
Extending XQuery with Window Functions

Irina Botan Peter M. Fischer Daniela Florescu♦
Donald Kossmann Tim Kraska Rokas Tamosevicius

ETH Zurich Oracle♦
{firstname.lastname}@inf.ethz.ch dana.florescu@oracle.com

ABSTRACT
This paper presents two extensions for XQuery. The first
extension allows the definition and processing of different
kinds of windows over an input sequence; i.e., tumbling,
sliding, and landmark windows. The second extension ex-
tends the XQuery data model (XDM) to support infinite
sequences. This extension makes it possible to use XQuery
as a language for continuous queries. Both extensions have
been integrated into a Java-based open source XQuery en-
gine. This paper gives details of this implementation and
presents the results of running the Linear Road benchmark
on the extended XQuery engine.

1. INTRODUCTION
XML has had a breakthrough success as a data format for

three kinds of data: (a) communication data, (b) meta data,
and (c) documents. Communication data has been the first
big success story: XML is used as the format to exchange
data in Web Services or to represent streams as RSS or Atom
feeds. Examples for meta data represented in XML are con-
figuration files, schemas (e.g., XML schemas, the Vista file
system), design specifications (e.g., Eclipse’s XMI), interface
descriptions (e.g., WSDL), or logs (e.g., Web logs). In the
document world, big vendors such as Sun (OpenOffice) and
Microsoft (MS Office) have also moved towards represent-
ing their data in XML. XHTML and RSS blogs are further
examples that show the success of XML in this domain.

With an increasing amount of XML data, there has been
an increased demand to find the right paradigms to process
this data. Arguably, XQuery is the most promising pro-
gramming language for this purpose [6]. XQuery 1.0 is a
recommendation of the W3C. So far, almost fifty XQuery
implementations are advertised on the W3C web pages, in-
cluding implementations from all major database vendors
and several open source offerings.

Even though XQuery 1.0 is extremely powerful (it is Turing-
complete), it lacks important functionality. In particular,
XQuery 1.0 lacks support for window queries and continu-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

ous queries. This omission is somewhat disappointing be-
cause exactly this support is needed to process the main
targets of XML: Communication data, meta data, and docu-
ments. Communication data is often represented as a stream
of XML items and for many applications it is important to
detect certain patterns in that stream: A credit card com-
pany, for instance, might be interested to learn if a credit
card is used particularly often during one week as compared
to other weeks. Implementing this audit involves a contin-
uous window query. The analysis of a Web log, as another
example, involves the identification and processing of user
sessions, which again involves a window query. Document
formatting requires operations such as pagination to enable
users to browse through the documents a page at a time;
again, pagination is best implemented using a window query.

Both window queries and continuous queries have been
studied extensively in the SQL world; proposals for SQL
extensions are described in, e.g., [22, 4, 7, 27]. That work,
however, is not applicable in the XML world. The first and
obvious reason is that SQL is not appropriate to process
XML data. It can neither directly read XML data, nor
can SQL generate XML data if the output is required to
be XML (e.g., an RSS feed or a new paginated document).
Another reason is that the SQL extensions are not expressive
enough to solve all use cases mentioned above, even if all
data were relational (e.g., CSV). The SQL extensions have
been specifically tuned for particular streaming applications
and support only simple window definitions based on time
or window size.

The purpose of this work is to extend XQuery in order to
support window queries and continuous queries. The goal
is to have a powerful extension that is appropriate for all
use cases, including the classic streaming applications for
which the SQL extensions were designed and the more pro-
gressive use cases of the XML world (i.e., RSS feeds and
document management). At the same time, the performance
should be comparable to the performance of continuous SQL
queries: There should not be a performance penalty for us-
ing XQuery. This work will also be submitted to the W3C
for consideration of the emerging XQuery 1.1 recommenda-
tion (due in late 2007). Indeed, window queries have been
identified as one of the requirements for XQuery 1.1 [11].

Obviously, our work is based on several ideas and the
experience gained in the SQL world from processing data
streams. Nevertheless, there are important differences to
the SQL data stream approach. In fact, it is easier to extend
XQuery because the XQuery data model (XDM), which is
based on sequences of items [12], is already a good match to

represent data streams and windows. As a result, the pro-
posed extensions compose nicely with all existing XQuery
constructs and all existing XQuery optimization techniques
remain relevant. In contrast, extending SQL for window
queries involves a more drastic extension of the relational
data model and a great deal of effort in the SQL world has
been spent on defining the right mappings for these exten-
sions. As an example, CQL [4] defines specific operators
that map between streams and relations.

In summary, this paper makes the following contributions:
• Window Queries: The syntax and semantics of a new
FORSEQ clause in order to define and process complex win-
dows using XQuery.

• Continuous Queries: A simple extension to the XQuery
data model (XDM) in order to process infinite data streams
and use XQuery for continuous queries.

• Use Cases: A series of examples that demonstrate the
expressiveness of the proposed extensions.

• Implementation Design: Show that the extensions can be
implemented and integrated with little effort into existing
XQuery engines and that simple optimization techniques
are applicable in order to get good performance.

• Linear Road Benchmark: The results of running the Lin-
ear Road benchmark [5] on top of an open source
XQuery engine which was enhanced with the proposed
extensions. The benchmark results confirm that the pro-
posed XQuery extensions can be implemented efficiently.

The remainder of this paper is organized as follows: Section
2 gives a motivating example. Section 3 presents the pro-
posed syntax and semantics of the new FORSEQ clause used
to define windows in XQuery. Section 4 proposes an exten-
sion to the XQuery data model in order to define continuous
XQuery expressions. Section 5 lists several examples that
demonstrate the expressive power of the proposed exten-
sions. Section 6 explains how to extend an existing XQuery
engine and optimize XQuery window expressions. Section 7
presents the results of running the Linear Road benchmark
on an extended XQuery engine. Section 8 gives an overview
of related work. Section 9 contains conclusions and suggests
avenues for future work.

2. USAGE SCENARIOS

2.1 Motivating Example
The following simple example illustrates the need for an

XQuery extension. It involves a blog with RSS items of the
following form:

<rss:item>

... <rss:author>...</rss:author> ...

</rss:item>

Given such a blog, the goal is to find all annoying authors
who have posted three consecutive items in the RSS feed.
Using XQuery 1.0, this query can be formulated as shown
in Figure 1. This query involves a three-way self join which
is not only tedious to specify but also difficult to optimize.
In contrast, Figure 2 shows this query using the proposed
FORSEQ clause. This clause partitions the blog into sequences
of postings of the same author (i.e., windows) and iterates
over these windows (Lines 1-4 of Figure 2). If a window con-
tains three or more postings, then the author of this window
of postings is annoying and the author is returned (Lines 5
and 6). The syntax and semantics of the FORSEQ clause are

for $first at $i in $rssfeed

let $second := $rssfeed[$i+1],

let $third := $rssfeed[$i+2]

where ($first/author eq $second/author) and

($first/author eq $third/author)

return $first/author

Figure 1: Annoying Authors: XQuery 1.0

forseq $w in $rssfeed tumbling window

start curItem $first when fn:true()

end nextItem $lookAhead when

$first/author ne $lookAhead/author

where count($w) ge 3

return $w[1]/author

Figure 2: Annoying Authors: Extended XQuery

defined in detail in Section 3 and need not be understood
at this point. For the moment, it is only important to ob-
serve that this query is straightforward to implement and
can be executed in linear time or better, if the right indexes
are available. Furthermore, the definition of this query can
easily be modified if the definition of annoying author is
changed from, say, three to five consecutive postings. In
comparison, additional self-joins must be implemented in
XQuery 1.0 in order to implement this change. 1

2.2 Other Applications
The management of RSS feeds is one application that

drove the design of the proposed XQuery extensions. There
are several other areas; the following is a non-exhaustive list
of further application scenarios:
• Web Log Auditing: In this scenario, a window contains all

the actions of a user in a session (from login to logout).
The analysis of a Web log involves, for example, the com-
putation of the average number of clicks until a certain
popular function is found. Security audits and market-
basket analyses can also be carried out on user sessions.

• Financial Data Streams: Window queries can be used in
order to carry out fraud detection, algorithmic trading
and finding opportunities for arbitrage deals by comput-
ing call-put parities [13].

• Social Games / Gates: An RFID reader at a gate keeps
track of the people that enter and exit a building. People
are informed if their friends are already in the building
when they themselves access the building.

• Sensor Networks: Window queries are used in order to
carry out data cleaning. For instance, the average of the
last five measurements (possibly, disregarding the mini-
mum and maximum) is reported, rather than reporting
each individual measurement [18].

• Document Management: Different text elements (e.g., para-
graphs, tables, figures) are grouped into pages. In the in-
dex, page sequences such as 1, 2, 3, 4, 7 are reformatted
into 1-4, 7 [20].

We compiled around sixty different use cases in these appli-
cation areas in a separate document [13]. All these examples
have in common that they cannot be implemented well us-
ing the current Version 1.0 of XQuery without support for
windows. Furthermore, many examples of [13] cannot be
processed using SQL, even considering the latest extensions

1In fact, the two queries of Figures 1 and 2 are not equiva-
lent. If an author posts four consecutive postings, this au-
thor is returned twice in the expression of Figure 1, whereas
that author is returned only once in Figure 2.

FLWORExpr ::= (ForseqClause|ForClause|LetClause) + WhereClause? OrderByClause? ”return” ExprSingle

ForseqClause ::= ”forseq” ”$”V arName TypeDeclaration? ”in” ExprSingle WindowType?

(”, ””$”V arName TypeDeclaration? ”in” ExprSingle WindowType?)∗
WindowType ::= (”tumbling window”|”sliding window”|”landmark window”) StartExpr EndExpr

StartExpr ::= ”start” WindowV ars? ”when” ExprSingle

EndExpr ::= ”force”? ”end” WindowV ars? ”when” (”newstart”|ExprSingle)

WindowV ars ::= (”position”|”curItem”|”prevItem”|”nextItem”) ”$”V arName TypeDeclaration?

(”,” (”position”|”curItem”|”prevItem”|”nextItem”) ”$”V arName TypeDeclaration?)∗

Figure 3: Grammar of Extended FLWOR Expression

proposed in [22, 4, 7, 27] because these examples require
powerful constructs in order to define window boundaries.
Most of these use cases involve other operators such as nega-
tion, existential and universal quantification, aggregation,
correlation, joins, and transformation in addition to win-
dow functions. XQuery already supports all these operators
which makes XQuery a natural candidate to extend, rather
than inventing a new language from scratch in order to ad-
dress these applications.

3. FORSEQ CLAUSE

3.1 Basic Idea
Figure 2 gives an example of the FORSEQ clause. The

FORSEQ clause is an extension of the famous FLWOR ex-
pressions of XQuery. It is freely composable with other FOR,
LET, and FORSEQ clauses. Furthermore, FLWOR expressions
that involve a FORSEQ clause can have an optional WHERE

and/or ORDER BY clause and must have a RETURN clause, just
as any other FLWOR expression. A complete grammar of
the extended FLWOR expression is given in Figure 3.

Like the FOR clause, the FORSEQ clause iterates over an in-
put sequence and binds a variable with every iteration. The
difference is that the FORSEQ clause binds the variable to a
sub-sequence (aka window) of the input sequence in each it-
eration, whereas the FOR clause binds the variable to an item
of the input sequence. To which sub-sequences the variable
is bound is determined by additional clauses. The addi-
tional TUMBLING WINDOW, START, and END clauses of Figure
2, for instance, specify that $w is bound to each consecu-
tive sub-sequence of postings by the same author. In that
example, the window boundaries are defined by the change
of author in postings in the WHEN clause of the END clause
(details of the semantics are given in the next subsection).

The running variable of the FORSEQ clause ($w in the ex-
ample) can be used in any expression of the WHERE, ORDER
BY, RETURN clauses or in expressions of nested FOR, LET, and
FORSEQ clauses. The only requirement is that those ex-
pressions must operate on sequences (rather than individual
items or atomic values) as input. In Figure 2, for example,
the count function is applied to $w in the WHERE clause in or-
der to determine whether $w is bound to a series of postings
of an annoying author (three or more postings).

As shown in Figure 3, FLWOR expressions with a FORSEQ

clause can involve an ORDER BY clause, just like any other
FLWOR expression. Such an ORDER BY clause specifies in
which order the sub-sequences (aka windows) are bound to
the running variable. By default, and in the absence of an
ORDER BY clause, the windows are bound in ascending order
of the position of the last item of a window. If two (over-

<d a=”start”/>

<e a=”end”/>

<c a=”end”/>

<b a=”start”/>

TumblingLet For Sliding Landmark

Figure 4: Window Types

lapping) windows end in the same item, then their order is
implementation-defined. For instance, annoying authors in
the example of Figure 2 are returned in the order in which
they made annoying postings. This policy naturally extends
the order in which the FOR clause orders the bindings of its
input variable in the absence of an ORDER BY clause.

The FORSEQ clause does not involve an extension or mod-
ification of the XQuery data model (XDM) [12]. Binding
variables to sequences is naturally supported by XDM. As a
result, the FORSEQ clause is fully composable with all other
XQuery expressions and no other language adjustments need
to be made. There is no catch here. In contrast, extend-
ing SQL with windows involves an extension to the rela-
tional data model and, as mentioned in the introduction, a
great deal of effort has been invested into defining the exact
semantics of such window operations in such an extended
relational data model.

Furthermore, the XQuery type system does not need to be
extended, and static typing for the FORSEQ clause is straight-
forward. To give a simple example, if the static type of the
input is string*, then the static type of the running vari-
able is string+. The “+” quantifier is used because the
running variable is never bound to the empty sequence. To
give a more complex example, if the static type of the input
sequence is string*, integer* (i.e., a sequence of strings fol-
lowed by a sequence of integers), then the static type of the
running variable is: (string+,integer* | string*,integer+);
i.e., a sequence of strings, a sequence of integers, or a se-
quence of strings followed by integers. (Similarly, simple
rules apply to the other kinds of variables that can be bound
by the FORSEQ clause.)

3.2 Types of Windows
Previous work on extending SQL to support windows has

identified different kinds of windows; i.e., tumbling win-
dows, sliding windows, and landmark windows [15]. Figure
4 shows examples of these three types of windows; as a ref-
erence, Figure 4 also shows how the traditional FOR and LET

clauses of XQuery work. The three types of windows differ
in the way windows overlap: tumbling windows do not over-
lap; sliding windows overlap, but have disjoint first items;

and landmark windows can overlap in any way. Following
the experiences made with SQL, we propose to support these
three kinds of windows in XQuery, too. This subsection de-
scribes how the FORSEQ clause can be used to support these
kinds of windows.

Furthermore, previous work on windows for SQL proposed
alternative ways to define the window boundaries (start and
end of a window). Here, all published SQL extensions [22,
4, 7, 27] propose to define windows based on size (i.e., num-
ber of items) or duration (time span between the arrival of
the first and last item). Our proposal for XQuery is more
general and is based on using predicates in order to define
window boundaries. Size and time constraints can easily be
expressed in such a predicate-based approach (examples are
given in the remainder of this paper). Furthermore, more
complex conditions which involve any property of an item
(e.g., the author of a posting in a blog) can be expressed in
our proposal. One of the consequences of having predicate-
based window boundaries is that the union of all windows
does not necessarily cover the whole input sequence; that is,
it is possible that an input item is not part of any window.

3.2.1 Tumbling Windows
The first kind of window supported by the FORSEQ clause is

a so-called tumbling window [25]. Tumbling windows parti-
tion the input sequence into disjoint sub-sequences, as shown
in Figure 4. An example of a query that involves a tumbling
window is given in Figure 2 in which each window is a con-
secutive sequence of blog postings of a particular author.
Tumbling windows are indicated by the TUMBLING WINDOW

keyword as part of the WindowType declaration in the FORSEQ
clause (Figure 3).

The boundaries of a tumbling window are defined by (man-
datory) START and END clauses. These clauses involve a WHEN

clause which specifies a predicate. Intuitively, the WHEN con-
dition of a START clause specifies when a window should
start. For each item in the sequence this clause is checked for
a match. Technically, a match exists if the effective Boolean
value (EBV) [10] of the WHEN condition evaluates to true.
As long as no item matches, no window is started and the
input items are ignored. Thus, it is possible that certain
items are not part of any window. Once an item matches the
WHEN condition of the START clause, a new window is opened
and the matching item is the first item of that window. At
this point, the WHEN condition of the END clause is evaluated
for each item, including the first item. Again, technically
speaking, the EBV is computed. If an item matches the END

condition, that item is the last item of the window.
Any XQuery expression can be used in a WHEN clause (Fig-

ure 3), including expressions that involve existential quan-
tification (on multiple sub-elements) or nested FLWOR ex-
pressions (possibly with FORSEQ). The semantics of the START
and END clauses for tumbling windows can best be shown us-
ing the automaton depicted in Figure 5. The condition of
the START clause is not checked for an open window. A win-
dow is only closed when its END condition is fulfilled or at
the end of the input sequence.

To give two simple examples, the FOR clause of XQuery
can be simulated with a FORSEQ clause as follows:

forseq $w in $seq tumbling window

start when fn:true()

end when fn:true() ...

Figure 5: Window Automaton

That is, each item opens and immediately closes a new win-
dow (both START and END conditions are set to true) so that
each item represents a separate window. The LET clause can
be simulated with a FORSEQ clause as follows:

forseq $w in $seq tumbling window

start when fn:true()

end when fn:false() ...

The first item of the input sequence opens a new window
(START condition is true) and this window is closed at the
end of the input sequence. In other words, the whole in-
put sequence is bound to the running variable as a single
window.

In order to specify more complex predicates, both the
START and the END clause allow the binding of new vari-
ables. The first kind of variable identifies the position of a
potential first item (in the START clause) or last item (in the
END clause), respectively. For instance, the following FORSEQ

clause partitions the input sequence ($seq) into windows of
size three; the last window might be smaller:

forseq $x in $seq tumbling window

start position $i when fn:true()

end position $j when $j-$i eq 2 ...

For each window, $i is bound to the position of the first
item of the window in the input sequence; i.e., $i is 1 for
the first window, 4 for the second window, and so on. Cor-
respondingly, $j is bound to the position of the last item of
a window as soon as that item has been identified; i.e., $j
is 3 for the first window, 6 for the second window, and so
on. In this example, $j might be bound to an integer that
is not a multiple of three for the last window at the end of
the input sequence.

Both $i and $j can be used in the WHEN expression of the
END clause. Naturally, only variables bound by the START

clause can be used in the WHEN condition of the START clause.
Furthermore, in-scope variables (e.g., $seq in the examples
above) can be used in the conditions of the START and END

clauses. The scope of the variables bound by the START and
END clauses is the whole remainder of the FLWOR expres-
sion. For instance, $i and $j could be used in the WHERE,

RETURN and ORDER BY clauses or in any nested FOR, LET, or
FORSEQ clauses in the previous example.

In addition to positional variables, variables that refer to
the previous (prevItem), current (currItem), and next items
(nextItem) of the input sequence can be bound in the START

and END clause. In the expression of Figure 2, for instance,
the END clause binds variable $lookAhead to the item that
comes after the last item of the current window (i.e., the first
item of the next window). These extensions are syntactic
sugar because these three kinds of variables can be simulated

using positional variables; e.g., end nextItem $lookAheand

when $lookAheand ... is equivalent to end position $j

when $seq[$j+1] ... In both cases, an out-of-scope bind-
ing (at the end of the input sequence) is bound to the empty
sequence.

3.2.2 Sliding and Landmark Windows
In the SQL world, several different kinds of windows were

identified and found useful in practice. In addition to tum-
bling windows, so-called sliding and landmark windows are
needed in many applications. In contrast to tumbling win-
dows, both sliding and landmark windows can overlap. The
difference between sliding and landmark windows is that
two sliding windows never have the first item in common,
whereas landmark windows do not have such a constraint
(Figure 4). A more formal definition of sliding and land-
mark windows is given in [25].

Based on this experience, the FORSEQ clause also supports
sliding and landmark windows. As shown in Figure 3, only
the TUMBLING WINDOW keyword needs to be replaced in the
syntax. Again, (mandatory) START and END clauses specify
the window boundaries. The semantics are analogous to the
semantics of the START and END clauses of a tumbling win-
dow (Figure 5). The important difference is that each item
potentially opens one (for sliding windows) or several new
windows (for landmark windows) so that conceptually, sev-
eral automata need to be maintained at the same time. For
space constraints, we cannot give the full formal semantics
in this paper. Section 5 contains examples that illustrate
these kinds of windows.

3.3 General Sub-sequences
In its most general form, the FORSEQ clause takes no addi-

tional clauses; i.e., no specification of the window type and
no START and END clauses. In this case, the syntax is as
follows (Figure 3):

forseq $w in $seq ...

This general version of the FORSEQ clause iterates over all
possible sub-sequences of the input sequence. These sub-
sequences are not necessarily consecutive. For example, if
the input sequence contains the items (a, b, c), then the
general FORSEQ carries out seven iterations (2n − 1, with n
the size of the input sequence), thereby binding the run-
ning variable to the following sub-sequences: (a), (a,b), (b),
(a,b,c), (a,c), (b,c), and (c). Again, the sequences are or-
dered by the position of their last item (Section 3.1); i.e.,
the (a) sequence comes before the sequences that end with a
“b” which in turn come before the sequences that end with
a “c”. Again, the running variable is never bound to the
empty sequence.

This general FORSEQ clause is the most powerful variant.
Landmark, sliding, and tumbling windows can be seen as
special cases of this general FORSEQ. We propose to use spe-
cial syntax for these three kinds of windows because use
cases that need these three types of windows are frequent
in practice [13]. Furthermore, the general FORSEQ clause is
difficult to optimize. Use cases for which landmark, sliding,
and tumbling windows are not sufficient, are given in [29]
for RFID data management. In those use cases, regular ex-
pressions are needed in order to find patterns in the input
stream. Such queries can be implemented using the general
FORSEQ clause by specifying the relevant patterns (i.e., reg-

ular expressions) in the WHERE clause of the general FORSEQ
expression.

3.4 Syntactic Sugar
There are use cases which benefit from additional syntac-

tic sugar. The following paragraph presents such syntactic
sugar.

3.4.1 End of Sequence
As mentioned in Section 3.2.1, by default the condition

of the END clause is always met at the end of a sequence.
That is, the last window will be considered even if its last
item does not match the END condition. In order to specify
that the last window should only be considered if its last
item indeed matches the END condition, the END clause can
be annotated with a special keyword FORCE (Figure 3). The
FORCE keyword is syntactic sugar because the last window
could also be filtered out by repeating the END condition in
the WHERE clause.

3.4.2 NEWSTART
There are several use cases in which the START condition

should implicitly define the end of a window. For example,
the day of a person starts every morning when the person’s
alarm clock rings. Implicitly, this event ends the previous
day, even though it is not possible to concretely identify a
condition that ends the day. In order to implement such use
cases, the WHEN condition of the END clause can be defined
as NEWSTART. As a result, the START condition (rather than
the END condition) is checked for each open window in or-
der to determine when a window should be closed. Again,
the NEWSTART option is syntactic sugar and avoids that the
condition of the START clause is replicated in the END clause.

3.5 Summary
Figure 3 gives the complete grammar for the proposed ex-

tension of XQuery’s FLWOR expression with an additional
FORSEQ clause. Since there are many corner cases, the gram-
mar looks complicated at first glance. However, the basic
idea of the FORSEQ clause is simple. FORSEQ iterates over
an input sequence, thereby binding a sub-sequence of the
input sequence to its running variable in each iteration. Ad-
ditional clauses specify the kind of windows. Furthermore,
predicates in the START and END clauses specify the window
boundaries. This mechanism is powerful and sufficient for a
broad spectrum of use cases [13]. We are not aware of any
use case that has been addressed in the literature on window
queries that cannot be implemented in this way.

Obviously, there are many ways to extend XQuery in or-
der to support window queries. In addition to its expressive
power and generality, the proposed FORSEQ clause has two
additional advantages. First, it composes well with other
FOR, LET, and FORSEQ clauses as part of a FLWOR expres-
sion. Furthermore, any kind of XQuery expression can be
used in the conditions of the START and END clauses, includ-
ing nested FORSEQ clauses. Second, the FORSEQ clause re-
quires no extension to the XQuery data model (XDM). As a
result, the existing semantics of XQuery functions need not
be modified. Furthermore, this feature enables full compos-
ability and optimizability of expressions with FORSEQ.

4. CONTINUOUS XQUERY
The second extension proposed in this paper makes XQuery

a candidate language to specify continuous queries on poten-
tially infinite data streams. In fact, this extension is orthog-
onal to the first extension, the FORSEQ clause: Both exten-
sions are useful independently, although we believe that they
will often be used together in practice.

The proposal is to extend the XQuery data model (XDM)
[12] to support infinite sequences as legal instances of XDM.
As a result, XQuery expressions can take an infinite se-
quence as input. Likewise, XQuery expressions can produce
infinite sequences as output. A simple example illustrates
this extension. A temperature sensor in an ice cream ware-
house produces measurements of the following form every
minute: <temp>-8</temp>. Whenever a temperature of ten
degrees or higher is measured, an alarm should be raised. If
the stream of temperature measurements is bound to vari-
able $s, this alarm can be implemented using the following
(continuous) XQuery expression:

declare variable $s as (temp)** external;

for $m in $s where $m ge 10

return <alarm> { $m } </alarm>

In this example, variable $s is declared to be an exter-
nal variable that contains a potentially infinite sequence of
temperature measurements (indicated by the two asterisks).
Since $s is bound to a (potentially) infinite sequence, this
expression is illegal in XQuery 1.0 because the input is not
a legal instance of the XQuery 1.0 data model. Intuitively,
however, it should be clear what this continuous query does:
whenever a temperature above 10 is encountered, an alarm
is raised. The input sequence of the query is infinite and so
is the output sequence.

Extending the data model of a query language is a crit-
ical step because it involves refining the semantics of all
constructs of the query language for the new kind of input
data. Fortunately, this particular extension of XDM for in-
finite sequences is straightforward to implement in XQuery.
The idea is to extend the semantics of non-blocking func-
tions (e.g., for, forseq, let, distinct-values, all path expres-
sions) for infinite input sequences and to specify that these
non-blocking functions (potentially) produce infinite output.
Other non-blocking functions such as retrieving the ith ele-
ment (for some integer i) are also defined on infinite input
sequences, but generate finite output sequences. Blocking
functions (e.g., order by, last, count, some) are not defined
on infinite sequences; if they are invoked on (potentially) in-
finite sequences, then an error is raised. Such violations can
always be detected statically (i.e., at compile-time). For in-
stance, the following XQuery expression would not compile
because the fn:max() function is a blocking function that
cannot be applied to an infinite sequence:

declare variable $s as (temp)** external;

fn:max($s)

Extending XDM does not involve an extension of the
XQuery type system. (temp)** is the same type as (temp)*.
The two asterisks are just an annotation to indicate that the
input is potentially infinite. These annotations (and corre-
sponding annotations of functions in the XQuery function
library) are used in the data flow analysis of the compiler
in order to statically detect the appplication of a blocking
function on an infinite sequence (Section 6).

A frequent example in which the FORSEQ clause and this
extension for continuous query are combined, is the com-
putation of moving averages. Moving averages are useful
in, e.g., sensor networks as described in Section 2.2: Rather
than reporting the current measurement, an average of the
current and the last four measurements is reported for ev-
ery new measurement. Moving averages can be expressed as
follows:

declare variable $seq as (xs:int)** external;

forseq $w in $seq sliding window

start position $s when fn:true()

end position $e when $e - $s eq 4

return fn:avg($w)

5. EXAMPLES
This section contains four examples which demonstrate

the expressive power of the FORSEQ clause and continuous
XQuery processing. These examples are inspired by appli-
cations on Web log auditing, financial data management,
building / gate control, and sensor networks (Section 2.2).
A more comprehensive set of examples from these applica-
tion areas and real customer use cases can be found in [13].

5.1 Web Log Analysis
The first example involves the analysis of a log of a (Web-

based) application. The log is a sequence of entries. Among
others, each entry contains a timestamp (tstamp element)
and the operation (op) carried out by the user. In order to
determine the user activity (number of login operations per
hour), the following query can be used:

declare variable $weblog as (entry)* external;

forseq $w in $weblog tumbling window

start curItem $s when fn:true()

end nextItem $e when

$e/tstamp - $s/tstamp gt ’PT1H’

return fn:count($w[op eq "login"])

This query involves a time-based tumbling window. The
XQuery 1.0 recommendation supports the subtraction of
timestamps, and ’PT1H’ is the ISO (and XQuery 1.0) way
to represent a time duration of one hour. This query also
works on an infinite Web log for online monitoring of the log
because the FORSEQ clause is non-blocking.

5.2 Stock Ticker
The second example shows how FORSEQ can be used in

order to monitor an (infinite) stock ticker. For this example,
it is assumed that the input is an infinite sequence of (stock)
ticks; each stock tick contains the symbol of the stock (e.g.,
“YHOO”), the price of that stock, and a timestamp. The
stock ticks are ordered by time. The query detects whenever
a stock has gained more than ten percent in one hour.

declare variable $ticker as (tick)** external;

forseq $w in $ticker sliding window

start curItem $f when fn:true()

end curItem $l when $l/price ge $f/price * 1.1

and $l/symbol eq $f/symbol

where $f/tstamp - $l/tstamp le ’PT1H’

return $l

This query uses sliding windows in order to detect all possi-
ble sequences of ticks in which the price of the last tick is at

least ten percent higher than the price of the first tick, for
the same stock symbol. The WHERE clause checks whether
this increase in price was within one hour.

5.3 Timeouts
A requirement in some monitoring applications is the def-

inition of timeouts. For example, a doctor should be notified
if the blood pressure of a patient does not drop significantly
ten minutes after a certain medication has been given. As
another example, a supervisor should react when a firefighter
enters a burning building and stays longer than one hour. In
order to implement the firefighter example, two data streams
are needed. The first stream records events of the following
form: <event person = ‘‘name’’ direction=’’in/out’’

tstamp=’’timestamp’’/>. The second stream is a heart-
beat of the form: <tick tstamp=’’timestamp’’/>. This
heartbeat could be generated by a system-defined function
of the XQuery engine.

declare variable $evts as (event)** external;

declare variable $heartb as (tick)** external;

forseq $w in fn:union($evts, $heartb) sliding window

start $curItem $in when $in/direction eq ‘‘in’’

end $curItem $last

when $last/tstamp - $in/tstamp ge ’PT1H’

or ($last/direction = ‘‘out’’ and

$last/person = $in/person)

where $last/direction neq ‘‘out’’

return <alarm> { $in } </alarm>

In this query, a new window is started whenever a firefighter
enters the building. A window is closed either when a fire-
fighter exits the building or after an hour has passed. An
alarm is raised only in the latter case. This example as-
sumes that the fn:union() function is implemented in a non-
blocking way and consumes input continuously from all of
its inputs.

5.4 Sensor State Aggregation
A frequent query pattern in sensor networks involves com-

puting the current state of all sensors at every given point
in time. If the input stream contains temperature measure-
ments of the following form:

<temp id=’’1’’>10</temp>

<temp id=’’2’’>15</temp>

<temp id=’’1’’>15</temp>

then the output stream should contain a summary of the
last measurement of each temperature sensor. That is, the
output stream should look like this:

<values> <temp id=’’1’’>10</temp> </values>

<values> <temp id=’’1’’>10</temp>

<temp id=’’2’’>15</temp> </values>

<values> <temp id=’’1’’>15</temp>

<temp id=’’2’’>15</temp> </values>

This output stream can be generated using the following
continuous query:

declare variable $sensors as (temp)** external;

forseq $w in $sensors landmark window

start position $s when $s eq 1

end when fn:true()

return <values> {

Figure 6: Example Plan (First Query of Section 4)

for $id in fn:distinct-values($w/@id)

return

$w[@id eq $id][last()]

} </values>

Technically, within each window, the measurements are grouped
by id of the sensor and the last measurement of each group
is returned.

6. IMPLEMENTATION
This section describes how we extended the MXQuery en-

gine2, an existing Java-based open-source XQuery engine,
in order to implement the FORSEQ clause and continuous
XQuery processing. We used the extended MXQuery en-
gine in order to validate all the use cases of [13] and run the
Linear Road benchmark (Section 7).

6.1 MXQuery
The MXQuery engine was developed as part of a col-

laboration between Siemens and ETH Zurich. The main
purpose of the MXQuery engine is to provide an XQuery
implementation for small and embedded devices; in particu-
lar, in mobile phones and small gateway computers. Within
Siemens, for instance, the MXQuery engine has been used as
part of the Siemens Smart Home project in order to control
lamps, blinds, and other devices according to personal pref-
erences and weather information via Web services. Recently,
MXQuery has also been used as a reference implementation
for the XQuery Update language and XQueryP the XQuery
scripting extensions.

Since MXQuery was designed for embedded systems, it
has a simple and flexible design. The parser is a straight-
forward XQuery parser and creates an expression tree. In a
functional programming language like XQuery, the expres-
sion tree plays the same role as the relational algebra ex-
pression (or operator tree) in SQL. The expression tree is
normalized using the rules of the XQuery formal seman-
tics [10]. After that, the expression tree is optimized using
heuristics. (MXQuery does not have a cost-based query op-
timizer.) For optimization, MXQuery only implements a
dozen of essential query rewrite rules such as the elimina-
tion of redundant sorts and duplicate elimination. The final
step of compilation is code generation during which each ex-
pression of the expression tree is translated into an iterator
that can be interpreted at run-time. As in SQL, iterators
have an open(), next(), close() interface [16]; that is, each
iterator processes its input an item at a time and only pro-
cesses as much of its input as necessary. The iterator tree
is often also called plan, thereby adopting the SQL query
processing terminology. Figure 6 gives an example plan for
the FOR query that raises an alarm when the temperature
raises above ten degrees (first query of Section 4). Like
Saxon [19], BEA’s XQuery engine [14], and FluXQuery [21],

2The MXQuery engine can be downloaded via Sourceforge.
MXQuery is short for MicroXQuery.

Figure 7: MXQuery Architecture

MXQuery was designed as a streaming XQuery engine. As
shown in Figure 7, MXQuery can take input data from mul-
tiple sources; e.g., databases, the file system, or streaming
data sources such as RSS streams or message queues. In
order to take input from different sources, the data sources
must implement the iterator API. That way, data from data
sources can be processed as part of a query plan at runtime.
MXQuery already has predefined iterator implementations
in order to integrate SAX, DOM, StaX, and plain XML from
the file system. Furthermore, MXQuery has predefined iter-
ator implementations for CSV and relational databases. In
order to access the data as part of an XQuery expression, an
external XQuery variable is declared for each data source as
shown in the examples of Section 5. A special Java API is
used in order to bind the iterator that feeds the data from
the data source to the external variable.

As shown in Figure 7, MXQuery also has an internal,
built-in store in order to materialize intermediate results
(e.g., for sorting of windows). In the current release of MX-
Query, this store is implemented fully in main memory.

Although MXQuery was particularly designed for embed-
ded systems, its architecture is representative. The following
subsections describe how we extended the MXQuery engine
in order to implement the FORSEQ clause and work on infi-
nite data streams. We believe that the proposed extensions
are applicable to a wide range of XQuery engines.

6.2 Plan of Attack
In order to implement the FORSEQ clause, the following

adaptations were made to the MXQuery engine:
• The parser was extended according to the production rules

of Figure 3. This extension was straightforward and needs
no further explanation.

• The optimizer was extended using heuristics to rewrite
FORSEQ expressions. These heuristics are described in Sec-
tion 6.4.

• The runtime system was extended with four new iterators
that implement the three different kinds of windows and
the general FORSEQ. Furthermore, the MXQuery internal
main-memory store (Figure 7) was extended in order to
implement windows. These extensions are described in
Section 6.3.

To support continuous queries and infinite streams, the fol-
lowing extensions were made:
• The parser was extended in order to deal with the new **

annotation, which declares infinite sequences.
• The data flow analyses of the compiler were extended in

order to identify errors such as the application of a block-
ing operator (e.g., count) to a potentially infinite stream.

• The runtime system was extended in order to synchronize
access to data streams and merge/split streams.

The first two extensions (parser and type system) are straight-
forward and can be implemented using standard techniques
of compiler construction [3] and database query optimiza-

tion [26]. The third extension is significantly more complex,
but not specific to XQuery. For our prototype implementa-
tion, we followed as much as possible the approach taken in
the Aurora project [1]. Describing the details is beyond the
scope of this paper; the interested reader is referred to the
literature on data stream management systems. Some fea-
tures, such as persistent queues, recoverability, and security
have not been implemented in MXQuery yet.

6.3 Runtime System

6.3.1 Window Iterators
The implementation of the FORSEQ iterators for tumbling,

sliding, and landmark windows is similar to the implementa-
tion of a FOR iterator: All these iterators implement second-
order functions which bind variables and then execute a
function on those variable bindings. All XQuery engines
have some sort of mechanics to implement such second-order
functions and these mechanics can be leveraged for the im-
plementation of the FORSEQ iterators. The MXQuery engine
has similar mechanics as those described in [14] to imple-
ment second-order functions: In each iteration, a FORSEQ it-
erator binds a variable to a sequence (i.e., window) and then
it executes a function on that variable binding. The func-
tion to execute is implemented as an iterator tree as shown
in Figure 6 for a FOR iterator. This iterator tree encodes
FOR, LET, and FORSEQ clauses (if any) as well as WHERE (us-
ing an IfThenElse iterator), ORDER BY, and RETURN clauses.
In general, the implementation of second-order functions
in XQuery is comparable to the implementation of nested
queries in SQL.

The only difference between a FOR iterator and a FORSEQ

iterator is the logic that computes the variable bindings. Ob-
viously, the FOR iterator is extremely simple in this respect
because it binds its running variable to every item of an in-
put sequence individually. The FORSEQ iterator for tumbling
windows is fairly simple, too. It scans its input sequence
from the beginning to the end (or infinitely for a continu-
ous query), thereby detecting windows as shown in Figure 5.
Specifically, the effective Boolean value of the conditions of
the START or END clauses are computed for every new item in
order to implement the state transitions of the automaton of
Figure 5. These conditions are also implemented by iterator
trees. The automata for sliding and landmark windows are
more complicated, but the basic mechanism is the same and
straightforward to implement.

6.3.2 Window Managment
The most interesting aspect of the implementation of the

FORSEQ iterators is main memory management and garbage
collection. The items of the input sequence are materialized
in main memory. Figure 8 shows a (potentially infinite)
input stream. Items of the input stream that have been
read and materialized in main memory are represented as
squares; items of the input stream which have not been read
yet are represented as ovals. The materialization of items
from the input stream is carried out lazily, using the iter-
ator model. Items are processed as they come in, thereby
identifying new windows, closing existing windows, and pro-
cessing the windows (i.e., evaluating the WHERE and RETURN

clauses). This way, infinite streams can be processed. Full
materialization is only needed if the query involves blocking
operations such as ORDER BY, but such queries are illegal on

…

Window 1

Window 2

Consumed, available for GC Active Not Read

Start

Start End

End
(not bound yet)

Figure 8: Stream Buffer

infinite streams (Section 4).
According to the semantics of the different types of win-

dows, an item can be marked as active or consumed in the
stream buffer. An active item is an item that is involved in
at least one open window. Correspondingly, consumed items
are items that are not part of any active window. An item is
immediately marked as consumed if no window is open and
it does not match the START condition of the FORSEQ clause
(Figure 5). Otherwise, an item is marked as consumed if all
windows that involve that item have been fully processed;
this condition can be checked easily by keeping a position
pointer that keeps track of the minimum first postion of all
open windows. In Figure 8, consumed items are indicated as
white squares; active items are indicated as colored squares.
In Figure 8, Window 1 is closed whereas Window 2 is still
open; as a result only the items of Window 2 are marked
as active in the stream buffer. (The postion pointer is not
shown in Figure 8; it marks the start of Window 2.)

Consumed items can be garbage collected. To implement
memory allocation and garbage collection efficiently in Java,
the stream buffer is organized as a linked list of chunks.
(Chunking and chaining are not shown in Figure 8 for read-
ibility.) That is, memory is allocated and de-allocated in
chunks which can store several items. If all the items of a
chunk are marked consumed, that chunk is released by de-
chaining it from the linked list of chunks. Furthermore, all
references to closed windows are removed. At this point,
there are no more live references that refer to that chunk,
and the space is reclaimed by the Java garbage collector.

Windows are represented by a pair of pointers that refer
to the first and last item of the window in the stream buffer.
Open windows only have a pointer to the first item; the last
pointer is set to NULL (i.e., unknown). Obviously, there are
no open windows that refer to chunks in which all items have
been marked as consumed. As a result of this organization,
items need to be materialized only once, even though they
can be involved in many windows. Furthermore, other ex-
pressions that potentially require materialization can re-use
the stream buffer, thereby avoiding copying the data.

6.3.3 General FORSEQ
The implementation of the general FORSEQ varies signifi-

cantly from that of the three kinds of windows. In particular,
representing a sub-sequence by its first and last item is not
sufficient because the general FORSEQ involves the process-
ing of non-contiguous sub-sequences. In order to enumerate
all sub-sequences, our implementation uses the algorithm
of Vance/Maier [28], including the bitmap representation
to encode sub-sequences. This algorithm produces the sub-
sequences in the right order so that no sorting of the windows
is needed in the absence of an ORDER BY clause. Further-
more, this algorithm is applicable to infinite input streams.
Additional optimizations are needed in order to avoid mem-
ory overflow for a general FORSEQ on infinite streams; e.g.,
the hopeless window detection, described in the next section.

6.4 Optimizations
This section lists several simple optimizations that we

found useful in our implementation. In particular, these
optimizations were important in order to meet the require-
ments of the Linear Road benchmark (Section 7). Each
of these optimizations serves one or a combination of the
following three purposes: a.) reducing the memory foot-
print (e.g., avoid materialization); b.) reducing the CPU
utilization (e.g., indexing); c.) improving streaming (e.g.,
producing results early). Although we are not aware of any
streaming SQL engine which implements all these optimiza-
tions, we believe that most optimizations are also applicable
for streaming SQL. A condition for most optimizations is
that a predicate-based approach to define window bound-
aries is adopted. So far, no such streaming SQL proposals
have been published.

The proposed list of optimizations is not exhaustive and
doing a comprehensive study of the effectiveness of alter-
native optimization techniques is beyond the scope of this
paper. The purpose of this list is to give an impression of
the kinds of optimizations that are possible. All these op-
timizations are applied in addition to the regular XQuery
optimizations on standard XQuery expressions (e.g., [8]).
For example, rewriting reverse axes can be applied and is
just as useful for FORSEQ queries as for any other query.

6.4.1 Predicate Movearound
The first optimization is applied at compile-time and moves

a predicate from the WHERE clause into the START and/or END
clauses of a FORSEQ query. This optimization can be illus-
trated by the following example:

forseq $w in $seq landmark window

start when fn:true()

end when fn:true()

where $w[1] eq ‘‘S’’ and $w[last] eq ‘‘E’’ return $w

This query can be rewritten into the following equivalent
query, which computes significantly fewer windows and can
therefore be executed much faster and with lower memory
footprint:

forseq $w in $seq landmark window

start curItem $s when $s eq ‘‘S’’

force end curItem $e when $e eq ‘‘E’’

return $w

6.4.2 Cheaper Window
In some situations, it is possible to rewrite a landmark

window query into a sliding window query or a sliding win-
dow query into a tumbling window query. This rewrite is
useful because tumbling windows are cheaper to compute
than sliding windows, and sliding windows are cheaper than
landmark windows. This rewrite is frequently applicable if
schema information is available. If it is known (given the
schema), for instance, that the input sequence has the fol-
lowing structure “a, b, c, a, b, c, ...”, then the following
expression

forseq $w in $seq sliding window

start curItem $s when $s eq ‘‘a’’

end curItem $e when $e eq ‘‘c’’

return $w

can be rewritten into the following equivalent expression:

forseq $w in $seq tumbling window

start curItem $s when $s eq ‘‘a’’

end curItem $e when $e eq ‘‘c’’

return $w

6.4.3 Indexing Windows
Using sliding and landmark windows, it is possible that

several thousand windows are open at the same time. In the
Linear Road benchmark, for example, this situation is the
norm. As a result, the END condition must be checked several
thousand times (for each window separately) with every new
item (e.g., car position reading). Obviously implementing
such a check näıvely is a disaster. Therefore, it is advisable
to use an index on the predicate of the END clause. Again,
this indexing is best illustrated with the help of an example:

forseq $w in $seq landmark window

start curItem $s when fn:true()

end curItem $e when $s/@id eq $e/@id

return $w

In this example, windows consist of all sequences in which
the first and last items have the same id. (This query pat-
tern is frequent in the Linear Road benchmark which tracks
cars identified by their id on a highway.) The indexing idea
is straightforward. An “@id” index (e.g., a hash table) is
built on all windows. When a new item (e.g., a car position
measurement with the id of a car) is processed, then that
index is probed in order to find all matching windows that
must be closed. In other words, the set of open windows can
be indexed just like any other collection.

6.4.4 Improved Pipelining
In some situations, it is not necessary to store items in

the stream buffer (Figure 8). Instead, the items can directly
be processed by the WHERE clause, RETURN clause, and/or
nested FOR, LET, and FORSEQ clauses. That is, results can be
produced even though a window has not been closed. This
optimization can always be applied if there is no ORDER BY

and no FORCE in the END clause. It is straightforward to im-
plement for tumbling windows. For sliding and landmark
windows additional attention is required in order to coor-
dinate the processing of several windows concurrently. The
query of Section 5.1 is a good example for the usefulness of
this optimization.

6.4.5 Hopeless Windows
Sometimes it is possible to detect at runtime that the

END clause or the predicate of the WHERE clause of an open
window cannot be fulfilled. We call such windows hopeless
windows. Such windows can be closed immediately, thereby
saving CPU cost and main memory. The query of Section
5.2 is a good example for which this optimization is appli-
cable: After an hour, an open window can be closed due to
the WHERE condition even though the END condition of the
window has not yet been met.

6.4.6 Aggressive Garbage Collection
In some cases, only one or a few items of a window are

needed in order to process the window (e.g., the first or the
last item). Such cases can be detected at compile-time by
analyzing the nested expressions of the FLWOR expression
(e.g., the predicates of the WHERE clause). In such situations,
items in the stream buffer can be marked as consumed even

though they are part of an open window, resulting in a more
aggressive chunk-based garbage collection. A good example
for this optimization is the query of Section 5.3.

7. EXPERIMENTS AND RESULTS

7.1 Linear Road Benchmark
To validate our implementation of FORSEQ and continu-

ous XQuery processing, we implemented the Linear Road
benchmark [5] using the extended MXQuery engine. The
Linear Road benchmark is the only existing benchmark for
data stream management systems (DSMS). This benchmark
is challenging. So far, the results of only three compli-
ant implementations have been published: Aurora [5], an
(unknown) relational database system [5], and IBM Stream
Core [17]. Both the Aurora and IBM Stream Core imple-
mentations are low-level, based on a native (C) implementa-
tion of operators or processing elements, respectively. The
implementation of the benchmark on an RDBMS uses stan-
dard SQL and stored procedures, but no details of the imple-
mentation have been published. There is also an implemen-
tation of the benchmark using CQL [4]; however, no results
of running the benchmark with that implementation have
been published. To the best of our knowledge, our imple-
mentation is the first compliant XQuery implementation of
the benchmark.

The benchmark exercises various aspects of a DSMS, re-
quiring window-based aggregations, stream correlations and
joins, efficient storage and access to intermediate results and
querying a large (millions of records) database of historical
data. Furthermore, the benchmark poses real-time require-
ments: all events must be processed within five seconds.

The benchmark describes a traffic management scenario
in which the toll for a road system is computed based on
the utilization of those roads and the presence of accidents.
Both toll and accident information are reported to cars; an
accident is only reported to cars which are potentially af-
fected by the accident. Furthermore, the benchmark in-
volves a stream of historic queries on account balances and
total expenditures per day. As a result, the benchmark spec-
ifies four output streams: Toll notification, accident noti-
fication, account balances, and daily expenditures. (The
benchmark also specifies a fifth output stream as part of a
travel time planning query. No published implementation
has included this query, however. Neither have we.)

The benchmark specification contains a data generation
program which produces a stream of events composed of car
positions and queries. The data format is CSV which is na-
tively supported by MXQuery. Three hours worth of data
are generated. An implementation of the benchmark is com-
pliant if it produces the correct results and fulfills the five
seconds real-time requirement. The correctness of the re-
sults are validated using a validation tool so that load shed-
ding or other load reduction techniques are not allowed.3

Fulfilling the real-time requirements becomes more and more
challenging over time: With a scale factor of 1.0, the data
generator produces 1,200 events per minute at the beginning
and 100,000 events per minute at the end.

The benchmark specifies different scale factors L, corre-

3In our experiments, we encountered the same bugs as re-
ported in [17] with the validation tool and data generator.
Otherwise, all our results validated correctly.

sponding to the number of expressways in the road network.
The smallest L is 0.5. The load increases linearly with the
scale factor.

7.2 Benchmark Implementation
As mentioned in the previous section, our benchmark im-

plementation is fully in XQuery, extended with FORSEQ and
continuous queries. Our first attempt was to implement the
whole benchmark in a single XQuery expression; indeed,
this is possible! However, MXQuery was not able to opti-
mize this huge expression in order to achieve acceptable (i.e.,
compliant) performance. As a consequence, we decided to
(manually) partition the implementation into eight contin-
uous XQuery expressions and five (temporary) stores; i.e.,
a total of 13 boxes. Figure 9 shows the corresponding work-
flow: The input stream produced by the Linear Road data
generator is fed into three continuous XQuery expressions
which in turn generate streams which are fed into other
XQuery expressions and intermediate stores. Binding an
input stream to an XQuery expression is done by external
variable declarations as specified in the XQuery recommen-
dation [6] and demonstrated in the examples in Section 5.
This approach is in line with the approaches taken in [5, 17],
the only other published and compliant benchmark imple-
mentations. Aurora, however, uses 60 boxes (!).

Seven threads were used in order to run the continuous
XQuery expressions and move data into and out of data
stores. Tightly coupled XQuery expressions (with a direct
link in Figure 9) ran in the same thread. The data stores
were all main-memory based (not persistent and not recov-
erable) using a synchronized version of the stream buffer
described in Section 6.

7.3 Results
The implementation of the benchmark was evaluated on

a Linux machine with a 2.2 GHz AMD Opteron processor
and 4GB of main memory. Our hardware is comparable to
the machines used in [5] and [17]. A Sun JVM in Version
1.5.0 09 was used, the maximum heap size was set to 2 GB
which corresponds to the available RAM used in the exper-
iments reported in [5],[17]. The results can be summarized
as follows for the different scale factors L:
• L=0.5, 1.5, 1.5: MXQuery is fully compliant.
• L=2.0: MXQuery is not compliant. The maximum re-

sponse time was 23 seconds; five seconds are allowed.
The best published results so far are compliant with an L
of 2.5 [5, 17]. These implementations are low-level C imple-
mentations that do not use a declarative language (such as
SQL or XQuery). An L of 2.5 is still out of reach for our
implementation. However, the differences are surprisingly
small (less than a factor of 2) given that our focus was to
extend a general-purpose XQuery engine whereas those im-
plementations directly target the Linear Road benchmark.
Also, MXQuery is written in Java which comes with a per-
formance penalty.

The only compliant SQL implementation of the bench-
mark [5] is at an L of 0.5 (contrasting an L of 1.5 of our
XQuery implementation). The maximum response times of
the SQL implementation at L 1.0 and 1.5 were several or-
ders of magnitude worse than the benchmark allows (2031
and 16346 seconds, respectively). Details of that SQL imple-
mentation of the benchmark are not given; however, it seems
that the overhead of materializing all incoming events in a

Car
positions

Car positions
to Respond

Accident
Segments

Accident
Events

Segment
Statistics for
every minute

Toll
Events

Result
Output

Result
Output

Balance

Accidents

Segment
Tolls

I
N
P
U
T

Balance
Query

Result
Output

Historical
Tolls

Daily
Expenditure

Query

Result
Output

Historical Queries Part

Continuous Queries Part

Toll
Calculation

Car
Position

Figure 9: Data Flow of LR Implementation

relational database is prohibitive. As part of the STREAM
project, a series of CQL queries were published in order to
implement the benchmark. However, no performance num-
bers were ever published using the CQL implementation.
In summary, there does not seem to be a SQL implemen-
tation of the benchmark that beats our XQuery implemen-
tation. Fundamentally, there is no reason why either SQL
or XQuery implementations would perform better on this
benchmark because essentially the same optimizations are
applicable to both languages. Due to the impedance mis-
match between streams and relations, however, it might be
more difficult to optimize streaming SQL because certain
optimizations must be implemented twice (once for opera-
tors on streams and once for operators on tables).

8. RELATED WORK
As mentioned in the introduction, window queries and

data-stream management have been studied extensively in
the past; a survey is given in [15]. Furthermore, there have
been numerous proposals to extend SQL; the most promi-
nent examples are AQuery [22], CQL [4], and StreaQuel
[7]. StreamSQL [27] is a recent activity (started in Novem-
ber 2006) that tries to standardize streaming extensions
for SQL. As part of all that work, different kinds of win-
dows were proposed. In our design, we were careful that
all queries that can be expressed in these SQL extensions
can also be expressed in a straightforward way using the
proposed XQuery extensions. In addition, if desired, special
kinds of streams such as the i-streams and d-streams devised
in [4] can be implemented using the proposed XQuery exten-
sions. Furthermore, we adopted several important concepts
of those SQL extensions such as the window types. Nev-
ertheless, the work on extending SQL to support windows
is not directly applicable to XQuery because XQuery has
a different data model and supports different usage scenar-
ios. Our use cases, for instance, involved certain patterns,
e.g., the definition of window boundaries using general con-
straints (e.g., on authors of RSS postings) that cannot be
expressed in any of the existing SQL extensions. All SQL
extensions published so far are only able to specify windows
based on size or time constraints; those SQL extensions are
thus not expressive enough to handle these use cases, even
if the data is relational. Apparently, StreamSQL will adopt

the predicate-based approach, but nothing has been pub-
lished so far. (The StreamSQL documentation in [27] still
uses size and time constraints only.)

Recently, there have also been proposals for new query
languages in order to process specific kinds of queries on
data streams. One example is SASE [29] which was pro-
posed to detect patterns in RFID streams; these patterns
can be expressed using regular expressions. Another pro-
posal is Wavescope [23], a (Turing-complete) functional pro-
gramming language in order to process signals in a highly
scalable way. While such languages and systems are useful
for particular applications, the goal of this work is to pro-
vide general-purpose extensions to an existing main-stream
programming language. Again, we made sure in our design
that all the SASE and Wavescope use cases can be expressed
using the proposed XQuery extensions; however, our imple-
mentation does not scale as well for those particular use
cases as the SASE and Wavescope implementations.

There have been several prototype implementations of
stream data management systems; e.g., Aurora [1], Borealis
[2], Cayuga [9], STREAM [4], and Telegraph [7]. All that
work is orthogonal to the main contribution of this paper.
In fact, our implementation of the linear road benchmark
makes extensive use of the techniques proposed in those
projects.

The closest related work is the work on positional group-
ing in XQuery described in [20]. This work proposes exten-
sions to XQuery in order to layout XML documents, one of
the usage scenarios that also drove our design. The work in
[20] was inspired by functionality provided by XSLT in order
to carry out certain XML transformations. However, many
of our use cases on data streams cannot be expressed using
the proposed extensions in [20]; our proposal is strictly more
expressive. Furthermore, the work of [20] does not discuss
any implementation issues. Another piece of related XML
work discusses the semantics of infinite XML (and other)
streams [24]. That work is orthogonal to our work.

9. CONCLUSION
This paper presented two extensions for XQuery: Win-

dows and continuous queries. Due to their importance, simi-
lar extensions have been proposed recently for SQL, and sev-
eral ideas of those SQL extensions (in particular, the types
of windows) have been adopted in our design. Since SQL
was designed for different usage scenarios, it is important
that both SQL and XQuery are extended with this func-
tionality: Window queries are important for SQL; but they
are even more important for XQuery! We implemented the
proposed extensions in an open source XQuery engine and
ran the Linear Road benchmark. The benchmark results
seem to indicate that XQuery stream processing can be im-
plemented as efficiently as SQL stream processing and that
there is no performance penalty for using XQuery.

The most important avenue for future work is to propose
the devised XQuery extensions to the W3C for possible stan-
dardization in the emerging XQuery 1.1 recommendation.

On a more technical side, extending XML Schema to de-
scribe stream properties is an important complimentary work.
Such extensions should include rate and rate variance de-
scriptions to support resource allocation and scheduling hints.
Furthermore, declaring certain values as monotonously in-
creasing (e.g., those representing time or counters) enable
optimizations in query processing and memory allocation.

Acknowledgments. This work was supported (in part)
by NCCR-MICS, a center funded by the Swiss National Sci-
ence Foundation.

10. REFERENCES
[1] D. Abadi et al. Aurora: A New Model and Architecture for

Data Stream Management. VLDB Journal, 12(2):120–139,
2003.

[2] D. Abadi et al. The Design of the Borealis Stream
Processing Engine. In CIDR, 2005.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[4] A. Arasu, S. Babu, and J. Widom. The CQL Continuous
Query Language: Semantic Foundations and Query
Execution. VLDB Journal, 15(2):121–142, 2006.

[5] A. Arasu et al. Linear Road: A Stream Data Management
Benchmark. In VLDB, 2004.

[6] S. Boag et al. XQuery 1.0: An XML Query Language, 2007.
[7] S. Chandrasekaran et al. TelegraphCQ: Continuous

Dataflow Processing for an Uncertain World. In CIDR,
2003.

[8] D. Che, K. Aberer, and T. Özsu. Query Optimization in
XML Structured-Document Databases. VLDB Journal,
15(3):263–289, 2006.

[9] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. Towards Expressive Publish/Subscribe Systems.
In EDBT, 2006.

[10] D. Draper et al. XQuery 1.0 and XPath 2.0 Formal
Semantics, 2006.

[11] D. Engatarov. XQuery 1.1 Requirements. W3C Internal.
[12] M. Fernandez et al. XQuery 1.0 and XPath 2.0 Data Model

(XDM), 2006.
[13] P. M. Fischer, D. Kossmann, T. Kraska, and

R. Tamosevicius. FORSEQ Use Cases.
http://www.dbis.ethz.ch/research/publications. Technical
Report, ETH Zurich, November, 2006.

[14] D. Florescu et al. The BEA streaming XQuery processor.
VLDB Journal, 13(3):294–315, 2004.

[15] L. Golab and T. Özsu. Issues in Data Stream Management.
SIGMOD Record, 32(2):5 –14, 2003.

[16] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Comput. Surv., 25(2):73–170, 1993.

[17] N. Jain et al. Design, Implementation, and Evaluation of
the Linear Road Benchmark on the Stream Processing
Core. In SIGMOD, 2006.

[18] S. Jeffery et al. Declarative Support for Sensor Data
Cleaning. In Pervasive, 2006.

[19] M. Kay. Saxon: The XSLT and XQuery processor.
http://saxon.sourceforge.net/.

[20] M. Kay. Positional Grouping in XQuery. In XIME-P, 2006.

[21] C. Koch et al. FluXQuery: An Optimizing XQuery
Processor for Streaming XML Data. In VLDB, 2004.

[22] A. Lerner and D. Shasha. AQuery: Query Language for
Ordered Data, Optimization Techniques, and Experiments.
In VLDB, 2003.

[23] S. Madden. Wavescope: A data management system for
signals. Stanford InfoSeminar, Jan. 2007.

[24] D. Maier, J. Li, P. Tucker, K. Tufte, and V. Papadimos.
Semantics of Data Streams and Operators. In ICDT, 2005.

[25] K. Patroumpas and T. Sellis. Window Specification over
Data Streams. In International Conference on Semantics
of a Networked World (ICSNW), 2006.

[26] H. Pirahesh, J. Hellerstein, and W. Hasan. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In
SIGMOD, 1992.

[27] StreamSQL.org. StreamSQL documentation.
http://streamsql.org/pages/documentation.html.

[28] B. Vance and D. Maier. Rapid Bushy Join-Order
Optimization with Cartesian Products. In SIGMOD, 1996.

[29] E. Wu, Y. Diao, and S. Rizvi. High-Performance Complex
Event Processing over Streams. In SIGMOD, 2006.

