
XQuery Reloaded

Roger Bamford3 Vinayak Borkar5 Matthias Brantner2 Peter M. Fischer4
Daniela Florescu3 David Graf2 Donald Kossmann2,4 Tim Kraska4

Dan Muresan1 Sorin Nasoi1 Markos Zacharioudakis3

1FLWOR Foundation 228msec, Inc. 3Oracle Corp.
www.flworfound.org www.28msec.com www.oracle.com

4Systems Group, ETH Zurich 5University of California, Irvine
www.systems.ethz.ch www.cs.uci.edu

Contact: contact@flworfound.org

ABSTRACT
This paper describes a number of XQuery-related projects. Its goal
is to show that XQuery is a useful tool for many different applica-
tion scenarios. In particular, this paper tries to correct a common
myth that XQuery is merely a query language and that SQL is the
better query language. Instead, XQuery is a full-fledged program-
ming language for Web applications and services. Furthermore,
this paper tries to correct a second myth that XQuery is slow. This
paper gives an overview of the state-of-the-art in XQuery imple-
mentation and optimization techniques and discusses one particu-
lar open-source XQuery processor, Zorba, in more detail. Among
others, this paper presents an XQuery Benchmark Service which
helps practitioners and XQuery processor vendors to find perfor-
mance problems in an XQuery processor.

1. INTRODUCTION
XQuery is more than ten years old. Its origins go back to the

QL 1998 workshop held in Boston. Even though the W3C only re-
cently released the XQuery 1.0 recommendation [6], the first public
working drafts were published in 2001.

Originally, XQuery was designed as a query language for XML
data. The goal was to provide the expressive power of a query
language like SQL and, in addition, to support XML-specific op-
erations such as navigation in hierarchical data. From the very be-
ginning, an important feature of XQuery has been the capabilty to
process untyped data. Furthermore, XQuery has been designed to
support the processing of data on the fly or of data stored in the file
system; it is not necessary that the data be stored in a database.

In its early stages, XQuery was quite popular both in indus-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

try and academia. At the beginning of this decade, XML and,
as a consequence, XQuery, was a hot topic at the major database
conferences (SIGMOD and VLDB). Furthermore, all the major
database vendors integrated XQuery into their database products
and made XQuery, like SQL, one possible way to extract data from
a database. Based on user feedback, Oracle has at least 7000 cus-
tomers using this feature.

Arguably, XQuery has been most successful in the middle-tier.
In the middle-tier, XQuery can serve several purposes. One promi-
nent example is the transformation and routing of XML messages
[19]. Another example is enterprise information integration [9]. A
third example involves the manipulation and processing of config-
uration data represented in XML. Obviously, the architecture of
an XQuery processor designed for the middle-tier can vary greatly
from the architecture of an XQuery processor which was specifi-
cally designed for the database.

A recent trend which potentially changes the adoption of XQuery
is that XQuery is being extended by a number of additional fea-
tures. These features go beyond message transformation and XML
query processing for which XQuery was initially designed. Most
prominently, the XQuery Update Facility [16] and XQuery Full-
Text [3] (for XML information retrieval) have been devised and
have reached recommendation status by the W3C. Furthermore,
the XQuery Scripting Facility [15] and extended features such as
the processing of windows for streaming data [14] are under de-
velopment. With all these extensions, XQuery is much more than
merely a query language; it has become an extremely powerful tool
for development of any kind of data processing application.

The purpose of this paper is to revisit the advantages of XQuery
and clarify some of the myths about XQuery which were created in
the early days of XQuery when, indeed, XQuery was just a query
language. Furthermore, this paper gives an overview of XQuery
implementation techniques and presents a number of XQuery-related
activities that are carried out by a group of people at various places
(academia and industry) which were once called (in friendly terms)
“XML extremists” by Jim Gray. These activities include the im-
plementation of two open source XQuery engines, Zorba [28] and
MXQuery [18].

The remainder of this paper is organized as follows. Section 2 re-
visits the pros and cons of XQuery. Section 3 gives an overview of
XQuery implementation techniques. Section 4 presents the design
of one particular XQuery processor, Zorba. Section 5 lists some
projects which were carried out with Zorba. Section 6 contains
conclusions and avenues for future work.

2. WHAT IS XQUERY?
This section revisits XML and XQuery and why we believe that

both are useful tools. Basic familiarity with both XML and XQuery
is assumed. For an introduction to XQuery, the interested reader is
referred to the XQuery specification [6] or some tutorials [26, 52].

2.1 Why XML?
Putting it bluntly, XML is useful because it reduces cost by in-

creasing the flexibility of data management in various ways. Tech-
nically, XML is a universal syntax to serialize data. It is universal
for two reasons. First, XML is platform-independent; i.e., XML
works on all hardware and operating systems. Second, XML is
based on UNICODE so that it supports all languages and alpha-
bets.

The first kind of flexibility XML provides is to dissociate schema
from data. This way, data can exist first and schema can be added
later in a pay-as-you-go manner. Furthermore, this property helps
to process data from legacy applications and archived data. For
example, XML allows to generate data with one application ac-
cording to the specific schema of that application and to process
the data with another application, thereby using a different schema.
This property has made XML an attractive data format for commu-
nication data (i.e., messages or data exchange).

The second kind of flexibility arises because XML is able to rep-
resent a large spectrum of data, from totally unstructured, semi-
structured, to totally structured data. Furthermore, XML is able
to represent data, meta-data, and even code that operates on the
data and meta-data. This kind of flexibility has, for example, made
XML the data format of choice for configuration data.

All these advantages have led to a wide adoption of XML; clearly,
XML is here to stay. However, XML is also heavily criticized and
many application developers avoid the use of XML whenever they
can. First, XML is perceived to be slow, big, and clumsy. That is,
XML data is typically much larger than the equivalent data repre-
sented in a proprietary format. Furthermore, XML processors have
typically worse performance than processors that were specifically
geared towards a specific (proprietary) format. A possible solution
to these problems is the emerging binary XML recommendation of
the W3C [47] which provides a pre-parsed and compressed univer-
sal representation of XML data.

The second critique against XML is that it is perceived to be
complicated. This criticism is mostly directed against XML Schema
[51] which indeed has many features that are rarely used. In prac-
tice, the work-around against this complexity is to use only those
XML and XML Schema features which are really needed.

Obviously, XML is not the only syntax to serialize data. Tra-
ditionally, data exchange between business applications has been
effected with the help of EDIFACT. EDIFACT is fast, but unfor-
tunately, it lacks the flexibility of XML so that it can only be ap-
plied for a specific set of applications. Recently, JSON has been
devised as a way to effect data exchange on the Internet. JSON is
particularly popular for Web mash-ups. It turns out that JSON is
equivalent to XML with similar pros and cons. In fact, for the pur-
pose of this paper which focusses on XQuery, it is safe to use XML
and JSON interchangeably as two different data formats which can
both be processed by XQuery.

2.2 Why XQuery?
As for XML, the goal of XQuery is to reduce cost. What XML is

for the representation of data, XQuery is for the processing of data
and development of data-intensive applications. Again, the magic
lies in increased flexibility.

The first kind of flexibility provided by XQuery is that XQuery
operates on any kind of data. Naturally, XQuery is able to process
XML data. However, as stated in the previous section, XQuery is
just as well able to process JSON, EDIFACT, CSV, or data stored
in a relational database. The XQuery processing model [6] speci-
fies that XQuery expressions operate on instances of the XDM data
model [23] and these instance can be generated from any kind of
data and from any kind of data source.

Secondly, XQuery inherits all the flexibility provided by XML.
In particular, XQuery can process untyped data so that XQuery sup-
ports the “data first - schema later” (or pay as you go) paradigm.
Furthermore, XQuery is a natural choice to process archived data,
communication, and configuration data represented in XML. Fur-
thermore, XQuery is able to operate on the whole spectrum of un-
structured to structured data. For unstructured data, the XQuery
Full-Text extension [3] can come particularly handy. It is notewor-
thy that XQuery programs can be serialized into XML themselves
by the means of the XQueryX recommendation [41] and that most
XQuery processors (including Zorba which is described in detail in
this paper) support an eval function which takes an XQuery pro-
gram as a parameter for execution.

XQuery provides a special kind of architectural flexibility in the
sense that XQuery runs on all application tiers. As mentioned in the
introduction, XQuery runs in the database layer as it has been im-
plemented by all major database vendors (e.g., IBM, Microsoft, and
Oracle) as part of their database products. Furthermore, XQuery
runs in the middle-tier; e.g., as part of the BEA enterprise service
bus or in separate XQuery products such as Saxon, MXQuery, or
Zorba. Finally, as shown in Section 5, XQuery also runs in the
client as part of a Web browser plug-in [30]. This flexibility al-
lows to move code between the application tiers, thereby reducing
operational cost. Data providers, for instance, can chose to move
computation to clients in order to reduce the load on their servers.

A myth about XQuery is that it is not powerful enough to build
whole applications in XQuery and that, as a result, XQuery needs
to be embedded into a host language such as Java or C#. This
myth came from the time in which XQuery was merely a query
language and this myth is supported by the name, XQuery. [35]
reports on experiences gained by implemented a full-fledged enter-
prise Web application entirely in XQuery. One particularly valu-
able advantage of XQuery is that XQuery makes it much easier
to customize enterprise Web applications. The same application
code can be applied to data in different schemas by using XQuerys
flexible data model and the “schema-later” approach of XML. For
instance, if one variant of the application added a field to a spe-
cific business object, then all the existing code is still applicable
to the extended (as well as the original) business object. As a re-
sult, XQuery and XQuery database are naturally multi-tenant and
do not require heavy weight-lifting as is necessary to implement
multi-tenancy in relational database systems [?]. A second advan-
tage of implementing a whole application in XQuery in a single
tier is that code for, say, error handling and checking of integrity
constraints need not be duplicated across tiers.

Like XML, XQuery is conceived by many to be slow and com-
plicated. One of the goals of the authors of this paper is to address
these concerns by building high performance XQuery processors
and by providing best practices and examples that demonstrate the
power and usefulness of XQuery as a programming tool.

Obviously, XQuery has a great deal of competition. For any class
of application, XQuery competes with a number of other program-
ming languages. For instance, Ruby and PHP are particularly pop-
ular in order to rapidly develop (simple) Web applications. Java
and .Net are still the gold standards for enterprise-scale Web appli-
cations. A survey that compares XQuery with other programming
languages and programming paradigms is given in [27].

2.3 What is XQuery?
As mentioned in the introduction, XQuery is a family of recom-

mendations of the W3C. It extends XPath and was co-designed with
XSLT 2.0. As a formula, XQuery can be characterized as follows:

XQuery = Query + Update + Fulltext +
Scripting + Streaming + Libraries

Again, this paper will not give a tutorial on XQuery, but it is worth
comparing XQuery to other programming languages. Database
languages such as SQL typically cover the “Query”, “Update”,
and potentially the “Fulltext” and “Streaming” aspects. General-
purpose programming languages like Java or C# cover the “Script-
ing” and “Libraries” aspects. XQuery does it all. Even though
XQuery is not an object-oriented programming language1, XQuery
is well suited for large-scale structured programming with modules,
as discussed in the previous section and shown in [35]. Classes in
Java correspond to modules in XQuery. Based on our experience,
Java programers learn XQuery very quickly and achieve the same
(and higher) level of productivity for enterprise Web applications
with XQuery. Furthermore, as it will be discussed in Section 4,
modern XQuery processors come with sophisticated libraries and
XQuery allows users to create and publish their own libraries for
re-use.

One noticeable omission in the XQuery family is a data defi-
nition language (DDL) which allows the specification of integrity
constraints, the declaration of schemas, and the definition of a phys-
ical database design with indexes. SQL, obviously, provides such
a DDL and such a DDL is also needed for XQuery applications.
As shown in Section 4, one of the goals of the Zorba project is to
devise and support such a DDL for XQuery applications.

In summary, it can be concluded that XQuery tries to combine
the features of existing programming languages like SQL, Java,
or even PHP. In this way, XQuery allows to implement sophisti-
cated applications in a single tier and with a single uniform technol-
ogy, thereby avoiding impedance mismatches and improving flex-
ibility and customizability. Like SQL, XQuery supports declara-
tive queries and updates; XQuery is able to specify bulk queries
and updates which are best executed inside a database. In addi-
tion, XQuery supports the processing of streams and continuous
queries with windows [11]. XQuery is, thus, able to support appli-
cations which involve complex event processing or the processing
of data from sensor networks. Its full-text extension make XQuery
also a good candidate to process RSS and Atom data feeds or any
other form of unstructured and semi-structured data. Furthermore,
XQuery extends XPath and was co-designed with XSLT 2.0 in or-
der to support message transformations and routing in the middle-
ware. In the middle tier, XQuery is also a good candidate for in-
formation integration as shown by several XQuery-based EII prod-
ucts [9]. XQuery is also a good candidate to implement enterprise
Web applications and sophisticated application logic with strong
typing and libraries. In this respect, XQuery competes with Java
and .Net. In addition, XQuery can be used as a scripting language

1XQuery is a functional programming language. It does not sup-
port inheritance and the bundling of methods and data in classes.

Serializer

Connector

Parser

Runtime

Optimizer

XQuery(X)

Schema

XML

Other
Data

XML
HTML

Other
Data

Store

Normalizer/
Validator

Parser
(Validator)

Connector
XDM

Code
Generator

Data Access API
Indexes

Runnable
Expressions

XDM

Operation Tree

Normalized/Validated
(Typed) Operation DAG

Rewritten
Operation DAG

Static Analysis
Compilation

Dynamic
Evaluation

Figure 1: XQuery Processor Architecture

with untyped and possibly unstructured data. XQuery is also a vi-
able option to implement mash-ups and RESTful services. Finally,
XQuery supports the event-based programming of graphical user
interfaces; here, XQuery competes with JavaScript as a program-
ing language for the Web browser [30].

3. XQUERY PROCESSING TECHNIQUES

3.1 Architecture of an XQuery Processor
The XQuery specification specifies a processing model to eval-

uate XQuery programs [6]. This processing model prescribes par-
ticular operations and interactions, but does not specify how to im-
plement them.

Figure 1 gives a generic architecture that most XQuery proces-
sors have adopted. This architecture is also related to the architec-
ture used by most query processors of relational database systems
and compilers/runtime systems of general purpose programming
languages [2].

The most remarkably difference to traditional database architec-
tures is the explicit use of XML parsers or other connectors in or-
der to process data from external data sources and produce query
results that can be consumed by other applications. Internally, all
data is processed as instances of the XDM data model [23]. An
XDM instance is an ordered sequence (or list) of items where an
item is either an atomic value (e.g., an integer or string) or a node
(e.g., an XML element or an XML attribute). Naturally, any XML
data, a JSON object, or a relational table can be represented as an
XDM instance which makes XQuery a candidate to process any
of these kinds of data. If the XQuery processor is associated to a
database, then that database would store its data as XDM instances.
As explained below, the “Store” component of the XQuery proces-
sor provides a uniform way for the XQuery processor to access all
data.

The following briefly summarizes the most important compo-
nents of an XQuery processor:

1. Parser: The parser retrieves a textual representation of an
XQuery program and generates an “operator tree” as an in-
ternal representation of the program. Since XQuery is a func-
tional programming language, each node of the operator tree
represents an “expression” of the XQuery program. Building
an XQuery parser is quite challenging as the language has no
keywords; this feature is part of the XPath legacy of XQuery.

2. Normalizer+Validator: This component checks references to
namespaces, types, variables and functions. By resolving the
variable references, it effectively turns the operator tree into
a directed, acyclic graph. Furthermore, implicit operators
such as casts are added to the operator tree according to the
XQuery formal semantics [21]. If static typing is supported
(which is an optional feature of XQuery), type information is
inferred and checked for the expressions.

3. Optimizer: As in any other programming language, the goal
of the optimizer is to transform the operator tree into an
equivalent operator tree with lower expected running time
or resource consumption. There are a myriad of different
approaches and techniques in order to improve the perfor-
mance of an XQuery program, including almost all tech-
niques known from relational databases (e.g., access path
selection and join ordering). As in traditional database sys-
tems, query optimization at compile-time can be based on
heuristics or on cost estimations. This aspect is revisited in
Section 3.2.

4. Code Generator: Again, as in any other system the generated
code can be interpreted (using a runtime system) or compiled
directly to a specific target hardware. Both approaches can
be found in state-of-the-art XQuery processors.

5. Runtime: As in traditional (relational) database systems, the
runtime system of an XQuery processor is typically orga-
nized using the iterator model [31]. That is, each basic ex-
pression of the XQuery language is implemented as an it-
erator with an open, next, close interface. Again, like in a
traditional relational database system, there may be alterna-
tive implementations for the same kind of expression (e.g.,
different join algorithms) and the selection of the most bene-
ficial implementation is made by the optimizer and the code
generator.

6. Store: The Store maintains a collection of all XDM instances
and provides a uniform interface for accessing items (e.g.,
nodes) of these XDM instances. As shown in Figure 1, the
Store also integrates data from external data sources (push
and pull). In order to do that, the Store contains a URI-
resolver and fetches documents and collections identified by
their URI from the Internet or its local database. The Store is
also the component which synchronizes concurrent accesses
to the data if an XQuery processor is used in a multi-threaded
mode or several instances of an XQuery processor work on
the same data concurrently. Depending on the usage sce-
narios (database, ad-hoc transformations, streaming) and the
required functionality, the store requirements and optimiza-
tions in the Store can vary significantly.

7. Schema: In contrast to relational databases, schema man-
agement is an optional feature of an XQuery implementa-
tion. Nevertheless, all serious XQuery implementation sup-
port schema because schema information is needed for many
applications (in particular, enterprise applications) and it can
be useful for optimization.

3.2 Implementation Variants
This section gives an overview of implementation variants of the

individual components of an XQuery processor and outlines the
current best practices. As mentioned in Section ??, XQuery can
be used in a wide spectrum of scenarios with varying requirements
and thus different design decisions. In general, most implemen-
tations can be classified in one of the following three categories:
lightweight, full, or relational. Lightweight implementations are
typically used for ad-hoc transformations, embedding in other plat-
forms or scripting. Full implementations are often used in the con-
text of native XML databases and are more concerned about com-
pliance and index usages, whereas relation engines are XQuery im-
plementations based on relational databases. Of course, this clas-
sification might not fit for all implementations, but it demonstrates
well the design space of implementations.

3.2.1 Parser, Normalizer & Validator
XQuery is a keyword-free language. As a result, lexer and parser

generators are harder to apply if meaningful error codes and mes-
sages are required. Therefore, most XQuery processors, indepen-
dent of the previously established classification, use hand-written
parsers in order to maintain full control over the parsing phases.

Two common approaches exist to express the operator tree cre-
ate by the parser: Lightweight and full implementations typically
use an operator tree format which is designed along the lines of
the XQuery operator specification, as this is a good way to achieve
compliance. In contrast, relational implementations use an extended
relational model as their intermediate representation. This exten-
sion of (conventional) relational algebra is required to deal with
some of the specifics of XQuery, such as path expressions, element
construction or general comparison. Not stating those constructs
explicitly in the tree would make the optimization process much
harder [5].

3.2.2 Compiler Architecture & Optimizer
Although the stages of parsing, normalization, and optimiza-

tion with an accompanying framework and graph representation
are state-of-the-art, lightweight implementations often avoid the re-
lated overhead by just having a single stage and representation. As
shown in the case studies performed on XQRL [24], for many sce-
narions the compilation time exceeds query execution time by an
order of magnitude if a multi-stage approach is used.

Therefore, lightweight engines parse the query directly into the
runtime operators and perform transformations and optimizations
directly on this operator tree. This yields fast compilation times
while at the same time making the engine smaller and, hence, suited
for small devices (e.g., MXQuery). The optimization itself is typ-
ically rule-based without schema awareness: A set of carefully or-
dered transformation rules is used to optimize the operator tree.
Only the type information present in the expression definition is
considered, but not additional, derived information provided by
schema. However, in such an engine, adding additional optimiza-
tion rules soon becomes very complicated. Optimization rules of-
ten depend on each other and require a carefully set execution order
which is hard to control without an appropriate optimization frame-
work.

Given their more traditional (database) workloads, full imple-
mentations typically prefer to use multiple stages and separate rep-
resentations of logical and physical plans. The logical represen-
tations closely follow the XQuery expressions as defined in [6],
thus simplifying translation and re-ordering of expressions. Again,
rule-based optimization is common practice in this category of im-
plementations. Furthermore, full XQuery implementations provide

schema support, as annotating the query plan with schema-derived
information allows for optimizations such as general comparison
rewrites. Given the complexity of XML Schema, almost all imple-
mentations try to build on top of an existing library. Xerces [?] has
become the de-facto standard in this regard.

Relational implementations try to leverage their existing opti-
mization frameworks and cost-baseds models as much as possible.
Schema information is particularly important in this regards, hence
almost all relational implementations rely on it and thus provide
the necessary support. An extended version of the relational al-
gebra is typically used as logical representation. The extension is
made for the XQuery specific operators such as path expressions.
Stating those expressions explicitly simplifies the optimization pro-
cess. Even though relational implementations try to use their exist-
ing cost-based optimizer, the relevant cost models for XQuery have
not yet reached a sufficient degree of maturity. Therefore, even for
relational implementations, most of the XQuery-specific optimiza-
tions are still overwhelmingly rule-based instead of cost-based.

3.2.3 Optimizations
Standard XQuery-specific optimizations include join detection,

constant folding, avoiding duplicate elimination, document order-
ing and node identifier operations [24]. Join detection allows re-
placing nested-loop joins (implied by the XQuery syntax and the
ordering constraints) by more efficient join algorithms, which is
particularly important for large data sets. Constant folding allows
pre-computation of partial results and simplification of expressions.
Duplicate elimination and document ordering are implied by the or-
dered nature of XDM and the semantics of many expressions, most
prominently path and set expressions. Since their implementations
tend to be expensive and pipeline-breaking, it is therefore impor-
tant to only instantiate them when absolutely necessary. Since they
typically rely on XDM node identifiers, eliminating them also helps
in avoiding to generate node identifiers, which is one of the most
expensive operations at the store level.

Other notable optimizations are the elimination of non-forward
axes (parent, pre-sibling etc.) of path expressions and optimizations
regarding general comparison. Using only forward axes allows
tremendous simplifications and optimizations for the store, in par-
ticular enabling streaming execution of data accesses. Optimiza-
tion regarding general comparison is one of the most performance-
critical factors. Given the syntax of XQuery, users tend to write
general comparisons (e.g, =, <, <=) even though a simple com-
parison (e.g., eq, lt, gt) would have been sufficient. General com-
parisons are expensive in two ways: Expressing the type casting
and existential quantification required by the semantics of general
comparison leads to complex implementations that can cost up to
orders of magnitudes more than simple values expressions. In ad-
dition, general comparison is neither transitive nor reflexive, thus
prohibiting many other optimizations and complicating the use of
indexes. XML Schema often provides the information needed to
rewrite general comparisons into value comparisons.

3.2.4 Runtime
Runtime implementations differ mainly in the following tech-

niques, independent of the targeted use-case: iterator model (pull
vs. push), runtime operators (relational vs. XQuery expressions),
and internal data model representation (tokens vs. items).

Iterator Model. Most runtime implementations follow a pull-
based iterator model as described earlier. Iterators allow for lazy
evaluation and streaming execution, so that the runtime can deal
with recursive function calls and data streams - also infinite data

in the case of stream queries. Since materialization of intermedi-
ate results is avoided, the required memory footprint for process-
ing is minimized. Unfortunately, the depth and nesting of XQuery
operator trees often cause bad cache behavior and a high number
of function calls between iterators. This is particularly bad if a
fine-grained internal data representation, such as tokens, is used in
combination with a lazily evaluated iterator model.

Therefore, some engines forego the iterator model and compile
the code into native code or their own virtual machine code (e.g.,
MonetDB or Oracle). Consequently, such runtimes are rather push-
based and apply a single operation at the time on the whole input
data set before they forward the complete result to the next opera-
tions. Such an approach increases the cache locality and better uti-
lizes the pipeline architecture of modern CPUs. On the other hand,
this requires materializing the intermediate results, thus increasing
the memory footprint and prohibiting lazy evaluation. Saxon is an
example for an engine positioned between those extremes: It partly
compiles the iterator tree into Java code and mixes push and pull
depending on optimization heuristics. Oracle also performs this
mixture of push and pull, using different operator implementations
for different requirements.

Runtime Operators. The types of operators also differ. In con-
trast to engines extended for supporting XQuery (e.g., MonetDB,
DB2, Oracle), the runtime operators of pure XQuery engines such
as Saxon, MXQuery or Sedna closely follow the XQuery expres-
sions [6]. Most fundamentally, the issue of expressing the stream of
variable bindings in FLWOR expressions (also called tuples needs
to be handled. An example of a such a tuple stream would be
($x=1,$y=3),($x=2,$y=3), produced by the expression for $x in
(1,2) let $y := 3. These tuples cannot be expressed using XDM,
so several approaches have been proposed: 1) extending the inter-
nal data model beyond XDM to provide tuple boundaries or groups
2) Encapsulating the tuple binding logic in single FLWOR opera-
tor orchestrating the operations of the for and let implementations.
3) Eliminating the variables altogether and provding XDM streams
created by operators like joins. Whichever variant (or combination
of variants) is chosen, it needs to provide enough flexibility to in-
corporate special operators such optimized join implementations.
Furthermoe, is should cater for the extended, general FLWOR se-
mantics of XQuery 1.1, which add operators such as outer for,
count or group by and allow to freely combine all FLWOR con-
structs in any number and order, including multiple order by or
where clauses.

Internal Data Model. Finally, the internal data model repre-
sentation, i.e. the representation of the smallest object transferred
between the operators, varies from items (Saxon) to tokens (MX-
Query, XQRL). The item representation is closest to the XQuery
Data Model (and thus the specification). Items may represent a sin-
gle atomic value such as a string or even a complete XML tree/
document, whereas tokens are of smaller granularity and can be
compared to (typed) events generated by a SAX parser. Although
tokens are fast to generate by a suitable parser and allow for lazy
evaluation even inside an XML item, they often require invoking
every iterator several times to produce the content of single item of
the result set. Hence, a more coarse-grained model, such as items,
is often superior to tokens, reducing the required amount of func-
tion calls to generate a result.

General Runtime Optimizations. Independent of the choice
of the internal representation, the iterator model and and the run-
time operators, the optimizations of general comparison, numerical
operations and FLWOR expressions are applicable to all architec-
tures:

As for the compiler, general comparison is also an issue inside
the runtime. The optimizer is often not able to substitute gen-
eral comparison by value comparison. As mentioned before, gen-
eral comparison is especially complex because of the applied rules
specified in the specification. Thus, spending time to optimize the
general comparison quickly pays off. The standard approach is to
optimize the implementation for the common case, i.e, a simple
value comparison, with exceptions and fall-back mechanisms for
the less likely truly general comparison situation.

Another experience concerns operators for numerical values, as
the numeric types defined in XML Schema (and used by XQuery)
do not completely correspond to native machine types. When striv-
ing for compliance, this means that very generic data types such
as BigDecimal in Java or MAPM in C++ need to be used, causing
significant performance degradation. As the precision applied by
XML Schema is usually only required in corner cases, implemen-
tations often introduce two internal representations: one following
the exact specification and another, faster one using native types.
Furthermore, operations on numerics such as plus or minus, again
have complex typing rules making the implementation slower even
if the types are known and no casting is required. Hence, best prac-
tise is to implement special operators optimized for the different
types. Actually, the same experience applies to string representa-
tions (e.g., ASCII, UTF8, UTF16 etc).

The FLWOR expression introduces additional complexity: the
so-called tuples, which represent variable bindings (no to be con-
fused with relational tuples). Older approaches like XQRL made
the tuples explicit inside the data model representation, thus sub-
stantially complicating the process of bindings and other iterators.
More recent approaches (such as MXQuery) use special FLWOR
operators to encapsulate this logic, hence simplifying the overall
engines design.

3.2.5 Store
Design aspects of store implementations can roughly be described

along the following lines: General design principles, usage-specific
implementations and indexing.

General Design Principles. Certain methods and aspects are
common for all types of stores. First of all, since XDM mandates
that all nodes must have a way to identify them, implementations
of node identifiers need to be provided. It is now common practice
to also express structural constraints such as document order and
parent/child-relationships in the node identifiers to simplify path
expressions, set operations, duplicate elimination and document or-
dering. For updatable stores, Ordpath [43] is the state-of-the-art
method, for read-only stores Dewey IDs [50] are used, which both
encode the document structure in a compact way. Therefore, all op-
eration requiring structural constraints can be supported efficiently.
Generating and maintaining node identifiers is expensive, both in
terms of computational cost and memory overhead. As outlined
above, in many use cases, an optimizer can decide to avoid gener-
ating them.

Furthermore, the store is responsible for generating the internal
data representation of XDM. Parsing and object creation have been
determined as the major cost drivers. This is of particular concern
if only fragments of the documents are needed and/or in the case of
one-time transformations and streaming. Hence, document projec-

tion [40], comparable to projection push-downs, is one method to
speed up the processing of document parsing and at the same time
minimizing the work for the runtime as much as possible.

In the same region of optimizations regarding the store is the
use of object pools and dictionaries for namespaces, elements and
strings. The latter allows performing comparisons based on point-
ers instead of, for example, the string representation for element
names.

Usage-specific Implementations. The main differentiators
for storage implementations are the usage scenarios and the sup-
ported functionality. Since several XQuery engines will cover a
range of usage scenarios and functionalities, they provide multiple
different store implementations, and choose the most appropriate
one depending on the required workload. For example, MXQuery
has dedicated stores for read-only queries, full-text, streaming and
updates/scripting.

Usage scenarios range from the classical database scenario of
preloaded and heavily indexed XDM collections (DB2, Sedna, Mon-
etDB) over the XML transformations and scripting scenario with
(partial) ad-hoc materialization of items (Saxon, XQRL, MXQuery)
to the XML data stream processing scenario in which subsets of the
infinite XDM stream need to be buffered (MXQuery).

Among the different sets of supported functionality, the differ-
ence between read-only (XQuery, XQuery Full Text) and updatable
(Update Facility, Scripting) XDM stores is most important: updat-
able stores need to provide facilities to support snapshot semantics
(in order to cater for concurrent updates), revalidation support if
typed XDM (Schema) is used, updatable node identifiers and the
possibility to push the XDM updates to external data (e.g. by per-
forming XML file modifications).

Beyond updateable/non-updateable, the store implemenatations
can be categorized in several dimensions: First, stores can be di-
vided into in-memory (e.g., XQRL, Saxon and MXQuery) and per-
sistent stores (MonetDB, DB2, Sedna). Second, the storing tech-
nique can be roughly grouped into binary XML stores (XQRL,
Sedna, Saxon, MXQuery), relational edge-stores (MonetDB), and
hybrid relation/XML binary stores (DB2, Oracle). The storing tech-
niques itself may be split according to the various ways of shred-
ding into relational tables [25] or the different XML binary encod-
ings [34, 4]. Comparing all these approaches is beyond the scope
of this paper.

Indexing. Indexes play a similarly important role for XQuery as
for SQL engines. However, data types and general comparison
often complicate the use of indexes in queries, especially tempo-
rary ad-hoc indexes. It is therefore essential to have a clean index
interface to provide the necessary information for such optimiza-
tions. Three types of indexes are important for XQuery: structural,
value and full-text indexes. While full-text indexes are rarely im-
plemented, structural and value indexes can be found in most im-
plementations. Value indexes particularly vary in the way they are
created. An approach implemented in XQRL indexes certain path-
expressions (e.g., /author/name), thus creating one value index per
path. Alternatively, e.g., in DB2, structural and value indexes are
combined. For the actual index structure hash tables or B-Trees are
the common approaches.

3.3 Overview of XQuery Processors
The W3C (http://www.w3.org/XML/Query/) lists more than 50

XQuery implementations. Most XQuery processors are targeted
either for XML message transformation or for use with a native
XML store. Only a few XQuery processors are integrated into an

http://www.w3.org/XML/Query/

Engine XQRL/BEA [24] MXQuery [18, 11] Saxon [36, 37] Sedna [48, 29] MonetDB [17, 8, 7] DB2 [33, 45, 5] Oracle [?] Zorba [28]

Features
XQuery 1.01

Update2

Scripting2

XQuery1.0 (99%)
XQuery 1.14

Update
Full-Text4

Scripting

XQuery1.0
(100%)
Update

XQuery1.0
(98.8%)
Update3

Full-Text3

XQuery1.01

Update
XQuery1.01

Update

XQuery 1.01

Update4

Full-Text4

Scripting4

XQuery1.0 (99%)
XQuery 1.1
Update
Scripting

Parser
Optimizer

•XQuery
operator rep-
resentation
•Rule-based
optimization

•Direct Transla-
tion
•No optimizer
framework
•Simple Re-
Write rules

•Direct Transla-
tion
•Simple opti-
mizer framework
•Simple Re-
Write rules

•XQuery
operator rep-
resentation
•Rule-based
optimization

•XML Ext.
Relational
Algebra
•Rule-based
optimization

•XML Ext. Rela-
tional Algebra
•Rule and
cost-based opti-
mization

•XML Ext. Rela-
tional Algebra
•Rule and
cost-based opti-
mization

•XQuery opera-
tor representation
•Rule-based opti-
mization

Internal
data
represen-
tation

Token Token Item Item Token/Relational Item/Relational
Item/Relational/
VM Sequences Item

Processing
Model

•Pull
•Streaming
•Iterator

•Pull
•Streaming
•Iterator

•Pull&Push
•Streaming &
Materialization
•Iterator &
compilation

•Pull&Push
•Streaming
& Material-
ization
•Iterator

•Push
•Materialization
•VM lan-
guage

•Pull
•Streaming
•XML-Extended
Relational DB2
engine

•Pull&Push
•Streaming &
Materialization
•Hybrid Rela-
tion/VM

•Pull
•Streaming
•Iterator

Store Fixed Store

•Plugable Store
•Specialized
Stores for Full-
Text, Streaming,
Updates etc.

•Plugable Store
•Different read-
only implementa-
tions

Binary Store
Relational
Column
Store

Dedicated Binary
XML Stores

Hybrid Ap-
proach: Rela-
tional and Binary
XML

Plugable Store

Indexes

No index
support -
pure stream-
ing

•Full-Text index
•Restricted value
index

•Structural index
•Value index

•Structural
index
•Value
index

Relational
Index

Combined struc-
tural and value in-
dex

Structural and
value indexes Value index

1No conformance numbers available 2Not officially published [10] 3Own syntax, not compliant 4Partially implemented

Table 1: XQuery Implementations (as of June 2009)

existing relational database system.
Table 1 gives an overview of the features of eight XQuery pro-

cessors. XQRL, MXQuery, and Saxon are middleware products
which do not include a persistent store. Sedna is based on a native
XML store. MonetDB, DB2, and Oracle include XQuery as part
of their relational database products. Zorba is explained in more
detail in the next section.

One of the first commercial XQuery processors was XQRL [24].
Its algebra and operators are closely aligned with the XQuery op-
erators. XQRL implements a traditional pull-based iterator model
with tokens as internal representation.

MXQuery was designed following the same principles as XQRL,
but in contrast to XQRL it runs on small devices. Hence, MXQuery
does not have the complexity of an optimizer framework and di-
rectly translates the query into operators. The store of MXQuery
is only responsible for materializing input documents, intermediate
results and ad-hoc indexes. To deal with the different requirements
and indexes, MXQuery makes use of specialized stores for different
features (such as streaming or full-text).

Saxon is one of the most mature XQuery implementations. Saxon
combines several interesting architectural aspects. First, Saxon ap-
plies a direct compilation of XQuery programs into an (executable
/ interpretable) operator tree, similar to the approach taken by MX-
Query. Other than MXQuery, Saxon performs more advanced trans-
formations and optimization on the (executable) operator tree. Fur-
thermore, Saxon partly compiles iterators of the operator tree into
Java Code and switches between pull- and push-based execution.
The store is exchangeable, but no persistent store exits to date.

Sedna is an XQuery implementation based on a native XML
store. Sedna implements the standard layered architecture. In-
terestingly, the execution is pull- and pushed-based, dynamically
switched at run-time.

MonetDB is a relational XQuery processor. XQuery expressions
are first compiled by the Pathfinder frontend into relational algebra
expressions extended by certain functionality (e.g. staircase-join)
and afterwards from MonetDB into the so-called MonetDB Assem-

bly Language (MAL). The MAL code is then interpreted with an
engine particularly tuned for array-processing in a one-operator at
a time (per CPU) manner forcing to materialize all intermediate re-
sults. As storage, MonetDB’s relational column store together with
a pre-/post-based tree encoding into relational tables is used. Thus,
no extra XML encodings or indexes exist.

DB2 is another XQuery implementation based on a relational
database system. Like MonetDB, DB2’s XQuery processor ex-
tends the relational algebra by XQuery-specific operators such as
path expressions and element constructors. As a result, both SQL
and XQuery are compiled into the same internal (extended) repre-
sentation and (in theory) the same optimizations are applied to both
kinds of programs. The DB2 store is a hybrid relational and native
XML store. That is, a dedicated XML encoding exists inside the
database. Furthermore, DB2 provides special region indexes for
faster XML lookups. In addition, XML data can be indexed by a
combined structural and value index.

Oracle XML DB is a hybrid query processor, combining XQuery
push-down to an extended relational algebra (lazy evaluation) and
a pure XQuery virtual machine (eager evaluation). In particular,
XScript is compiled into virtual machine code. The query en-
gine does XML storage/index dependent optimizations for differ-
ent XML storage/index forms: structured XML with an object re-
lational storage, semi-structured and content XML with a binary
XML storage.

4. ZORBA
This section describes Zorba, an XQuery processor which was

recently developed as a joint effort between the FLWOR Founda-
tion, 28msec Inc., Oracle Corp., and ETH Zurich.

4.1 Motivation
Zorba is an open-source XQuery processor which can be freely

copied, distributed, and altered (Apache 2.0 license). It is writ-
ten in C++, and adopts the latest optimization techniques in or-
der to achieve good performance (Section 3). In the same way as
performance, standard-compliance has been a primary goal of the
Zorba project from the very beginning. Zorba fully implements all
XQuery-related recommendations of the W3C, including scripting
and continuous queries with windows, which are W3C recommen-
dations still under development. The only exception is XQuery
Full-Text; we will start implementing Full-Text hopefully at the
end of 2009.

One particular feature of Zorba is that it provides a public Web-
based interface at http://try.zorba-xquery.org. This way, anybody
can experiment and test XQuery programs without the need to in-
stall an XQuery processor, especially with regard to features and
extensions that have not seen adoption in other implementations.
Query plans and optimizations can be studied on the fly, since this
information is also exposed in an easy-to-understand graphical for-
mat.

Furthermore, Zorba features a debugger and a performance pro-
filer which lists how much time was spent in each XQuery function
for a given execution of an XQuery program. Such tools are typi-
cally provided for general-purpose programming languages such as
Java, C#, and C/C++. Supporting them in Zorba shows how close
XQuery has already come to be a general-purpose programming
language.

As shown on the W3C Web pages, there are dozens of XQuery
processors already. Many of these processors are mature and have
very high quality. Why yet another XQuery processor? There were
two main reasons that motivated the work and design of Zorba:

• Pluggability: We wanted to have an XQuery engine that can
be embedded into other systems. Given the broad range of
applications that could benefit from XQuery (Section 2), it is
clear that there is no one-size-fits all system that will support
all these applications. The most important components of
an XQuery processor, however, should be reused across all
these systems.

• XQuery Extensions and Libraries: We wanted to have a plat-
form that allows us to implement the necessary extensions
and libraries that we believed are still missing in order to
help XQuery come to a break-through.

The remainder of this section shows how Zorba achieves this
pluggability and the XQuery extensions and libraries that we have
added to Zorba.

4.2 Pluggable Store
Revisiting Figure 1, Zorba implements all components of an

XQuery processor. As will be shown in Section 5, there is one
component which plays a particular role when embedding Zorba
into another system: the Store. In order to use Zorba as an XQuery
front-end for a MySQL database, for instance, the parser, normal-
izer, etc. of Zorba need not be changed. Only the Store needs to
be changed in order to serve XDM instances to the Zorba runtime
system from the MySQL database.

In order to make the Store pluggable, the Zorba Store API was
designed carefully. As stated in Section 3.1, the main purpose of

the Store is to serve instances of the XQuery data model. As a
consequence, the Store API involves all accessors of the XQuery
data model, as defined in [23]. Furthermore, the Store API involves
functions in order to apply pending update lists (PULs), as defined
in the XQuery Update specification [16].

When designing the Store API, there is a delicate trade-off with
regard to the internal representation of atomic values such as strings,
numerics, and dates. Different Stores may wish to have differ-
ent representations for these atomic values. For instance, a string
is represented differently in a Web browser than in a relational
database, if one would like to embed Zorba both in a Web browser
and in a relational database system (Section 5). Likewise, the im-
plementation of node identifiers which are required in order to com-
pare two nodes ([23]) may vary between Store implementations.
Allowing Store implementers to have their own representation for
these data types provides Store implementers with the maximum
flexibility to implement these data types and their operations (e.g.,
string concatenation) in the most efficient way. On the other hand,
however, many Store implementers do not wish to implement their
own data types and functions on them. As a result, Zorba has de-
fault implementations for all data types as part of its default Store
implementation and provides the flexibility to override these de-
fault implementations with other implementations. Unfortunately,
this flexibility comes at a cost, both in terms of performance and de-
velopment effort, if Store implementers wish to provide their own
implementation. In terms of performance, each access to the store
involves a virtual (C++) function call. In terms of Store implemen-
tation effort, implementers must provide implementation of prim-
itives to atomic data types (e.g., arithmetics) if they wish to pro-
vide their own implementation of atomic types and avoid paying
the price for data marshalling.

4.3 XQuery Extensions
We have proposed many XQuery extensions in the past. Some of

which are currently under development as part of XQuery Script-
ing and XQuery 1.1. This section lists additional extensions to the
XQuery language that we feel are important and that we have im-
plemented as part of Zorba.

4.3.1 REST and Web Services
Service-oriented software architectures are beginning to play a

dominant role, both in large-scale enterprise applications and in
more light-weight Internet mash-ups. Obviously, XQuery program-
mers should be able to integrate (i.e., call) services provided by
others using both REST and Web Services protocols. Furthermore,
XQuery programmers should be able to easily expose their own
modules as services which can be called, again, using REST and/or
Web Services protocols.

An initial design how to expose XQuery modules as Web Ser-
vices and call other Web Service using XQuery was devised in [44].
We have extended this design and adopted it to REST. The corre-
sponding specifications have been submitted to the W3C [22, 20].
Furthermore, the REST proposal has been implemented in Zorba
and both REST and Web Services have been implemented in MX-
Query. Implementing these extensions in an XQuery processor like
Zorba or MXQuery is straightforward.

4.3.2 Data Definition Language
As stated in Section 2, XQuery currently does not provide a syn-

tax to define integrity constraints and declare indexes or collections.
Clearly, such features are very useful and as a result, we have de-
veloped our own syntax. The following shows how a unique in-
tegrity constraint can be specified in a collection with a given URI;

http://try.zorba-xquery.org

in XQuery, a collection (of items) plays the same role as a table (of
tuples) in SQL:

declare integrity constraint URI
on collection URI $var
check unique keys
(<expr1>, ..., <expr n>)

In this clause, “$var” is bound to each item of a collection and
can be used as a free variable in the expressions which specify the
key of the collection. This syntax allows the definition of compos-
ite keys by giving more than one expression in the list of expres-
sions. As a typical example, this syntax could be used in order to
define that the social-security number (i.e., $var//ssn) is a key in a
collection of employees.

The following syntax can be used in order to define referential
integrity between foreign keys in items of a collection, identified
by URI1, and keys of items in a collection, identified by URI2:

declare [unchecked] integrity constraint
foreign key

from collection URI1 node $x
keys ($x/a, $x/b)

to collection URI2 node $y
keys ($y/foo, $y/bar)

4.3.3 Time Travel and Versioning
Recently, time travel has become popular in relational database

systems [?]. The idea is to ask queries as of a certain point in time.
This technology could, for instance, be used in order to look up
the old address of a customer who has recently moved. The key
idea is to extend the data model and make it a temporal data model
in which each data item is associated a range of time stamps that
indicate in which time frame the data item was valid.

This concept of a temporal data model which keeps versions of
each data item can be naturally applied to XQuery. The XDM data
model extensions are along the lines of the extensions for relational
data. In order to implement time travel queries, we are propos-
ing to extend XPath steps by an additional dimension which allows
navigation in time (in addition to navigation along parent/child re-
lationships). For instance, the following query would refer to the
first (outdated) address which was ever recorded in the database for
the customer with id 4711:

//customer[id eq "4711"]/first::address

Just as for the navigation of XML trees, there are a number of
different steps which are supported along the time dimension: (a)
first navigates to the first version and corresponds to the root step
in the navigation of the tree; (b) former navigates to the previous
version (pendant to parent); (d) current denotes the current ver-
sion (pendant to self) (c) all-former returns all previous versions,
without the current (ancestors); (e) all-former-or-current returns
all previous version, including the current version (f) next navi-
gates to the next version (child); (g) all-next returns all succeeding
versions, excluding the current version (descendant); and (h) all-
next-or-current returns all succeeding versions, including the cur-
rent version (descendant-or-self). There are two time steps which
have no equivalent in the tree navigation world: First, last navi-
gates to the last version of an element which has been committed
to the database. Second, latest navigates to a possibly uncommitted
version of an element that has been created as part of the (running)
transaction.

4.4 XQuery Libraries
This section describes several functions and libraries that we

have implemented as part of Zorba. Providing such libraries does
not require a change or extension to the XQuery programming lan-
guage and fits nicely into the XQuery programming model. Many
of these libraries can also be found in Java and implementing them
in XQuery is an attempt to close the gap to Java. It is worth to note
that a great deal of Java libraries (e.g., Java util or threads) is not
needed in XQuery because the corresponding functionality (e.g.,
handling collections) is already built into XQuery.

4.4.1 Collection Functions
As mentioned before, collections in XQuery play the same role

as tables in SQL. The name of a collection is represented as a URI
and the standard XQuery function library provides the “fn:collection”
function which returns all items of a collection given the URI of the
collection. Unfortunately, the XQuery standard does not provide
functions in order to manipulate collections; i.e., insert and delete
items from a collection, creating and dropping collections. This
gap is closed by the collection library implemented in Zorba.

4.4.2 Graphs and N:M Relationships
As in SQL, it is possible to implement keys and foreign keys us-

ing values; e.g., the SSN of an employee, as described in Section
4.3.2. An alternative way which is advocated by RDF is to im-
plement references to nodes using URIs. In order to support this
approach, Zorba implements two functions:

• ref(node): Given a node (e.g., an XML element or a JSON
object), provide the URI of that node.

• deref(URI): Given a URI, return the referenced node.

As mentioned in Section 3.1, URIs are generated and resolved by
the Store.

4.4.3 Eval Function
Zorba implements a special (higher-order) function, called eval,

which takes an XQuery program as a parameter and executes it.
The XQuery program may have free variables (i.e., parameters) and
bindings can be specified as part of the call to the eval function.

4.4.4 Tidy
Zorba (and also MXQuery) have a built-in library that takes ar-

bitrary HTML and XHTML as input (including non-standard and
erroneous HTML), cleans it, and returns it as a string or XDM in-
stance which can then be used for XQuery processing. The Zorba
implementation is based on the open source Tidy library available
at “http://tidy.sourceforge.net/”. Such a library is extremely useful
in order to implement Web mash-ups with the help of XQuery.

4.4.5 JSON
As mentioned in Section 3, XQuery was designed to process any

kind of data. The W3C recommendations specify how to consume
XML data and generate XML or HTML as query results. Zorba,
however, is able to consume and generate JSON data just as well.
This way, XQuery can be used in order to write Web mash-ups
which involve JSON and/or XML data sources.

In order to effect JSON as a first-class citizen of every Zorba
program, Zorba adopts the XML-JSON mappings proposed in [49].
The basic idea is to map JSON key-value pairs into a pair of XML
elements having a name and type attribute. For example,

{ key1: value1, key2: value2 }

map to

<pair name="key1" type="typeOfValue1">
xmlOfValue1

</pair>
<pair name="key2" type="typeOfValue2">
xmlOfValue2

</pair>.

Here, typeOfValue1 is the XML type associated to value1 (e.g.,
xs:string if value1 is a simple string and not nested); accordingly,
typeOfValue2 is the XML type assocated to value2. xmlOfValue1
is a serialization of value1 in XML, thereby recursively applying
the same JSON to XML mapping rules if value1 is nested. This
way, the nesting of objects in JSON is naturally implemented by
the nesting of elements in the mapped XML.

JSON arrays are mapped into sequences of XML elements; in
such a sequence, each element has a “type” attribute. “values”,
“numbers”, and “booleans” are mapped to XDM atomic values of
type “string”, “decimal”, and “boolean”, respectively.

The mapping works in both directions and, as a consequence, all
results of an XQuery program can be serialized to JSON. How to
map XML to JSON is specified as part of the JSonML specification
[13].

4.4.6 E-Mail
Zorba also provides a library to send and receive E-Mails. This

library can be configured to use specific SMTP, POP, and IMAP
servers and to provide the user credentials (for security) when-
ever interacting with these servers. The Zorba library is able to set
header information (e.g., the “to” or “reply-to” fields) and is able to
handle multipart mime-encoded content (i.e., attachments). Similar
libraries have also been implemented for Java. The Zorba imple-
mentation is based on the “c-client library” from the University of
Washington.

5. XQUERY PROJECTS
This section gives an overview of a variety of alternative projects

that were carried out using XQuery and/or Zorba as tools. These
projects show the power of XQuery and that XQuery has developed
way beyond being merely a query language for XML data.

5.1 Sausalito: An XQuery Application Server
in the Cloud

Sausalito is a commercial product offered by 28msec Inc. It in-
tegrates the Zorba XQuery processor and the Apache Web Server
into an XML database system. The goal is to provide a complete
infrastructure in order to run any kind of XQuery application, in-
cluding database applications, Web mashups, and data streaming
applications. Sausalito extends the Zorba XQuery processor in the
same way as an application server (e.g., WebLogic, WebSphere, or
JBoss) extends a Java virtual machine; whereas in the latter case an
additional relational database system (e.g., Oracle, SQL Server, or
DB2) is required.

One special feature of Sausalito is that it runs in the Amazon
cloud or any other private (enterprise) cloud which provides a scal-
able infrastructure to dynamically provision (and unprovision) ser-
vers and a scalable key/value store such as S3, Cassandra [39], or a
relational database which can also be used as a key/value store. The
architecture and design trade-offs of Sausalito have been presented
in a recent paper [12] and talk [38] and are beyond the scope of this
paper.

Web Browser

DOM (Web Page)

Plug In

Zorba

Store

events

data
access and manipulation

Figure 2: XQIB Architecture

Sausalito is a nice example of how Zorba can be embedded into
different systems. Revisiting the architecture of Figure 1, Sausalito
re-uses all components of Zorba with the one noticeable exception
of the “Store”. Even the XML parser, XML Schema Validator and
Connectors (e.g., for JSON) of Zorba are reused in the Sausalito
product. That is, Sausalito only implements its own Store. The
Sausalito Store stores all data as blobs into a key/value store such
as S3, as described in [12]. Furthermore, Sausalito runs many (pos-
sibly thousands) Zorba XQuery processors in parallel in the cloud
and the Sausalito Store synchronizes concurrent updates; again, the
distributed protocols used by Sausalito are described in [12].

Sausalito has been released as a beta version in February 2009
and in this beta period, Sausalito can be freely tested. The getting
started guide and a number of demos are available at the 28msec
Web site: http://www.28msec.com

5.2 XQIB: XQuery in the Browser
XQIB is another example which demonstrates how the Zorba

XQuery processor can be embedded into another system. XQIB
is a Web browser plug-in which allows to embed XQuery scripts
into Web pages and implement AJAX-style user interfaces using
XQuery in the same way as with JavaScript. XQuery is a natural
candidate to implement AJAX applications in the browser because
XQuery has all the important ingredients: It supports an event-
based programming model, it has scripting capabilities, it supports
HTTP calls to servers (like the XMLHttpRequest of JavaScript),
and most importantly, it provides a declarative way to query and
update a Web page in the browser. Inside the browser, a Web page
is represented using DOM which is just another way of represent-
ing XML data.

The details of XQIB are described in [30]. XQIB is an open-
source project and the plug-in can be freely downloaded from the
XQIB Web site http://www.xqib.org. At this Web page, there are
also a number of demos available that show how to embed XQuery
into an HTML Web page: It is exactly the same mechanism as with
JavaScript and the demo shows the expressive power of XQuery for
this purpose (e.g., drag & drop, asynchronous events, style sheets,
etc.).

The architecture of XQIB is shown in Figure 2. The Web browser
loads and renders Web pages and stores them internally using DOM.
When the Web browser loads a Web page, it notifies the XQIB
plug-in so that the plug-in can extract, compile, and execute all
XQuery scripts embedded in the Web page. Furthermore, the Web
browser notifies the plug-in of any other events such as mouse
clicks, mouse movements, keyboard events, or requests and re-
sponses from the server. Accordingly, the plug-in executes the

http://www.28msec.com
http://www.xqib.org

XQuery functions which were registered as event handlers for each
kind of event.

Again, the XQIB plug-in reuses all components of Zorba with
the only noticeable exception of the Store. XQIB implements its
own Store on top of the DOM of the Web browser which imple-
ments the Web page. As a result, all reads and updates are directed
to the Web page which is thereby implicitly modified.

5.3 MDQ: Pay-as-you-go Data Integration with
XQuery

Another XQuery-related project is called “mapping data to que-
ries” or MDQ, for short. The idea is to make XQuery work in
heterogeneous environments in which diverse data sources publish
the same kind of data in different formats. A typical example are
airlines which all sell plane tickets, but the structure of the flight
information (e.g., XML element names) is different. The idea is to
provide mapping rules that express the equivalences; e.g., a map-
ping rule could specify that the “flight-number” in one data source
is equivalent to the “fid” in another source.

At http://fifthelement.inf.ethz.ch:8080/rules/, a demo of MDQ
can be found. The details of the approach are described in a tech-
nical report [32]. Again, however, the magic of MDQ lies in mod-
ifications done to the “Store” component of an XQuery processor.
All other components of an XQuery processor need not be changed.
Currently, MDQ is implemented using Saxon, but we are currently
working on porting it to Zorba.

5.4 XQuery Benchmark Service
As mentioned in Section 2 one of the issues of XQuery is that it

is perceived to be slow. The same argument was made against the
relational data model, SQL, and Java in their early days. Indeed,
most XQuery processors (including Zorba) are not mature enough
to show good performance in all situations. The purpose of the
XQuery Benchmark Service is to help users experiment with the
performance of different XQuery processors and database systems
for generic, standard benchmarks and for user-defined benchmarks.
The hope is that with this service feedback can be given to the ven-
dors of XQuery processors so that they can improve their products.

Concretely, the XQuery Benchmark Service is an online service
available through a Web-based interface at http://xqbench.org. In
a server farm, a number of XQuery processors and database sys-
tems are pre-installed; e.g., MonetDB, Zorba, MXQuery, Saxon,
etc. Furthermore, a number of benchmark datasets (with differ-
ent scaling factors) and queries are pre-installed; e.g., XMark [46],
TPoX [42], and a home-grown XQuery benchmark which models
an online bookstore and involves complex XQuery queries and up-
dates. With the help of the Web-based interface, users can carry
out their own benchmarks. Users do this by selecting a sub-set (or
all) of the pre-installed XQuery processors for the experiment. Fur-
thermore, users select a data set for the experiment, either one of
the pre-defined databases or, if desired, a user-defined database that
can be uploaded through the Web-based interface. Finally, the user
selects a set of queries and updates to be executed on the XQuery
processors and data sets; again, the queries can be chosen among
the pre-defined queries, queries uploaded by the user, or a mix.
Once, an experiment has been defined by a user, the experiment is
scheduled for execution on the server farm and the user is informed
by E-Mail when the execution of the experiment has been com-
pleted. A Web-based report (with graphs and comparisons between
the various XQuery processors) is generated using the XCheck tool
[1]. Users can also search the results of previous experiments.

5.5 XQDT: XQuery Eclipse Plug-in
An important component for the success of any programming

language is its support with tools, in particular, an IDE. XQDT
(XQuery Development Tools) is an Eclipse plug-in for XQuery
and it has all the features one would expect from an Eclipse plug-
in: syntax highlighting, code outline, error handling, code comple-
tion, etc. Furthermore, XQDT provides an environment for run-
ning XQuery programs using any (user-configured) XQuery pro-
cessor and debugging XQuery programs using Zorba or any other
XQuery processor which implements the XQDT debug API. The
debug API is similar to the debug API of Eclipse used for Java.
In its latest version, XQDT also allows to test and debug Sausalito
applications inside Eclipse and to deploy Sausalito projects in the
cloud.

XQDT is open source and freely available under an Eclipse li-
cense. It can be installed and downloaded from http://www.xqdt.org.

5.6 XQuery on Hadoop
All the projects listed above are available and can be downloaded

and tested using the URLs indicated above. A project that we just
started is to integrate Zorba into Hadoop in order to provide fa-
cilities for large-scale data analysis with XQuery. The aim is to
position XQuery as a standardized language for writing complete
analytic programs for structured and semi-structured data. We ex-
pect to have first results on this project at the end of 2009.

6. CONCLUSION
XML is here to stay because it makes data management more

flexible. We believe that XQuery is here to stay, too. XQuery is
great for processing XML. XQuery is also great for many other
application that do not involve XML data because XQuery makes
applications more flexible. As a result, it is easier to evolve and cus-
tomize XQuery applications than applications based on more tradi-
tional programming paradigms. XQuery has adopted a great deal
of concepts from general-purpose programming languages such as
Java or C#, scripting languages such as PHP, Python, or JavaScript,
and database programming languages such as SQL. In addition,
XQuery provides a number of additional features (e.g., construction
of data) which cannot be found in any of these languages. Probably
the biggest advantages of XQuery are its unique processing model
and its data model which enables XQuery to integrate any kind of
data and process any kind of data in a possible way (on the fly and
in a database). As a result, XQuery is an extremely powerful tool
with the potential to implement a wide variety of different applica-
tions in a single tier using XQuery only.

This paper gave an overview of XQuery-related projects carried
out by a bunch of extremists from various different institutions
from academia / research, open source, start-ups, and large com-
panies. One of these projects is the Zorba XQuery processor which
is embeddable into various different systems and provides a num-
ber of useful XQuery extensions and libraries. Furthermore, this
paper presented a number of recent projects that demonstrated how
XQuery can be used as a tool in different scenarios. The authors
hope that this paper helped to correct some myths about XQuery:
(a) XQuery is not necessarily slow, and (b) XQuery is not compli-
cated.

Obviously, XQuery has not reached a break-through yet and a
great deal of work is needed before XQuery technology has reached
the maturity of, say, Java or SQL technologies. The hope of this
paper is to encourage other people to consider XQuery as a tool
and possibly get other people interested in one of the projects listed
in this paper. If you are interested, please, contact any of the authors
or all of us at “contact@flworfound.org”.

http://fifthelement.inf.ethz.ch:8080/rules/
http://xqbench.org
http://www.xqdt.org

Acknowledgments. We would like to thank the following con-
tributors to the projects listed in this paper: Cezar Andrei, Nico-
lae Brinza, William Candillion, Ghislain Fourny, Martin Hentschel,
Dennis Knochenwefel, Alexander Kreutz, Paul Kunz, Paul Peder-
sen, Markus Pilman, Gabriel Petrovay, and Daniel Turcanu. Fur-
thermore, we would like to thank the users of the various products
described in this paper. Without their feedback, bug reports, and
patience, none of these products would have reached maturity.

7. REFERENCES
[1] L. Afanasiev, M. Franceschet, and M. Marx. XCheck: a Platform for

Benchmarking XQuery Engines. In VLDB, 2006.
[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques,

and Tools. Addison-Wesley, 1986.
[3] S. Amer-Yahia et al. XQuery and XPath Full Text 1.0, 2008. W3C

Candidate Recommendation.
[4] R. J. Bayardo et al. An Evaluation of Binary XML Encoding

Optimizations for Fast Stream Based XML Processing. In WWW,
2004.

[5] K. Beyer et al. System rx: one part relational, one part xml. In
SIGMOD, 2005.

[6] S. Boag et al. XQuery 1.0: An XML Query Language, 2007.
[7] P. Boncz et al. MonetDB/XQuery: a Fast XQuery Processor Powered

by a Relational Engine. In SIGMOD, 2006.
[8] P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and

J. Teubner. Pathfinder: XQuery — The Relational Way. In VLDB,
2005.

[9] V. Borkar et al. The BEA AquaLogic Data Services Platform. In
SIGMOD, 2006.

[10] V. Borkar et al. Xqse: An XQuery Scripting Extension for the
AquaLogic Data Services Platform. ICDE, 2008.

[11] I. Botan et al. Extending XQuery with Window Functions. In VLDB,
2007.

[12] M. Brantner et al. Building a database on S3. In SIGMOD, 2008.
[13] M. Brown. Get to know JsonML. http://jsonml.org/, 2007.
[14] D. Chamberlin et al. XQuery 1.1, 2008. W3C Working Draft.
[15] D. Chamberlin et al. XQuery Scripting Extension 1.0, 2008. W3C

Working Draft.
[16] D. Chamberlin et al. XQuery Update Facility 1.0, 2008. W3C

Candidate Recommendation.
[17] CWI. MonetDB. monetdb.cwi.nl.
[18] Databases and Information Systems Group, ETH Zurich. MXQuery -

a low-footprint, extensible XQuery engine. http://www.mxquery.org.
[19] Y. Diao et al. Path Sharing and Predicate Evaluation for

High-Performance XML Filtering. TODS, 28(4):467–516, 2003.
[20] Z. Documentation. Rest functions.

http://www.zorba-xquery.com/doc/zorba-latest/zorba/html/rest.html.
[21] D. Draper et al. XQuery 1.0 and XPath 2.0 Formal Semantics, 2007.
[22] K. S. Esmaili, P. M. Fischer, and J. Simeon. XQuery 1.0 Web

Services Facility (Proposal).
https://www.dbis.ethz.ch/research/publications/WSDL-
SOAP Proposal.pdf,
2008.

[23] M. Fernandez et al. XQuery 1.0 and XPath 2.0 Data Model (XDM),
2007.

[24] D. Florescu et al. The BEA Streaming XQuery processor. VLDB
Journal, 13(3):294–315, 2004.

[25] D. Florescu and D. Kossmann. Storing and Querying XML Data
using an RDMBS. IEEE Data Engineering Bulletin, 22(3):27–34,
1999.

[26] D. Florescu and D. Kossmann. XML Query Processing. In ICDE,
2004.

[27] D. Florescu and D. Kossmann. Programming for XML. In SIGMOD,
2006.

[28] FLWOR Foundation. Zorba - The XQuery Processor.
http://www.zorba-xquery.org.

[29] A. Fomichev, M. Grinev, and S. D. Kuznetsov. Sedna: A native xml
dbms. In SOFSEM, 2006.

[30] G. Fourny et al. XQuery in the Browser. In WWW Conference, 2009.

[31] G. Graefe. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv., 25(2):73–170, 1993.

[32] M. Hentschel et al. Mapping Data to Queries: Semantics of the IS-A
Rule. Technical report, ETH Zurich, 2007.

[33] IBM. XML Database - DB2 pureXML.
http://www.ibm.com/software/data/db2/xml/.

[34] C.-C. Kanne and G. Moerkotte. Efficient Storage of XML data.
ICDE, 2000.

[35] M. Kaufmann and D. Kossmann. Developing an Enterprise Web
Application in XQuery. http://www.28msec.com/tech reading.html,
2008.

[36] M. Kay. Saxon: The XSLT and XQuery processor.
http://saxon.sourceforge.net/.

[37] M. Kay. Ten Reasons Why Saxon XQuery is Fast. IEEE Data
Engineering Bulletin, 31(4):65–, 2008.

[38] D. Kossmann. Building Web Applications without a Database
System. In EDBT, 2008.

[39] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A
Structured Storage System on a P2P Network. In SIGMOD, 2008.

[40] A. Marian and J. Siméon. Projecting XML documents. In VLDB,
2003.

[41] J. Melton and S. Muralidhar. XML Syntax for XQuery 1.0
(XQueryX), 2007.

[42] M. Nicola, I. Kogan, and B. Schiefer. An XML Transaction
Processing Benchmark. In SIGMOD, 2007.

[43] P. O’Neil et al. ORDPATHs: Insert-Friendly XML Node Labels. In
SIGMOD, 2004.

[44] N. Onose and J. Simeon. Xquery at your Web Service. In WWW,
2004.

[45] F. Özcan, N. Seemann, and L. Wang. Xquery rewrite optimization in
ibm db2 purexml. IEEE Data Engineering Bulletin, 31(4):25–32,
December 2008.

[46] A. Schmidt et al. XMark: a Benchmark for XML Data Management.
In VLDB, 2002.

[47] J. Schneider and T. Kamiya. Efficient XML Interchange (EXI)
Format 1.0, 2007. W3C Working Draft.

[48] Sedna. Sedna: Native xml database system.
http://modis.ispras.ru/sedna/.

[49] J. Snelson. Parsing json into xquery.
http://snelson.org.uk/archives/2008/02/parsing json in.php, 2008.

[50] I. Tatarinov et al. Storing and Querying Ordered XML using a
Relational Database System. In SIGMOD, 2002.

[51] H. S. Thompson et al. XML Schema Part 1: Structures Second
Edition, 2004.

[52] P. Walmsley. XQuery. O’Reilly, 2007.

	Introduction
	What is XQuery?
	Why XML?
	Why XQuery?
	What is XQuery

	XQuery Processing Techniques
	Architecture of an XQuery Processor
	Implementation Variants
	Overview of XQuery Processors

	Zorba
	Motivation
	Pluggable Store
	XQuery Extensions
	REST and Web Services
	Data Definition Language
	Time Travel and Versioning

	XQuery Libraries
	Collection Functions
	Graphs and N:M Relationships
	Eval Function
	Tidy
	JSON
	EMail

	XQuery Projects
	Sausalito: An XQuery Application Server in the Cloud
	XQIB: XQuery in the Browser
	MDQ: Pay-as-you-go Data Integration with XQuery
	XQuery Benchmark Service
	XQDT: XQuery Eclipse Plug-in
	XQuery on Hadoop

	Conclusion
	References

