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1. MOTIVATION AND CHALLENGES
In this paper, we provide the first steps towards real-time, large-

scale prediction of the lifetime of information diffusion processes.
Analyzing information diffusion at large scale and in real-time

speed provides a broad range of benefits for many use cases such
as online journalists: Since social media exerts a considerable
influence on how people are being informed, journalists need to
incorporate it into their investigations, as well as into their own
publishing process, which both corresponds to diffusion analysis.

In this context, predicting the lifetime in a real-time manner
has several benefits: Understanding how much longer a piece of
information will last indicates how many resources to allocate to
the observation. Furthermore, in real-time analysis of cascades [3],
predicting the lifetime gives an indication on the completeness and
further spread. Yet, to the best of our knowledge, there is little work
on lifetime prediction, and none that targets real-time prediction.

There is, however, a lot of research concerning predictions on
other properties of information diffusion, like size [2], scale and
speed [4]. The closest work is [1], which implements incremental
predictions of cascade size over time, while authors support that
the final state of each cascade is inherently unpredictable. As a
result, we can conclude that cascade lifetime is a hard to predict
property; it is even more challenging than predicting the cascade
size (in terms of messages), since a single message can alter the
lifetime dramatically.

To support these insights, we present the correlation of lifetimes
and sizes of cascades in our test data set (described in Section 3);
as Figure 1a shows, there is no correlation, meaning that existing
solutions to predict the size [1] are of limited use. The pronounced
skew in the cascade lifetime distribution imposes another challenge
in solving such a problem, as shown in Figure 1b, again derived
from the same dataset: Large cascades that reach virality (that are
the most relevant to predict for our use cases) are extremely rare,
while small cascades are over-represented. In case we treat all
cascades in the same way, we will bias the results in favor of short
lifetime predictions.

While not (yet) providing a complete solution to the problem of
real-time lifetime prediction, this paper contributes the following:
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• It determines the feasibility of cascade lifetime prediction.
• It defines an approach for incremental predictions.
• It investigates relevant algorithms and features.

2. METHODS AND FEATURES
The challenges outlined in Section 1 lead to the conclusion that

predicting the very end of the cascade is not feasible. Instead, we
model a binary classification problem that determines if a cascade
will survive for the next period of time. This leads to incremental
prediction problem which will be updated with new observations
gathered from the evolving diffusion process. As shown in Fig-
ure 2, we define an observation window of the current lifetime and
we set a prediction window relative to the current lifetime. This
problem definition matches our use case: Online journalists are
interested in whether a piece of information will last for the next
hours or days in order to keep observing it.

The first challenge to tackle is how to model the properties of
cascades to allow effective prediction. We investigated a stage-
based approach, in which we split each cascade into the same
number of ranges of its lifetime. The ranges are defined as fractions
of the full cascade lifetime, thus eliminating the different overall
lifetimes. For example, in our study, we sliced each cascade in 10
stages starting from the beginning of each cascade: 5, 10, 20, 30,
40, 50, 60, 70, 80, 90 % of its lifetime. Every one of these stages
splits the cascade into an observation window and a prediction
window, as shown in Figure 2.

Furthermore, we investigated which parts of the cascade so far
(within the observation window) are more predictive: the full
observation window or the most recent part of it? The latter may
capture the recent behavior better, while the former may provide
a broader picture. As Figure 2 shows we considered 10, 30, 60%
of the most recent parts of it and we compare with the full (100%)
observation window.

The next question we want to answer is what constitutes a mean-
ingful prediction goal and how far can we go with the predictions
from a given stage. For that, we varied the predictions windows
relative to the observation windows: 0.25, 0.5, 1, 2 times the full
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Figure 2: Varying Observation and Prediction Windows

observation window and we observe the prediction accuracy.
We considered two learning algorithms: ZeroR as baseline and

Random Forest as more elaborate algorithm. ZeroR is a naive
algorithm that assigns the most frequent class found in the data.
In this context, we expect high performance if the the prediction
window and the observation window reflect each other by having
high self-similarity. The choice of a random forest algorithm is
connected with its speed and efficiency for training and evaluation
procedures, appropriate for large scale, real-time analysis.

We used a limited amount of simple but dynamic features to
match the scaling of computations in a large scale, real-time sce-
nario and show the feasibility of these methods. We selected
six features that can be easily computed or extracted from the
messages. We group them into two main categories: temporal
and user related features, computed in every observation window.
For temporal features we considered: time elapsed from the last
tweet to the current tweet, cascade duration so far and observation
window duration to the number of retweets. These features show
how viral a piece of information is and how much activity we
observe per time unit.

For user-related features we considered: number of retweet-
ers (=number of unique retweets), average number of retweeters’
followers, audience size of the last hour (= users exposed to the
message). Such features reveal the power of intermediate recipients
and forwarders in the diffusion process.

3. EVALUATION
We collected datasets from Twitter covering the period from

July to September 2012 with the hashtags "Olympics" and "Lon-
don2012", retaining cascades with at least 5 retweets. We ended up
with with 32.584 cascades with message completeness of 97% and
lifetimes between few hours and several months.

Since a fully real-time evaluation for training and predicting is
not our goal, instead we are focused on proving the feasibility of
such an approach, we performed a standard 10 fold cross validation
and reported the average accuracy.

With the results gathered from our experiments, we can provide
initial answers to several hypotheses:

H1: Incremental predictions is a useful approach to tackle the
cascade lifetime prediction problem and yield useful results

According to Table 1, we identify effective predictions: For
100% observation windows, the prediction rates are between 75
and almost 90 %. The results become worse overall the longer the
prediction window is: for short prediction windows, the observa-

tion windows tends to be quite similar to the prediction windows,
yielding also very high scores. For longer predictions windows,
these baselines drop quickly, while Random Forest exploits the
features better and provides higher gains.

Prediction
Window

100% obs.
window

60% obs.
window

30% obs.
window

10% obs.
window

0.25*obs.
window

ZR: 0.89
RF: 0.88

ZR: 0.92
RF: 0.92

ZR: 0.92
RF: 0.92

ZR: 0.91
RF: 0.91

0.5*obs.
window

ZR: 0.69
RF: 0.80

ZR: 0.77
RF: 0.78

ZR: 0.79
RF: 0.76

ZR: 0.76
RF: 0.74

1*obs.
window

ZR: 0.59
RF: 0.77

ZR: 0.68
RF: 0.71

ZR: 0.71
RF: 0.70

ZR: 0.69
RF: 0.70

2*obs.
window

ZR: 0.61
RF: 0.74

ZR: 0.51
RF: 0.63

ZR: 0.53
RF: 0.62

ZR: 0.52
RF: 0.62

Table 1: Prediction Results

H2: Choosing a limited observation window will affect the
prediction quality

H3: An elaborate learning algorithm will provide better results
than a naive, statistical one

As the results in Table 1 show, these two hypotheses need
to be evaluated together. ZeroR, as the naive based algorithm,
yields similar or better results when targeting short prediction goals
(0.25&0.5% × obs.window), meaning that there is high similarity
between the observation window and limited prediction window.

Random Forest nearly always benefits from more available train-
ing data, showing its best performance on the 100% observation
window. At larger prediction windows (1&2 × obs.window),
Random Forest establishes a clear lead over ZeroR, providing gains
up to 18%. For smaller prediction windows, the odds are changing.
At 0.25%, the effect of self-similarity is so strong that ZeroR beats
Random Forest in most cases. 0.5 % is somewhat of the middle
ground, where Random Forest has a very small lead over ZeroR.

Our conclusions from such analysis are that in a real time system,
we can make cheap predictions (up to 0.5 × obs.window) by
monitoring the most recent part of the observation window and
discard the rest of the content. For longer prediction windows
we need information from the beginning of each cascade, which
is more costly to compute in a real-time set up but still feasible.

4. CONCLUSION AND FUTURE WORK
This work sets the baselines for incremental predictions of cas-

cade lifetime. We have proposed a method to overcome the difficul-
ties of skewedness and variability of cascade lifetimes and predict
how much longer they will last. Also, we investigate which parts of
the cascades are more predictive and proposed simple and "cheap"
to compute features that give reasonably good results.

Future work includes the implementation of a real-time predictor
of lifetimes: as well as the investigation of more complex features.
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