
WIRTSCHAFTSINFORMATIK 5 | 2008 383

Towards Systematic Achievement of Compliance in
Service-Oriented Architectures: The MASTER
Approach
Service-oriented architectures (SOA) provide the flexible IT support required by agile
businesses. To simultaneously meet their compliance requirements, continuous
assessment and adaptation of the IT controls embedded in SOA is mandatory. The
paper outlines the MASTER methodology and architecture for systematic achievement
of compliance in SOA. MASTER features automated support of the full control lifecycle,
definition of key indicators that can be interpreted in the business context and scale
to outsourcing scenarios, and a model-based and policy-driven approach that allows
to capture business and technical context and to adapt metrics and controls to it.

DOI 10.1007/s11576-008-0086-1

1 Introduction

As a result of increased business comple-
xity, growing public scrutiny and more
stringent regulations emerging, regulatory
compliance has received major attention
and become a top priority target for
businesses. Regulations typically address
different business domains and assets, for
instance,
j�the Sarbanes-Oxley Act (SOX) (Con-

gress of the United States of America
2002) focusing on protecting investors’
interests by allowing them to make
informed decisions based on the cor-
rectness of the financial reporting; or

j�the Basel II Accord (The Basel Com-
mittee on Banking Supervision 2006)
aiming at mitigating the risk caused by
credits and loans issued by banks
through requiring a given percentage
of equity depending on the risk associ-
ated to a loan, and means to prove that
appropriate risk assessment, manage-
ment and mitigation controls are in
place.

Regulations of this kind share the require-
ment of putting a set of controls in place
that govern the organizational structure
or constrain the behavior of business
processes in order to facilitate the achie-
vement of the respective control goals.
Although some regulations contain the
definition of the nature of a control (for
instance, SOX section 802 demands a data
retention period of 5 years), the specifica-
tion and assessment of a concrete control

architecture – the set of controls and their
interaction with the system and among
each other – is, in general, left as a task to
the business being subject to a regulation,
and their auditors. This reflects the view
that a control architecture is the result of
a risk analysis specific to the business at
hand, and the way how a particular com-
pany is organized and operates to achieve
its goals.

Risk assessment and control frame-
works have been introduced to support
businesses in setting up adequate control
infrastructures. Risk assessment frame-
works like COSO (COSO, n. d.) address
the identification of a business’ potential
material weaknesses and the derivation of
control goals from them. In addition, con-
trol frameworks introduce abstract con-
trols as well as methods and instruments
to manage them. COBIT (The IT Gover-
nance Institute 2007), for instance, intro-
duces IT-related controls according to
control domains and goals, along with
indicators that allow assessing their effec-
tiveness. The latter facilitates a major
aspect of compliance achievement: since
they are the result of a risk analysis acti-
vity, the set of controls cannot be claimed
to be “complete”, nor is their adequacy
guaranteed. Thus, the controls need to be
continuously observed and assessed. This
assessment is a typical task of auditing. In
sum, to achieve compliance, a business
needs to:
j�map abstract controls to concrete con-

trol structures and processes;

The Authors

Dipl.-Inform. Volkmar Lotz
Dipl.-Ing. Emmanuel Pigout
SAP Labs France, SAP Research
BP1216
06254 Mougins Cedex, France
{volkmar.lotz | emmanuel.pigout}@
sap.com

Dr. Peter M. Fischer
Prof. Dr. Donald Kossmann
ETH Zürich, Systems Group
Universitätsstrasse 6
8092 Zürich, Switzerland
{peter.fischer | donald.kossmann}@inf.
ethz.ch

Prof. Dr. Fabio Massacci
Universita di Trento
Via Sommarive 14
38050 Povo (Trento), Italy
Fabio.Massacci@unitn.it

Dr. Alexander Pretschner
ETH Zürich
Information Security
Haldeneggsteig 4
8092 Zürich, Switzerland
alexander.pretschner@inf.ethz.ch

Submitted 2008-12-01, after two
revisions accepted 2008-07-01 by the
editors of the special focus.

WI – SchWerpunktaufSatz

384 WIRTSCHAFTSINFORMATIK 5 | 2008

WI –SchWerpunktaufSatz

j�enforce the controls in business opera-
tions; and

j�evaluate the effectiveness of the con-
trols.

In this paper, we focus our attention on
IT controls for business systems built on
top of Service-oriented Architectures
(SOA) (Alonso et al. 2004). “IT controls”
denote IT functionalities, components,
and architectural concepts that are
designed to achieve a set of control goals.
Control goals can be expressed in terms of
business structures and processes imple-
mented in IT. An IT control is, thus, a
software artifact that can be executed and
that can interact with business processes
running in software. Furthermore, we
focus on security related controls, i. e.,
those controls that are designed and used
in order to protect assets. This includes
security processes and mechanisms like
those introduced by ISO 27001 (ISO 2005)
or Part 2 of the Common Criteria (n. a.
2006), but also controls set up to protect
particular business assets, such as limiting
the volume of trades for individual traders
in a banking environment.

SOA provides a common platform that
allows integrating services and compo-
nents across organizational domains, reu-
sing them in different business settings,
and building applications through com-
posing services. Thus, SOA provides an IT
infrastructure that supports dynamic out-
sourcing and the maintenance of business
ecosystems. SOA promises to adapt busi-
ness processes, applications and their
interactions to changing requirements
and contexts. Because it enables flexibility
and agility, SOA has been quickly adopted
by software vendors, service providers,
and businesses. However, the achievement
of the compliance tasks mentioned above
faces additional challenges:
j�Abstraction: A crucial feature of SOA

is that services can be accessed through
an abstract interface. The abstraction
levels of the control goals and these
interfaces need not necessarily be the
same. There is a need for an explicit
mapping when control objectives are
imposed on a service.

j�Dynamics: SOA supports the continuous
change of business relations (i. e., the ser-
vices provided and consumed) and busi-
ness processes (the orchestration of the
services). Each change is potentially vio-
lating control goals or influencing the
effectiveness of controls. Their evalua-
tion hence is an ongoing task.

j�Distributed control: A fundamental
principle of SOA is that it is open to ser-
vices of different providers being dis-
covered and integrated at runtime.
From the consumer point of view this
means that controls may not be directly
imposed on alien services, though
some properties of them might be
necessary for the achievement of con-
trol goals.

j�Multiple trust domains: Third-party
services are not necessarily trusted by
their consumers. This increases the
need for assuring that control goals are
met and compliance properties are
satisfied.

SOA thus asks for increased automation
of the assessment of the controls’ effec-
tiveness, the support of their adaptation,
and the enforcement of controls on
services. Fortunately, we can use the SOA
paradigm itself to facilitate this automa-
tion. In the remainder of this paper, we
propose an architecture that extends a
SOA by components for signaling and
monitoring events caused by services,
for their aggregation and analysis with
respect to control objectives, for decision
support for a business-level user when it
comes to the specification of appropriate
reactions to the observations made,
and for the automated enforcement of a
subset of controls. Thus, the architecture
supports the full control lifecycle (obser-
vation, analysis, and reaction). The focus
of the architecture is on security-related
IT controls as introduced above, and we
consider this restriction to be justified by
the dominant role that the protection of
assets has in control environments.

The remainder of this article is orga-
nized as follows. We illustrate the above
principles and challenges by means of an
example control in Section 2. Section 3
conveys the proposed architecture in
detail, starting with an overview of the
components and the major artifacts
(models, policies, and indicators) that faci-
litate automation, before describing the
components in more detail. Section 4
investigates into the role of model trans-
formations to bridge abstraction levels.
Section 5 concludes the paper, with an
emphasis on the future work necessary to
support dynamic outsourcing scenarios.

The work reported here has been per-
formed in the context of the MASTER
(Managing Assurance, Security and Trust
for Services) project, an EU FP7 integra-
ted project started in February 2008.

2 An example

We illustrate the challenges related to
controls in a SOA by means of an example
security control. Let us assume an imple-
mentation of a business process where
each task is implemented by a web service.
To distinguish them from services imple-
menting controls, we call them “business
services”. The business services are
orchestrated through a business process
specification, for instance, using BPEL or
BPMN. Let us further assume that one of
the services being called includes inter-
action with a human user, requiring the
user to log in to the service and perform
an operation, where authentication of
the user is considered to be critical. The
user interaction, including both the fact
that the interaction occurs as well as the
login credentials or properties of them, is
concealed by the service interface speci-
fication. For the sake of the example, we
assume that the login mechanism is based
on username/password authentication,
and that this fact is publicly known.

In such an environment, the IT Control
Objectives for SOX (The IT Governance
Institute 2006) suggest “that procedures
exist and are followed to maintain the
effectiveness of authentication and access
mechanisms”. Part of such a procedure in
case of a password-based authentication
mechanism is to implement a control that
requires “regular password changes”.
There are different ways to implement
such a control, including a written guide-
line for users, sending e-mail reminders,
the presentation of a “change password”
GUI upon expiration of the current pass-
word, and blocking the user after expira-
tion and unlocking only after the user has
received a new password from the admi-
nistrator. While a written guideline is a
non-IT control, the remaining three con-
trols are IT controls according to the defi-
nition of Section 1. The policies guiding
the control may vary from simple ones
(“every other month”) to complex ones
taking organizational or business process
contexts into account (“if the user is
involved in a critical process instance, his
password must be changed every week,
otherwise every month”).

None of the example controls for the
enforcement of regular password change
provide a guarantee for achieving the con-
trol goal per se, and they need to be sub-
ject to monitoring and assessment. For
instance, a user might enter the same pass-

WIRTSCHAFTSINFORMATIK 5 | 2008 385

WI – SchWerpunktaufSatz

word again as his new one, or, if this is pre-
vented by the mechanism, renew the pass-
word five times in a row immediately to
arrive back at the original one. The assess-
ment of the control mechanism’s effec-
tiveness depends on the events and resour-
ces that can be observed, and this is where
SOA imposes additional challenges, but
also offers new opportunities.

In our example implementation of the
business process, the only directly obser-
vable activities are those that result in
messages being passed between services.
Observation requires subscribing to these
messages, and subsequently analyzing
them. If the password changing GUI is
implemented as a service, the message cal-
ling it can be interpreted as the control
being executed. However, this is not suffi-
cient to show whether the password has
indeed changed. To do so, it is necessary
to either subscribe to the response of the
password changing GUI service and relate
that response to the respective request, or
to provide another service that allows to
access the password hash table and inspect
it for changes for the respective user. If the
service is owned by the business process
owner, the latter might implement the ser-
vice in a way that the hash table can be
accessed through the service interface. In
case of a third-party service, its owner,
however, might not want to provide such
access. This is because the hash table

reveals user identities, an information that
is likely to be considered as sensitive. The
business process owner either needs to
trust the service, bind it to a contract that
can be enforced by a trusted third party,
require additional evidence from the ser-
vice (e. g., a description of mechanisms
and policies being in place), or replace the
service by another one that provides the
desired properties. The latter is particu-
larly supported in a SOA.

This simple example already shows
some of the key aspects of compliance
enforcement in a SOA:
j�Indicators for the effectiveness of con-

trols refer to observable events that may
be complex, for instance, if they relate
several messages of different services
or evaluating context information,
asking for maintaining a state upon
observing, and relating to models
describing the relevant parts of the sys-
tem behavior.

j�Controls and observations need to be
guided by explicitly defined policies
that can be passed through the service
layers. In case a relevant service beha-
vior cannot be directly observed (as the
contents of the password hash table in
the example above), such a policy is
used as requirement for the service.

j�In case of dynamic binding of services,
trust establishment can be facilitated
by indicators relating to properties of

the service implementation (“data
sheet”). These indicators cannot be
observed.

j�The flexibility of a SOA allows for the
replacement of services if they turn out
not to ensure effective control. Optio-
nally, their weakness might be com-
pensated by instrumenting additional
control services and orchestrating them
accordingly. In the example above, the
observation of frequent calls of the GUI
service can lead to calling a service that
sends an alarm to the service adminis-
trator.

3 Towards a compliance
architecture

In the following, we investigate architec-
tural principles that cover the key aspects
that we have introduced with the example.
The described components are seen as
part of an extended SOA that is suitable to
facilitate compliance in a sense of assessing
and enforcing security controls.

3.1 an integrated architecture

The example in Section 2 shows the
importance of supporting the full control
lifecycle, in particular the measurement
and analysis of the effectiveness of the con-
trols. Thus, a security control architecture

Fig. 1 Compliance architecture as proposed by the MASTER project

386 WIRTSCHAFTSINFORMATIK 5 | 2008

WI –SchWerpunktaufSatz

for SOA does not only need to implement
the controls themselves. It also needs to
provide means to observe events related to
a control objective, analyze them and react
to them. Fig. 1 introduces the respective
components.

We distinguish between an observation
layer that hooks into the SOA and the ser-
vices to extract raw events and aggregates
them to complex events, and an enforce-
ment layer that provides analysis and
reporting facilities and decision support
on the events as well as automated enforce-
ment where possible. The observation
layer consists of two parts. One part is pro-
vided by a signaling component that deals
with distribution interfaces. The other
part is provided by an aggregation compo-
nent that performs monitoring along with
the generation of complex events. As such,
it raises the level of abstraction while
taking into account contexts. Context is
typically provided in terms of executable
models, for instance, business process
models. The architecture components can
access these models and their execution
state through a model repository that is
considered an integral part of the architec-
ture. In addition, the model repository
contains descriptions of translations
between different levels of abstraction as
well as other models that will be discussed
in Section 4.

The assessment and enforcement com-
ponents receive input from the monito-
ring infrastructure and feed back into the
service layer. The nature of the feedback of
the two components is similar: changes of
policies guiding controls, modified ser-
vice orchestrations, or replacement of ser-
vices. The difference is that enforcement
emphasizes on automation of reaction and
the adaptation of controls, while assess-
ment focuses on reporting, knowledge
management and data warehousing with
respect to the events.

Policies, in the sense of rules restricting
the behavior of business processes, play a
crucial role in the MASTER architecture.
In the example of Section 2, the frequency
and conditions applying to password
changes are defined in terms of a policy.
Policies can be enforced in two fundamen-
tally different ways. The first approach
relies on a strategy of observe-and-pena-
lize (Povey 1999). If users do not change
their passwords regularly, their trust
ratings may get decreased. This kind of
enforcement relies on the following basic
ideas: a violation of the law can usually not

be prevented, but the threat of a fine acts
as a deterrent. In the sequel, this kind of
enforcement will be called “enforcement
by obser vat ion”. The monitoring
infrastructure of our architecture, origi-
nally introduced to enable the observation
of the controls, can be equally used to
implement an “enforcement by observa-
tion” control. The second approach is to
make sure that policies cannot be violated.
In the password changing example, forc-
ing users to change their passwords or
assigning them new ones are enforcements
of that type. In the sequel, we will refer to
this enforcement scheme as “enforcement
by control”. In the context of our architec-
ture, such a scheme will be implemented
in terms of dedicated services as part of
the implementation of a business service
or a set of business services.

Both enforcement strategies are based
on and apply to different trust models
(Pretschner et al. 2007). Enforcement by
control (which is the primary mechanism
in the DRM sector) is based on the suspi-
cion that the client will not adhere to a pre-
viously agreed-upon policy and that the
objects in question are comparably cheap.
In contrast, enforcement by observation is
applicable in situations with higher risk
associated, e. g., in outsourcing contracts,
and where all parties have an interest in
continuing their collaborations. However,
if machine support can be provided for
enforcement by control, e. g., to meet noti-
fication or logging requirements, then
there is no need to rely on enforcement by
observation. In other words, both forms of
enforcement are relevant in the area of
ensuring compliance.

3.2 compliance assessment and key
indicators

In this section, we discuss the type of
indicators that are needed to assess the
adequacy of security controls. Indica-
tors are measurements of events and
properties resulting in numerical values
that support drawing conclusions with
respect to the achievement of control
goals. Indicators need to be measurable,
i. e., derived from system observations
including explicitly available specifica-
tions and models.

We give a first intuitive understanding
of the concept of indicators by refining the
example of Section 2 where we established
a control goal (“password to be changed
every other month”), and where we dis-

cussed events that indicate whether or not
this goal is achieved. However, we might
enter situations in which the relation
between events and goal achievement is
less straightforward. Consider the fol-
lowing situations:
1. Some users have not changed their

password every two months and have
performed some sensitive operation.

2. Some users have not changed the pass-
word as requested but have not per-
formed any operation after the pass-
word renewal date.

3. Some users have performed sensitive
operations and changed their password
only every two months (recall the
requirement that users involved in sen-
sitive transactions need to change their
password every week). However, they
have not performed any sensitive ope-
ration after the first password change.

From the point of view of the password
changing policy, all situations violate the
policy. Yet, one might argue that (2) can
be tolerated, since the users actually never
logged in again. The violation (3) is also an
example of “almost” meeting the control
goal: the user does actually perform a
regular password change but does not
meet the requirements on its frequency. A
human expert rating the situations is likely
to conclude that (2) accounts for low risk,
(3) for medium risk, and only (1) might
qualify for a considerable risk. Compli-
ance is not black or white. In situation (2),
a control like the forced password change
mechanism would actually completely
mitigate the associated risk by first asking
the user to change their password upon
their next login attempt.

The example shows that mere indica-
tion of policy violation needs to be replaced
by indicators pointing to potential risk
caused by the type of violation.

The idea of such indicators is not new,
and a number of so-claimed “security
metrics” are indeed indicators of compli-
ance with a well known standard (e. g. ISO
17799/27001) or with internal security
policy or security design requirements
(Swanson et al. 2003). The usual metrics
for such analyses is the percentage of com-
pliance with the set of rules. Several certi-
fication and accreditation methodologies
(DISTCAP or DIACAP (US Department
of Defense 2007), etc.) exist. Among other
things, they are used to accredit govern-
mental agencies or governmental tenders.
Most of these methodologies also include
a risk analysis as one of the best practices

WIRTSCHAFTSINFORMATIK 5 | 2008 387

WI – SchWerpunktaufSatz

but do not say how the analysis must be
performed.

Vulnerability analyses are probably the
best k nown secur it y assessment
approaches that produce indicators.
During a test phase a team tries to pene-
trate the system boundaries, documents
uncovered vulnerabilities and suggests
suitable protection improvements. Such
an analysis is quite subjective since the
results of testing depend on the experience
of the testing team but can be used by
other methods as a starting point for more
elaborate analyses.

A key observation of the MASTER
approach is that all of the above methods,
including those that have a risk analysis
component (Butler 2006; Stoneburner et
al. 2001; Gordon und Loeb 2003), suffer
from the same drawback: they mostly
focus on the IT aspects of system security
rather than on the business impact that
security decisions might have (Karabulut
et al. 2007). In order to better assess the
notion of compliance it is useful to make
a distinction between measuring the
satisfaction of a control goal in terms of
observable events and measuring the
means used to achieve that goal (a system
description or “data sheet” that allows to
draw conclusions related to the satisfac-
tion of the goal). The former measure is by
necessity a lag-indicator that is only avail-
able ex-post. The latter measure is instead
a driving-indicator that can be measured
ex-ante.

This leads to the definition of two types
of indicators:
j�Key Assurance Indicators (KAI) are

measurable indicators negotiated by a
client and a contractor to show that the
client’s control goals are addressed.

j�Key Security Indicators (KSI) measure
technical security features (technical,
organizational, and process-oriented
means) used by contractors to achieve
a control goal.

One possible KAI in the context of our
example determines the number of users
that have performed some actions in the
past month and have not changed their
password for the past 3 months, divided
by the total number of users that have per-
formed some actions in the past month. A
KAI close to zero is a good sign of com-
pliance. Clearly, this indicator can only be
established through observation. If, in our
example, the measurement requires access
to the password hash table, but the table
is not disclosed by the outsourced party,

the KAI cannot be evaluated. In this case,
a KSI can compensate for this lack of
accessibility.

The KSI establish the existence of tech-
nical measures in order to meet a KAI.
Given the example mechanisms of Section
2, we have the following partial order:

(A) Guideline only, no technical secu-
rity measure;

(B) User notifications via email, prompt-
ing them to change the password;

(C) System forcing the users to change
the password at their first login after the
expiry period;

(D) System that changes the password
after the expiry period and notifies the
user to meet the administrator to receive
the new password.

Using the terminology of (Karabulut et
al. 2007), KSI are “internal” metrics
needed by contractors to assess the cha-
racteristics of their system. In contrast,
KAI are “external” metrics that clients of
an outsourced service might want to fix
because they do not (nor wish to) control
the inner status of their contractor’s secu-
rity measures. In our example, an applica-
ble KAI is the percentage of employees
that have a different password after each
password expiry date. A sample KSI is the
percentage of employees to which the
forced password change activity (B) has
been applied.

Notice that one does not imply the other.
The password change activity (B) might be
memory-less so users can simply recon-
firm their old password or rotate among
two passwords. For sake of exposition let’s
consider also a non-technical measure to
meet the controls: assume that people
from a particular cultural background
would normally obey the rules. So a pos-
sible control measure is to make sure that
new employees belong to that cultural
background. In this setting the KAI would
remain the same but the KSI would be the
percentage of employees that passes the
background screening.

When two companies negotiate an out-
sourcing contract besides usual SLAs they
could now also negotiate KAI or KSI com-
ponents.

The next step for the concrete deploy-
ment of the MASTER solution is to pro-
vide algorithms and methods so that one
can transform KAIs and KSIs at a given
level of abstraction into lower levels (e. g.
when iteratively outsourcing a task to sub-
contractors), and vice versa. Moreover, the
relationship between KAIs and KSIs must

be defined. Such tasks need to be done
dynamically and efficiently as processes in
a SOA are dynamically changing and
adapting to business needs (Massacci und
Yautsiukhin 2007). Models describing the
systems and services on the respective
abstraction layer and points of view
together with formal relations between
them enable the provision of these algo-
rithms by relating indicators to model ele-
ments and applying the respective rela-
tions.

3.3 Monitoring events in SOa

Monitoring provides the measurements
for the computation of indicator values.
In a SOA with abstract interfaces and dis-
tributed ownership of services (“outsour-
cing”), performing such measurements
of course faces specific limitations. In
general, direct control over services and
processes of the outsourcing providers
cannot be established. Particular events
that are needed to determine the indicators
might not be propagated outside the con-
trol of an outsourcing provider; this may
be for privacy or business reasons. Even in
scenarios where a single domain of trust
and control exists, getting information
from the individual involved components
might be difficult, since the underlying
software implementation might not pro-
vide the facilities to generate the necessary
events at a sufficient level of detail.

Existing approaches for monitoring
business applications do not provide solu-
tions to these problems, since they focus
on the even more restricted goal of moni-
toring individual applications or services
within a domain where full control
exists.

To overcome these shortcomings, the
approach taken in MASTER is to establish
a language for declarative, high-level
descriptions of the monitoring policies as
well as the interfaces and formats needed
to implement them. Business- or regula-
tion-level as well as service-level require-
ments can be expressed in this language.
The language refers both KAIs and KSIs.
The monitoring infrastructure interprets
higher level polices in the given context
and transforms them into lower-level poli-
cies, which are propagated across the ser-
vices and domains involved. Services are
instrumented based on these policies. In
order to evaluate the indicators, the neces-
sary transformations, correlations and
computations are performed on the events.

388 WIRTSCHAFTSINFORMATIK 5 | 2008

WI –SchWerpunktaufSatz

Alternatively, the monitoring specifica-
tions (at any level of transformation) can
be given to an outsourcing provider, which
will provide the necessary interfaces to
understand them and provide the resul-
ting events and indicators. In such cases,
the provider is free to implement the tech-
nical part completely under its control, but
needs to give the corresponding legal and
contractual assurances that the events and
indicators are truthfully generated.

The password change example outlined
in Section 2 highlights the issues faced in
monitoring and how the MASTER
approach helps to address them. The gene-
ral requirement of “password changes” is
transformed into a set of more detailed
policies based on observable events and
the actual system infrastructure to moni-
tor, such as notification of actual password
change operations within a certain time-
frame or the lack thereof. However, the
example shows that this requires access to
information (the password hash table) that
is likely to be restricted in the outsourcing
scenario, thus requiring different strate-
gies to determine the events needed for
computing the “password change” indica-
tor. A policy that describes which type of
events to monitor can be supported by the
outsourcing provider in order to convey
the information about password changes,
either at the level of individual changes of
involved accounts or at a general level.

The proposed language must be power-
ful enough to specify any relevant event of
a security policy and cover several layers
of abstraction. This includes the support
of transitioning between the abstraction
layers, taking into account system context
and indicator specifications. To achieve
these goals, this language must be amen-
able to the model and indicator transfor-
mations outlined below. A starting point
for such a language specification are decla-
rative languages for events processing
such as XQuery (Boag et al. 2007).

On a more technical level, MASTER
will provide an infrastructure where
monitoring is performed by a component
separated from any kind of application
logic or from other system functionality
(e. g., data management or web services).
This separate monitoring component can
then be implemented in a secure and scal-
able way. Parts of such an infrastructure
can run under different control, and can
be leveraged to provide the necessary
means to instrument services and perform
the individual steps to determine (compo-

site) events and compute indicators. As
outlined in the architecture above, the
monitoring infrastructure can be split into
two layers: signaling and monitoring

Signaling components receive a moni-
toring policy, map them to observable
events, identify the events as they occur,
and transmit them to the monitoring
infrastructure. Thus, a signaling compo-
nent is service-specific: It needs to include
knowledge about the logic provided by a
service in order to refine abstract events
referred to in a policy statement and to
record these events. It also performs a ser-
vice-specific pre-processing of observed
events in order to identify an abstract
event referred to in the local monitoring
policy.

3.4 enforcement and decision support

The enforcement infrastructure of the
MASTER architecture is designed to
support both types of controls intro-
duced in Section 3.1. Enforcement by
observation is done on the grounds of
the signals received by the signaling and
monitoring infrastructure. Depending on
the granularity of the applicable policies,
the monitoring infrastructure can either
directly report a policy violation, or pro-
vide the signals that enforcement needs to
decide itself if a policy was violated. In case
a violation is detected, the enforcement
infrastructure takes steps to penalize the
violator, to undo relevant transactions, or
to perform compensating actions. In some
cases, this can be done automatically. In
most cases, however, human interaction
will be necessary to react.

Similar to observation, enforcement by
control also makes use of the signals that
it receives from the monitoring infrastruc-
ture. Respective components of the
enforcement infrastructure will usually
keep a local and partial copy of the system’s
state to prevent policy violations – the
monitoring infrastructure can only report
violations, yet not prevent them. Further-
more, the prevention of policy violations
may require knowledge of a service’s state
that is not available at the level of the
monitoring infrastructure. Depending on
the requirements and applicable policies,
enforcement by control can essentially be
done in the following ways: by execution,
by inhibition, by modification, and by
delay (Pretschner et al. 2008). Executing
an action, such as sending out a notifica-
tion, adding an entry to a log, or deleting

a file caters to requirements like “notify
data owner upon each access”, “log every
access”, or “delete file after 60 days”. Inhi-
bitors make sure that certain actions can-
not be performed under specific condi-
tions. For instance, a data item cannot be
transferred to an entity that is not allowed
to receive the item according to a Chinese
Wall policy. Enforcement by modification
autonomously changes a request or a
response. For instance, rather than simply
denying access to a specific resource, it can
recommend access to a less critical
resource. Finally, enforcement by delay
simply waits a little time and then re-exe-
cutes a request, in the hope that specific
environment conditions have changed.

Conceptually, components that enforce
by control consist of two parts. They
implement a condition that specifies when
a mechanism is applicable, e. g., when
thirty days have passed, or if an undesired
request for transmission is executed. These
examples show that the condition may or
may not include a triggering event. The
second part of enforcement components
implements an effect – an action to be exe-
cuted, a denial of a request, a modified
request, or the re-execution of a request
after some time.

Technically, then, components that
enforce by control consist of a monitor
that checks the condition, and a piece of
business logics that executes the effect.
The implementation can be done in a vari-
ety of ways: as explicit wrapper compo-
nents that act as filters for the input and
output of a service – which is particularly
interesting in the context of services that
cannot be altered, as code that is woven
into the source code of the business logic
of a service – which obviously can only be
done if this modified code can be deployed,
at the operating system level by compo-
nents that intercept system calls, or at the
level of runtime systems where, for
instance, virtual machines can be modi-
fied.

In addition to the problem of making
sure that the signaling and monitoring
infrastructures are sound and complete in
the sense that they report all and only the
events that are relevant for a specific
policy, intentional and inadvertent
bypasses of the control mechanisms must
be avoided. Depending on the threat
model, relevant challenges here include
making sure that the service itself does not
execute actions it is not supposed to exe-
cute without passing via the controlled

WIRTSCHAFTSINFORMATIK 5 | 2008 389

WI – SchWerpunktaufSatz

interface of the service; that code is not
altered; and that there are no uncontrolled
back doors into the service’s business
logic.

Sometimes, it is not possible or desirable
to automatically decide if a policy is viola-
ted or about to be violated. One possible
reason is given by underspecified require-
ments which may result in false positives
sent by the monitoring infrastructures. In
such a case, human feedback seems desir-
able. Rather than inhibiting an – assumed
– policy violation or report a policy viola-
tion, the strategy then is to send a message
concerning a suspected policy violation. A
human user analyzes the available data
and decides if actions need to be taken.
Similarly, a user or a machine may be able
to decide that a specific data stream exhi-
bits anomalies, for instance, if it suddenly
includes many banking transactions that
exceed a specific amount. A preliminary
analysis is then sent to a human who
decides on whether or not to take the
necessary actions.

4 The role of modeling

In Section 3, we have introduced the gene-
ral MASTER approach, but still identified
a set of challenges that need to be met in
order to successfully implement MASTER.
These challenges, among others, include
the provision of algorithms for indicator
transformations (KSI in particular),
the derivation of complex events taking
business context into account, and the
relation of events and indicators to abstract
control goals. We believe that a rich set of
executable models governing the system’s
behavior, representing different view-
points and providing status information to
the compliance architecture are the key to
meeting these challenges. In this section,
we want to introduce our ideas on which
models are relevant and how to use them
to support compliance achievement.

In order to bridge the abstraction levels
involved and to capture the required con-
text that policies might refer to, the models
we need should explicitly represent this
information and make it accessible for the
architecture components. For instance,
the monitoring uses status information of
an abstract business process model; the
decision support assesses complex events
with respect to a risk model; or the enforce-
ment infrastructure refers to service inter-
faces and service choreography models.

Already in the simple example of Section
2, a set of models turns out to be helpful: a
declarative policy guides the controls, in
case of more complex policies a business
process model provides the necessary con-
text, and if the password table is not acces-
sible at an outsourced service, a technical
model of the service could allow to derive
a proper KSI.

The following list provides examples for
the different models that we consider rele-
vant for MASTER together with examples
of their respective notions and terms in
the proposed compliance methodology
and architecture. Additionally, we indi-
cate typical description techniques occur-
ring at these levels.
j�Business models: assets, accounts, finan-

cial statements, general ledger, business
processes, etc.

Business models are the result of business
level requirements engineering. General
description techniques for high-level
requirements like UML class diagrams
can hence be used.
j�Technical system models: service compo-

sition, orchestration, etc.
Service compositions and orchestrations
are described using notations like BPEL,
BPNM, or WS-CDL. Even though BPEL
and BPNM model business processes,
we do not consider them to be business
models, since they assume properties of a
technical infrastructure and refer to com-
ponents in a SOA (actually, the common
basic assumption in their usage is that
tasks are represented by services in the
technical sense). There are also languages
with formal semantics emerging, e. g., Orc
(Misra und Cook 2007).
j�Service models: interfaces, operations,

resources, data, etc.
Here we talk about web services specifi-
cations, typically expressed in WSDL. For
the definition of model transformations,
we see a need for extensions providing
behavior descriptions.
j�Security models: policies, requirements,

measures, etc.
Typical ways to express security models
include policy description languages (e. g.,
XACML, or SAML) and formal security
models like (Brewer und Nash 1989).

It is essential for model usage in MAS-
TER that the different models, in particu-
lar those on different abstraction levels,
can be formally related. The existence of
such relations allows the definition of
model transformations. Refinement is
one such transformation, but more com-

plex ones will be necessary, for instance,
the mapping of KAIs to KSIs and vice
versa.

The specification of events and the defi-
nition of indicators (both KAI and KSI)
occur on all levels, thus supporting tracing
and enforcing them across the levels. This
requires a systematic mapping between
events and indicators on the different
levels which can be achieved if model
transformations are available.

Fig. 2 illustrates the idea. An indicator
is defined in terms of a model and its ele-
ments. For instance, if a business model
contains assets, a KAI on the business
level may refer to the number of assets. If
a technical model refers to service calls,
observation of a call can be used for KAI
definition on the technical level. If indica-
tors are strictly expressed in terms of
model elements, the model transforma-
tions can be used to derive indicator trans-
formations.

MASTER will ensure that a rich set of
model transformations ensures the appli-
cability of these concepts. For instance, at
design time, the MASTER methodology
will provide specification means (langu-
ages, language extensions, and tools) for
the translations, refinement operators,
and context transformations. These means
will be machine accessible, so that they
can be used at run-time for the real-time
execution of translations, for instance, to
enable compliance-aware matchmaking
of services.

Fig. 2 Indicator translations are derived
from model translations

390 WIRTSCHAFTSINFORMATIK 5 | 2008

WI –SchWerpunktaufSatz

5 Conclusions

The key to the systematic and effective
achievement of compliance of participants
in agile business ecosystems based on
service-oriented architectures (SOA) lies
in assessing and enforcing compliance
through technical means. IT security
controls provide a significant part of these
means. However, they need to be embed-
ded in a compliance architecture that
allow their continuous assessment and
support reactions to observed weaknesses.
We have investigated the particular chal-
lenges that SOA features like abstraction
and outsourcing support impose on such
an architecture, and sketched a solution
that is likely to meet these challenges: the
MASTER architecture.

In contrast to existing control frame-
works that provide written guidelines the
effectiveness of which depends on human
interpretation and expertise in imple-
menting them in IT and support their life-
cycle, this architecture embeds IT controls
in an infrastructure that monitors their
behavior, derives security and compliance
related indicators from these observations,
and supports automated reaction to iden-
tified weaknesses. Though human exper-
tise is still required, MASTER makes it
available for continuous evaluation, reuse
and adaptation of the controls, once an
initial set of controls is put in place and
indicators are defined. While the example
shows that the concept of KAIs and KSIs
is adequate, the future provision of a rich
set of such indicators is paramount for
success.

The architecture components are them-
selves provided in terms of services and
guided by declarative polices, which allows
adapting them according to the require-
ments of specific regulations and controls
in a better way as if they were embedded
in the infrastructure. This is an essential
feature for coping with different and evolv-
ing regulations and controls. However,
different regulations applying at the same
time might lead to conflicting control
goals. The definition and implementation
of resolution strategies in such cases is an
important target of future work.

The events that need to be observed and
reacted to can be complex results of aggre-
gating and interpreting a set of direct
observations (i. e., messages exchanged
between services) and by taking organiza-
tional, business process, physical and IT
context into account. We propose a model-

Zusammenfassung / Abstract

Volkmar Lotz, emmanuel pigout, peter M. fischer, Donald kossmann, fabio Massacci, alexan-
der pretschner

Der MASTER-Ansatz zur systematischen Umsetzung von Compliance-
Anforderungen in dienstorientierten Architekturen

Dienstorientierte Architekturen (Service Oriented Architectures – SOA) sind dank der
Flexibilität der Dienste und der aus ihnen komponierten Anwendungen die heutige
Referenz für die IT-Unterstützung agiler Unternehmen, die in einem dichten Netz mit
Partnerunternehmen agieren und dynamisch Geschäftsprozesse ausgliedern. Die mit
SOA einhergehenden Möglichkeiten haben aber gleichzeitig Konsequenzen hinsichtlich
der Einhaltung von Regularien und Vorschriften: abstrakte Dienstschnittstellen, verteilte
Verantwortlichkeiten und Interaktion über Unternehmensgrenzen hinweg stellen ver-
schärfte Anforderungen an die Implementierung organisatorischer Kontrollprinzipien
in einer SOA, insbesondere hinsichtlich der Bewertung der Effektivität der umgesetzten
Maßnahmen.
Automatisierung bei der Umsetzung und kontinuierlichen Bewertung von Kontroll-
maßnahmen ist essentiell. Der vorliegende Beitrag beschreibt die damit einherge-
henden Herausforderungen anhand eines eingängigen Beispiels, um dann eine auf
IT-Sicherheitsmaßnahmen fokussierte Methodik und Architektur einzuführen, die die
Unterstützung aller Phasen im Lebenszyklus von Kontrollmaßnahmen ermöglichen.
Die Architektur beinhaltet in eine SOA eingebettete Komponenten zur Beobachtung,
Bewertung, Entscheidungsunterstützung und automatisierten Umsetzung von Maß-
nahmen. Der Ansatz basiert auf ausführbaren Modellen zur Bereitstellung von Kontext-
information auf unterschiedlichen Abstraktionsebenen sowie deklarativen Policies, die
eine Steuerung der Maßnahmen erlauben. Modellen und Policies werden Indikatoren
gegenübergestellt, die die Bewertung der umgesetzten Maßnahmen ermöglichen und
Anhaltspunkte für kritische Situationen und notwendige Entscheidungen liefern.
Die vorgestellten Konzepte werden im Rahmen des EU-Förderprojektes MASTER reali-
siert, das damit den ersten automatisierten Ansatz zur systematischen Umsetzung von
Compliance-Anforderungen in SOA liefern wird.
Stichworte: Compliance, serviceorientierte Architekturen, IT-Sicherheitsmaßnahmen,
Sicherheitsmetriken, Überwachung, modellbasierte Ansätze

Towards Systematic Achievement of Compliance in Service-Oriented
Architectures: The MASTER Approach

Service-oriented architectures (SOA) have been successfully adapted by agile businesses
to support dynamic outsourcing of business processes and the maintenance of busi-
ness ecosystems. Still, businesses need to comply with applicable laws and regulations.
Abstract service interfaces, distributed ownership and cross-domain operations intro-
duce new challenges for the implementation of compliance controls and the assessment
of their effectiveness.
In this paper, we analyze the challenges for automated support of the enforcement and
evaluation of IT security controls in a SOA. We introduce these challenges by means of
an example control, and outline a methodology and a high-level architecture that sup-
ports the phases of the control lifecycle through dedicated components for observation,
evaluation, decision support and reaction. The approach is model-based and features
policy-driven controls. A monitoring infrastructure assesses observations in terms of key
indicators and interprets them in business terms. Reaction is supported through compo-
nents that implement both automated enforcement and the provision of feedback by a
human user. The resulting architecture essentially is a decoupled security architecture
for SOA with enhanced analysis capabilities and will be detailed and implemented in
the MASTER project.
Keywords: Compliance, service-oriented architecture, IT security controls, security
metrics, run-time monitoring, model-based architecture

WIRTSCHAFTSINFORMATIK 5 | 2008 391

WI – SchWerpunktaufSatz

driven approach to manage this comple-
xity: explicit representations of business
processes, organizational structures, IT
systems and services across several
abstraction layers enable the maintenance
of the necessary information at run-time
and make them accessible to the architec-
ture components. The security and assu-
rance indicators are defined in terms of
these models.

The proposed architecture will be
implemented in the course of the MAS-
TER project. Though the principal direc-
tions have been set, they will be constantly
evaluated by means of case studies from
different domains subject to differing, rich
set of regulations: credit insurance, health-
care, and e-government.

Literatur

Alonso, Gustavo; Casati, Fabio; Kuno, Harumi;
Machiraju, Vijay (2004): Web Services. Con-
cepts, Architectures and Applications. Sprin-
ger.

Boag, Scott; Chamberlin, Don; Fernández, Mary
F.; Florescu, Daniela; Robie, Jonathan; Simé-
on, Jérôme (2007): XQuery 1.0: An XML Query
Language. W3C Recommendation.

Brewer, David F. C.; Nash, Michael J. (1989): The
Chinese Wall Security Policy. In: Proceedings of
the 1989 IEEE Symposium on Security and Pri-
vacy, IEEE Computer Society Press, pp. 206–
214.

Butler, Shawn A. (2006): Security attribute evalu-
ation method: a cost-benefit approach. In: Pro-
ceedings of ICSE-02, ACM press, pp.232–240.

 Committee of Sponsoring Organizations of the
Treadway Commission (n. d.): The COSO frame-
work. http://www.coso.org/guidance.htm,
retrieved 2008-06-30.

Congress of the United States of America (2002):
The Sarbanes-Oxley Act, (Pub. L. No. 107–204,
116 Stat. 745). Available at http://frwebgate.ac-
cess.gpo.gov/cgi-bin/getdoc.
cgi?dbname=107_cong_bills&docid=f:
h3763enr.tst.pdf, retrieved 2008-06-30.

Gordon, L.; Loeb, M. (2003): The economics of in-
formation security investment. TISSEC, 5(4),
pp. 438–457.

ISO (2005): ISO/IEC 27001:2005 – Information
technology – Security techniques – Informa-
tion security management systems – Require-
ments.

Karabulut, Yuecel; Kerschbaum, Florian; Mas-
sacci, Fabio; Robinson, Phillip; Yautsiukhin,
Artsiom (2007): Security and Trust in IT Busi-
ness Outsourcing: a Manifesto. Electronic
Notes in Theoretical Computer Science,
 Vol. 179, Elsevier, pp. 47–58.

Massacci, Fabio; Yautsiukhin, Artsiom (2007): An
Algorithm for the Appraisal of Assurance Indi-
cators for Complex Business Processes. In: Pro-
ceedings of the 3rd ACM Workshop on Quality
of Protection. ACM Press.

Misra, Jayadev; Cook, William R. (2007): Compu-
tation Orchestration: A Basis for Wide-Area
Computing. In: Journal of Software and Sys-
tems Modeling 6 (1), pp. 83–110.

 n. a. (2006): Common Criteria for Information
Technology Security Evaluation, Version 3.1,
http://www.commoncriteriaportal.org/thecc.
html, retrieved 2008-06-30.

Povey, D. (1999): Optimistic Security: a New Ac-
cess Control Paradigm. In: Proc. Workshop on
New Security Paradigms.

Pretschner, Alexander; Massacci, Fabio; Hilty,
Manuel (2007): Usage Control in Service-Ori-
ented Architectures. In: Proceedings of the 3rd
International Conference on Trust, Privacy &
Security in Digital Business, Springer, LNCS
4657.

Pretschner, A.; Hilty, M.; Basin, D., Schaefer, C.;
Walter, T. (2008): Mechanisms for Usage Con-
trol. In: Proceedings of the ACM Symposium on
Information, Computer and Communications
Security (ASIACCS), Tokio, pp. 240–245.

Stoneburner, Gary; Goguen, Alice; Feringa, Ale-
xis (2001): Risk Management Guide for Infor-
mation Technology Systems. NIST report 800–
30, http://csrc.nist.gov/publications/nist-
pubs/800–30/sp800–30.pdf, retrieved 2008-
06-30.

Swanson, Marianne; Bartol, Nadya; Sabato,
John; Hash, Joan; Graffo, Laurie (2003): Secu-
rity Metrics Guide for Information Technology
Systems. NIST, Report 800–55 2003, http://csrc.
nist.gov/publications/nistpubs/800–55/
sp800–55.pdf, retrieved 2008-06-30.

The Basel Committee on Banking Supervision
(2006): The Basel 2 Account. http://www.bis.
org/publ/bcbs128.htm, retrieved 2008-06-30.

The IT Governance Institute (2006): IT Control
Objectives for Sarbanes-Oxley. http://www.
isaca.org/Template.cfm?Section=Home&Cont
entid=17003&Template=/ContentManage-
ment/ContentDisplay.cfm, retrieved 2008-06-
30.

The IT Governance Institute (2007): Control Ob-
jectives for Information and related Technolo-
gy (COBIT), Version 4.1. http://www.isaca.org/
Content/NavigationMenu/Members_and_
Leaders/COBIT6/Obtain_COBIT/Obtain_COBIT.
htm, retrieved 2008-06-30.

US Department of Defense (2007): DoD Informa-
tion Assurance Certification and Accreditation
Process (DIACAP). Instructions Num. 8510.01,.
http://iase.disa.mil/ditscap/, retrieved 2008-
06-30.

