• On submission, experiments are queued until a suitable execution backend be-
comes available. There are several reasons for that; (1) Since measuring the exe-
cution time should be as precise as possible, all competing accesses on a backend
should be blocked until the currently running experiment ends, either by com-
pletion or timeout. (2) If failures like machine crashes occur, an experiment can
easily be restarted, as all the relevant information is in the queue.

347

XQBench – A XQuery Benchmarking Service

• On completion of an experiment (whether successful or not), the results are
propagated to the repositoy of results. As a consequence, backend nodes can be
removed without losing the experiments run on them. Search operations on the
results will also not affect the backend

Before describing each of the components in more detail, the role of monitoring and
notification should be clarified: To provide more control and transparency over the
execution state of experiments, system performance parameters and service avail-
ability are monitored: collectd [9] records performance parameters such CPU or
RAM usage, while Nagios [10] is used to check node and process activity.

Figure 2. Benchmarking Service Architecture

3.2. Web-Based Frontend
The benchmarking service provides a web frontend to give users a convenient way
of interaction. It provides features to
• manage user registrations and permissions
• upload and manage datasets and queries
• submit experiments
• show, search and evaluate the outcomes

348

XQBench – A XQuery Benchmarking Service

A more detailed overview on the interaction and usage is presented in Section 4.
Technically, the frontend is realized as a JSP/Servlet invoking an XQuery engine
(MXQuery) for the data management and UI rendering. Authentication and user
managment are handled by the JSP/Servlet container, storing the account data and
user roles in a relational database.

3.3. Data and Results Repository
Since all data, metadata and result have an XML format, they can be stored as such.
Queries and expected results may not be in XML format, but have at least a textual
representation. To provide easy storage scalability, backup and replication, all data
items are stored in the file system, using a folder hierarchy. All modifications,
searches and transformations are performed using the file-based XQuery operations
of MXQuery; replication and result consolidation using rsync and a set of shell
scripts. In the long run, it might be suitable to load metadata as well as experiment
and result data into a native XML database, as to benefit from indexing for faster
search.

3.4. Workload Distribution and Monitoring
For a small set of backend execution nodes, a simple dispatching approach has been
chosen: All pending experiments are written into a shared filesystem. Each backend
executor checks these entries, and picks the first experiment that has not been picked
up by another node by placing a locking. After some waiting period (as to prevent
other node to also put a lock there), it will actually start the execution.

Monitoring utilizes the existing host monitoring infrastructure already in place
at ETH. On the backend execution nodes and also the the web frontend node, data
collection and status checking processes are run, which deliver their information
into the monitoring and notification backends.

3.5. XCheck Experiment Executor
The benchmarking service builds on XCheck [11] as execution backend, which
provides the functionality of running a set of queries on multiple implementations,
collecting the results and providing graphical plots. XCheck is an open-source Perl
script collection developed at the University of Amsterdam. It takes an experiment
file as input, and executes the workloads as follows

Example 6. XCheck execution strategy

for $engine in ENGINES
for $doc in DOCUMENT

for $query in QUERIES

349

XQBench – A XQuery Benchmarking Service

let $res := (for numrepetitions
execute($engine,$doc,$query))

return average-values(fn:subsequence($res,2))

The averaged values and execution information are then put into an XML files,
rendered into HTML with some simpler graphs and also into some more complex,
standalone graphs.

By repeating the execution, and leaving out the first run, the effect of a "cold"
system is minimized, and more reliable results are provided. In addition to aver-
aging, XCheck provides a number of features to make experiment execution more
stable, including timeouts to stop "runaway" experiments. For an XQuery engine
to be executed from XCheck it requires a wrapper, called "adapter" that indicates
how to execute the engine, how to interpret the results, etc.

Example 7. Example XCheck Adapter for Zorba

<adapter>
<engine id="Zorba">
<command>
<executable><![CDATA[zorba -o #result -t #query >& #times]]>
</executable>
<file_query>y</file_query>
<fullpath_doc>y</fullpath_doc>

</command>
<times>
<factor_time>0.001</factor_time>
<time id="t1">
<line>Compilation time: (\d+) milliseconds</line>

</time>
<time id="t2">
<line/>

</time>
<time id="t3">
<line>Execution time: (\d+) milliseconds</line>

</time>
<doc_processing_time>0</doc_processing_time>
<query_compile_time>#t1</query_compile_time>
<query_exec_time>#t3</query_exec_time>

</times>
<error>Error on|Fatal error</error>

</engine>
</adapter>

Adapters are again XML files, describing the command line with the parameters,
possible setup and teardown operations, pattern matching and scaling factors for

350

XQBench – A XQuery Benchmarking Service

different times, and patterns to detect errors in the output. XCheck will call the
command line tool of the XQuery implementation according to the parameters
given in the adapter, redirect the output, and parse relevant time and error inform-
ation.

4. Workflow and Usage Guide

4.1. Public and Private Operations
Datasets and queries for common benchmarks are preinstalled, and benchmark
"experiment" results on them are made publicly available. Users can upload their
own datasets and queries, run experiments on both their own datasets and queries
as well the publicly available ones. By default the data sets, queries and results
contributed by users are private, but they can easily be made public, thus becoming
usable and searchable by everybody. By making this distinction, it allows users to
perform the experiments without disclosing them to other users or the general
public; obviously they need to disclose their data and queries to the benchmarking
service. From a benchmarking service point of view, knowing the users simplifies
the operations, since every uploaded data and query can be traced back to an
owner.

4.2. Experiment Creation and Submission
As a first step to test XQuery engines for a set of queries and documents, the user
needs to create an experiment. The GUI provides a choice of XQuery engines,
datasets with documents and queries. For all of these, the metadata is directly
available; queries and document can also be completely downloaded. The user can
choose documents, queries and engines, and provide a name for the experiment.
In addition, he/she can specify at which stages of the experiment execution notific-
ations should be sent:
• On Submission
• On Execution Start
• On Execution Completion
A registered user can upload his/her own data sets and queries, non-registered
users are restricted to only choose the publicly available ones. After the user submits
his/her workload, an experiment data set according to Section 2.4 is created, with
a timestamp-based identifier in addition to the user-defined name. If the experiment
contains multiple datasets (e.g. XMark and TPoX), execution groups for each dataset
are created, so that XMark queries are only run on XMark documents, etc.

Since the execution of an experiment is the cross-product of the number of en-
gines, number of documents, number of queries and number of repetitions, a single

351

XQBench – A XQuery Benchmarking Service

experiment could easily run for weeks or months, if specified too broadly. In order
not block the execution backend nodes for too long, the experiment is checked for
its maximum runtime, based on the cross-product mentioned before and the timeout
specified in XCheck for a single query execution. If this maximum runtime exceeds
a threshold, the experiment is rejected. This threshold is set higher for registered
users, as to provide more freedom for them, whereas "public" experiments should
have lower priority. In addition to this limit on a single experiment, there is also a
limit on the number of outstanding experiments for each registered users or for all
non-registered - again to prevent overloading the service.

4.3. Result Presentation and Search
The execuction of an experiment in XCheck captures the run times of the individual
engines (split into document loading, query compilation and query execution, where
available) as well as result sizes. These results represented as HTML, XML and in
a set of graphs. This result is transferred into the result repository, from which a
user can access or view the experiment results. A notification is sent to the user at
the end of the experiment, providing a direct link to these results. In addition, a
user can view all his/her experiment results, and also can view the public experi-
ments. The GUI lists all experiment and also provides a filter option on this list
along with a general XQuery support.
• List of Experiments, completed and outstanding: The GUI lists all the experiments

that have been submitted by the user in the past. Hence, an experiment is added
to the list of all experiments, after its submission by the user. However, experi-
ment results are only available once the experiment is completely executed and
the results have been transferred to the repository.

• The list of all experiments can be filtered by expressing simple constraints using
the GUI, which are treated as a conjunction. This selection is based on the user
selection of XQuery engines, documents and queries, similar to the way how an
experiment is built. If, for example, a user selects the Zorba and XQilla engines,
the XMark 10MB document and the XMark 1 query, all those experiments would
be listed that contain the Zorba and XQilla engines, the XMark 10MB document
and the XMark 1 query. Additional engines, documents and queries are possible,
but the listed ones need to be present.

• General query over the experiments and results: Since the simple filter above is
not sufficient for more complex evaluations, the benchmarking service provides
the possibility to search the experiment descriptions and results using XQuery.
An example for such a complex evaluation would be searching for all queries
in which Zorba beats XQuilla on one document, but loses on another. Since the
experiment description and the results are both in XML format, the GUI provides
a method to express full XQuery statements over the collections of experiments

352

XQBench – A XQuery Benchmarking Service

and outcomes (limited to the user's and the public ones). A join between descrip-
tions and outcomes is already provided, so that the query writer can focus on
the actually relevant conditions. The results is provided as a direct XML down-
load, which can be further evaluated locally.

4.4. Managing Documents and Queries
The Benchmarking service provides a number of preloaded public datasets and
queries, among them XMark and TPoX. However, the more interesting use case is
to add custom documents and queries, as to test them over a variety of implement-
ation under controlled circumstances. Several different actions may need to be
performed:
• Adding schemas for new XML datasets: For every document uploaded onto the

benchmarking service, it is required to provide a data set, which is expressed
as an identifier and a schema. The schema helps in checking the uploading XML
document conformance with the schema, and also it prevents query belonging
to one schema to run on documents having different structure.

• Adding a new document: To add a new document to the benchmarking service,
the user needs to upload the document from the GUI, along with providing the
details about the XML document, like schema (or dataset), name, description,
etc. Only after validation it will be added to the list of documents that can be
used for benchmarking. Due to the limitations of current browsers, files bigger
than 2GB cannot be reliably uploaded. In such cases, manual administrator in-
tervention is needed. For the long run, it is planned to include a document gen-
eration service, e.g. based on ToXGene[8], in which just the document generator
input is uploaded.

• Adding new queries: When adding a new query to the benchmarking service,
user need to provide a data set to which this query belongs, metadata information
like the language features the query requires (update, schema), metadata on the
operations used (path steps, joins), expected results, and finally, the actual query.

4.5. Providing Reproducability Information
An important factor in benchmarking is traceability and reproducibility. Several
steps are taken to ensure them in XQBench: (1) the installation and configuration
logs for all XQuery implementations on XQBench can be downloaded. (2) "Adapter"
files to integrate the implementations into XCheck are linked from the implement-
ation descriptions. (3) Data set and queries for particular experiments can be
downloaded directly from the results; in the same way error messages. (4) Users
are notified on the execution and completion of their benchmark experiment, and
can follow the benchmark system load behavior, when required.

353

XQBench – A XQuery Benchmarking Service

5. Preliminary Results and Status
Currently, nearly all of the features of the benchmarking service are implemented.
The service undergoes internal testing to ensure stability and correctness, and also
some more work is needed on documentation. We expect the service to become
publicly available around the time of the XML Prague workshop.

Preliminary result have been established running XMark on Saxon B, MonetDB,
eXist, BerkeleyDB XML, Sedna, xQuilla and Zorba. Several commercial XML database
have also been tested, but since the licensing terms disallow publishing any results
without permissions, we are currently not making these implementations available.

We also plan to run TPoX, MeMBer and some custom benchmarks until the
general release.

6. Conclusion and Future Work
XQBench provides a general XQuery benchmarking service, allowing to execute
standard and custom workloads over a well-defined set of XQuery implementations
on controlled hardware. The results can be searched and downloaded as needed.
The goal is to make XQuery benchmarking a much easier undetaking, thereby en-
abling vendors and users alike to understanding performance tradeoffs and advance
the field.

Future work will focus on integrating more XQuery engines, broadening the
base of benchmarks, and enciting users to contribute their own workloads. An im-
portant conceptual issue is to address the limits of XCheck, as it does not really deal
will with the different interaction models of different XQuery implementations: the
repeated invocation of a command line tool does not really cater for virtual machine
startup cost or just-in-time compilation benefits, neglecting the benefits of repetition
to such cases. Similarly, preloading or not preloading XML data into database-style
implementations make give a huge performance difference, and needs to be ex-
pressed properly when running measurements.

Bibliography
[1] Afanasiev L., Manolescu I., and Michiels P. MemBeR: A Micro-benchmark

Repository for XQuery Proceedings of the Third International XML Database
Symposium, XSym 2005, Trondheim, Norway, August 28-29, 2005

[2] Böhme T. and Rahm E. XMach-1: a benchmark for XML data management In
Proceedings of the German Database Conference BTW2001. Springer, Berlin,
2001, pp. 264–273

[3] Bressan S., Lee M, Li Y., Lacroix Z., and Nambiar U. The XOO7 Benchmark
Proceedings of the VLDB 2002 Workshop EEXTT and CAiSE 2002 Workshop

354

XQBench – A XQuery Benchmarking Service

DTWeb on Efficiency and Effectiveness of XML Tools and Techniques and Data
Integration over the Web-Revised Papers

[4] Nicola M., Kogan I., and Schiefer B. An XML transaction processing benchmark
In Proceedings of the ACM SIGMOD International Conference on Management
of Data. ACM, New York, NY, USA, 2007, pp. 937–948

[5] Runapongsa K., Patel J.M., Jagadish H.V., Chen Y., and Al-Khalifa S. The Michigan
benchmark: towards XML query performance diagnostics Inf. Syst., 31(2):73–97
(2006)

[6] Schmidt A., Waas F., Kersten M.L., Carey M.J., Manolescu I.,Busse R.: XMark: a
benchmark for XML data management In Proceedings of the Very Large Database
Conference: 974–985 (2002)

[7] Yao B.B., Özsu M.T., and Khandelwal N.: XBench Benchmark and Performance
Testing of XML DBMSs ICDE 2004:621–633

[8] Denilson Barbosa, Alberto Mendelzon, John Keenleyside and Kelly Lyons.
ToXgene: A template-based data generator for XML SIGMOD 2002 http://
www.cs.toronto.edu/tox/toxgene/

[9] collectd – The system statistics collection daemon http://collectd.org/
[10] Nagios http://www.nagios.org/
[11] XCheck - A Platform for Benchmarking XML Query Processors http://

ilps.science.uva.nl/Resources/XCheck

355

XQBench – A XQuery Benchmarking Service

http://www.cs.toronto.edu/tox/toxgene/
http://www.cs.toronto.edu/tox/toxgene/
http://collectd.org/
http://www.nagios.org/
http://ilps.science.uva.nl/Resources/XCheck
http://ilps.science.uva.nl/Resources/XCheck

