
Indexing Bi-temporal Windows

Chang Ge †, Martin Kaufmann #§, Lukasz Golab †, Peter M. Fischer ∗, Anil K. Goel §
†University of Waterloo

Waterloo, Ontario, Canada
{c4ge,lgolab} @uwaterloo.ca

#Systems Group
ETH Zurich, Switzerland

martinka@inf.ethz.ch
∗Albert-Ludwigs-Universität

Freiburg, Germany
peter.fischer@cs.uni-freiburg.de

§SAP AG
Walldorf, Germany
anil.goel@sap.com

ABSTRACT
Bi-temporal databases support system (transaction) and application
time, enabling users to query the history as recorded today and
as it was known in the past. In this paper, we study windows
over both system and application time, i.e., bi-temporal windows.
We propose a two-dimensional index that supports one-time and
continuous queries over fixed and sliding bi-temporal windows,
covering static and streaming data. We demonstrate the advantages
of the proposed index compared to the state-of-the-art in terms of
query performance, index update overhead and space footprint.

1. INTRODUCTION
Bi-temporal databases support applications such as financial re-

porting, scientific data management, and data auditing, keeping
track of changes to information over time (application time) and
the time when they were recorded in the database (system time).
This enables historical queries, such as “What were the total sales
last November?”, and roll-back queries against prior versions of the
data, such as “What were the total sales last November as recorded
last December?”. Basic bi-temporal features are part of the recent
SQL:2011 standard [17] and are being added to relational DBMSs.

Temporal attributes naturally lead to window queries, which are
important building blocks of complex analytics. Windows may
be fixed (“What were the total sales last November?”) or sliding
(“Every day, compute the total sales over the past 30 days”). There
has been a great deal of work on sliding windows, especially in data
stream processing [11], where windows provide a finite view of
unbounded data. However, that work generally considers a single
time dimension, and there is no universally agreed-upon way of
treating time. Some systems construct windows according to tuple
arrival, expressing system time. Other systems consider application
timestamps, but assume that tuples arrive nearly in order. However,
in bi-temporal databases, both time dimensions matter and may be
uncorrelated: for example, information about dinosaurs may have
been added recently but the application times may be millions of
years in the past.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’15, June 29 - July 01, 2015, La Jolla, CA, USA
c© 2015 ACM. ISBN 978-1-4503-3709-0/15/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2791347.2791373

1.1 Motivating Examples
Consider a bi-temporal database storing information about cus-

tomers and their accounts. A transaction, occurring at some system
time, updates the account balance of one or more customers as of
some application time. For example, on June 1, the database may
be updated with the fact that John’s balance between April 1 and
April 30 was 1000. On August 1, John’s balance between April 1
and April 30 may be updated to 500; perhaps the initial balance was
incorrectly computed or there was a billing dispute that was settled
on August 1. Both versions of John’s balance will be stored with
the corresponding system and application times. The first version
has a system start time of June 1 and a system end time of July
31, whereas the second version has a system start time of August 1
and an unbounded system end time. Both versions have application
start times of April 1 and application end times of April 30.

A fixed bi-temporal window query may be “Return the account
balances for the application time period of April 1 to 30 as they
were known between (system) times May 1 and May 30”. We can
also leave one window fixed and slide the other. If the application
time window is sliding, we may ask “From January 1 till December
1, return the customer balances for the past 30 days, as they
were known between December 1 and 30”. If the system time
window slides, we may ask “At the end of each day, return the
customer balances for the application time period of April 1 to 30
as they were known in the past 14 days”. Finally, both system and
application windows may slide, e.g., “Return the customer balances
for the past 30 days as they were known over the past 14 days”.

Bi-temporal windows identify fragments of history—or the fu-
ture in case of forecasting databases, which store predictions as tu-
ples with future application timestamps—as it was known now or in
the past. This enables historical analysis over different versions of
the data, which is useful in financial reporting, inventory manage-
ment, processing scientific or medical experiments, auditing and
data cleaning. In the above examples, bi-temporal window queries
support what-if scenarios, re-create and track account projections
as of different times in the past, and characterize the impact of data
modifications on financial reports generated at different times.

In addition to historical analysis, continuous bi-temporal queries
can be supported by defining a system time window over newly
arrived data and an arbitrary application time window. Such queries
generalize continuous queries in a single time dimension, and show
how our knowledge of the past (or the future) is evolving as new
data arrive. Such queries naturally appear in Data Stream Ware-
houses [10], which support unified processing of streaming and
historical data. The append-only nature of updates in bi-temporal
data matches well with continuous query processing models.

1.2 Challenges and Contributions
We address the problem of supporting bi-temporal window

queries. The technical challenge is the interplay between system
and application time. System-time windows are essentially FIFO
queues (tuples expire in arrival order) and can be maintained ef-
ficiently. However, while system time is append-only, application
time can be arbitrary.

Indexing is a common solution for improving query perfor-
mance but the state-of-the-art does not support bi-temporal index-
ing well. Bi-temporal window processing differs significantly from
one-dimensional windows, simple bi-temporal queries and spatial
queries. For example, bi-temporal tuples that are currently valid
have unbounded system end times, but open intervals generally
cannot be handled well by bounding boxes and space-minimizing
partitioning strategies used in spatial indexing. Furthermore, there
is little work on specialized bi-temporal indexing, and none that
explicitly supports window queries (details in Section 3).

We make two contributions in this paper: 1) we introduce
the concept of bi-temporal windows, and 2) we propose a two-
dimensional index, BiSW, which supports a wide variety of bi-
temporal window queries for both streaming and materialized data.
Using a bi-temporal database benchmark based on TPC-H [13], we
experimentally demonstrate the advantages of BiSW compared to
the state-of-the-art in terms of query performance, maintenance
overhead and space footprint. While bi-temporal indexing and
sliding window processing have been separately addressed in prior
work, this is the first paper that combines these important concepts.

The remainder of this paper is structured as follows. Section 2
introduces bi-temporal windows; Section 3 discusses previous
work; Section 4 describes the proposed BiSW index and Section 5
explains how to use it with bi-temporal window queries; Section 6
presents experimental results; and Section 7 concludes the paper.

2. BI-TEMPORAL WINDOWS

2.1 The Bi-temporal Data Model
We model a bi-temporal relation as a non-temporal relation

with four additional temporal attributes, StartApp, EndApp,
StartSys and EndSys, which define two time intervals. The
[StartApp,EndApp) application time interval represents an
application-defined validity period of a tuple in the real world.
The [StartSys,EndSys) system time interval indicates when the
tuple was visible in the database (until modified or deleted).

System time attributes are managed by the database system,
while application time is managed by the user. A new tuple is
given a StartSys equal to the system time when it was inserted
and EndSys equal to infinity. If a tuple is deleted or any of its
attributes (application time or other non-temporal attributes) are
modified, the old version of it remains in the database, but its
EndSys is set to the system time when it was deleted or modified.

Table 1 shows an excerpt from a bi-temporal customer table
corresponding to eight versions of a tuple with the same non-
temporal key1; for brevity, we omit the non-temporal key itself and
only include a unique tuple ID (TID), an account balance, and the
application and system time intervals. The first tuple indicates that
at system time 100, the account balance from application time 10
onwards was known to be 50. This information was valid until
system time 102, when the second and third tuples were inserted
(and at that time, the system end time of the first tuple was updated
from infinity to 102). The second and third tuples indicate that at

1Of course, in practice a bi-temporal table contains many versions
of tuples with many different non-temporal keys.

Table 1: An excerpt from a bi-temporal table
TID Balance StartApp EndApp StartSys EndSys

1 50 10 ∞ 100 102
2 50 10 11 102 ∞
3 40 11 ∞ 102 105
4 30 11 13 105 ∞
5 100 13 15 105 106
6 30 15 ∞ 105 106
7 35 15 ∞ 106 ∞
8 90 13 15 106 ∞

22 Chang Ge, Bitemporal Sliding Windows.

TID=1

TID=3

TID=5 TID=6

TID=7
Sy

st
em

 T
im

e

10 11 12 13 14 15

100

102

105

106

16 17

107

101

104

103

TID=2 TID=4 TID=8

Application Time

Figure 1: A rectangle representation of the data from Table 1 (solid
lines) along with two example windows (dotted lines).

system time 102, the account balance was known to be 50 between
time 10 and 11, and 40 from time 11 onwards. The second tuple
has an open system end time, meaning that it is still valid. Tuples 4
through 6 were inserted at system time 105 with new information
about the balance from time 11 onwards. Finally, tuples 7 and 8
were inserted at system time 106 with updated information about
the balance from time 13 onwards; the balance before time 13 was
recorded earlier (tuples 2 and 4) and has not changed since then.

Figure 1 shows a geometric representation of the system and
application times of the tuples in Table 1, with application time on
the x-axis and system time on the y-axis. Each tuple is represented
by a rectangle, which may be closed or partially open. Ignore the
dotted rectangles for now.

2.2 Bi-temporal Slicing
There are two ways to “slice” a bi-temporal table. One is along

the system time dimension, which corresponds to snapshots of the
table as recorded at different points in time, and to horizontal slices
in Figure 1. Let tsys be a system timestamp. The slice at tsys
corresponds to all tuples t where tsys ∈ [t.StartSys, t.EndSys).
For instance, the slice at system time 104 includes tuples 2 and
3: if we draw a horizontal line at system time 104 in Figure 1,
it intersects with TID=2 and TID=3. That is, if we roll-back the
database to system time 104, the account balance was known to
be 50 from time 10 to 11 and 40 from time 11 onwards. As new
transactions arrive, we obtain new system time slices corresponding
to new snapshots of the table.

The other possibility is to slice along the application time dimen-
sion, which corresponds to how our knowledge of the facts at differ-

ent application times evolved, and to vertical slices in Figure 1. Let
tapp be an application timestamp. The slice at tapp corresponds to
all tuples t where tapp ∈ [t.StartApp, t.EndApp). For example,
the slice at application time 12 includes tuples 1, 3 and 4: if we
draw a vertical line at application time 12 in Figure 1, it intersects
with TID=1, TID=3 and TID=4. This tells us how our knowledge
of the account balance at time 12 changed over (system) time: at
system time 100, the balance was known to be 50; at system time
102 the balance was updated to 40; and at system time 105 the
balance was updated to 30. As new transactions arrive, existing
application time slices may grow (e.g., a new transaction may insert
a tuple with an old application time), and new application time
slices are created as needed.

Finally, we can ask a point query to find out what was known
about a particular application time at a particular system time. For
example, at system time 105, the account balance at application
time 12 was known to be 30 (tuple 4). In Figure 1, this corresponds
to drawing a horizontal line at system time 105 and a vertical line
at application time 12, which intersect with TID=4.

2.3 Bi-temporal Windows
To cover a broad range of applications, we consider two defini-

tions of bi-temporal windows, one based on interval overlap and
one based on event containment.

2.3.1 Interval-Oriented Windows
Interval-oriented windows extend the slices we discussed earlier.

Fixed windows directly correspond to collections of slices. Let
tsys and t′sys be two system timestamps, with tsys < t′sys. A
system time window [tsys, t

′
sys] contains tuples whose system time

intervals [StartSys,EndSys) overlap the window. That is, the
system time window identifies tuples that existed in any snapshot
of the database between tsys and t′sys. For example, the system
time window [100, 102] includes tuples 1, 2 and 3, or the union of
all tuples in system time snapshots at times 100, 101 and 102. This
window corresponds to the horizontal dotted rectangle in Figure 1,
which intersects with TID=1, TID=2 and TID=3.

Similarly, an application time window [tapp, t
′
app], for

tapp < t′app, contains tuples whose application time intervals
[StartApp,EndApp) overlap the window. This gives all the
versions of tuples with applications times between tapp and t′app
that ever existed in the database. For example, the application time
window [11, 13] includes tuples 1, 3, 4, 5 and 8, or the union of all
tuples in application time snapshots at times 11, 12 and 13. This
window corresponds to the vertical dotted rectangle in Figure 1,
which intersects with the above tuple IDs.

A fixed bi-temporal window includes both a system and an
application window. For example, we can ask for all tuples within
a system time window [100, 102] and an application time window
[11, 13], which gives the intersection of the two result sets listed
above, i.e., tuples 1 and 3. In Figure 1, this bi-temporal window
corresponds to the intersection of the two dotted rectangles, which
intersects with TID=1 and TID=3. Note that the order in which
we apply the two windows does not matter: we can find the tuples
within the system time window and then apply the application time
window, or vice-versa.

The bi-temporal sliding windows we consider in this paper are
defined by a length and a slide interval that indicates how often the
window moves. We consider three types of sliding window queries.

The first involves a fixed system time window and a sliding
application time window. Here, we identify a system time range
of interest and we slide over application time. For example, sup-
pose the fixed system time window is [100, 102] and the sliding

application window has a length of 3 and a slide interval of 1,
starting at application time 13. The first result of the query contains
all tuples within the system window [100, 102] and the application
window [10, 12], which gives tuples 1, 2 and 3. Next, we move the
application window to [11, 13] and output tuples 1 and 3, followed
by moving the application window to [12, 14], and so on while
keeping the system window fixed. In Figure 1, this corresponds
to keeping the horizontal dotted rectangle fixed and moving the
vertical dotted rectangle to the right, one application time unit at a
time. As the vertical rectangle moves, the intersection of the two
rectangles also moves to indicate the new contents of the window.

In the second case, the application window is fixed and the
system window slides (in the special case of continuous queries, the
system window ends at the current time and slides one slide interval
at a time as new data arrive; otherwise, the system time window
may start anywhere in the past and slides over the data currently
in the database). That is, we identify an application time range of
interest and report how the contents of the database have changed
over (system) time. For example, suppose the fixed application
window is [11, 13] and the sliding system window has a length of 3
and a slide interval of 1, starting at time 103. The first result of this
query contains all tuples within the application window [11, 13] and
system window [100, 102], i.e., tuples 1 and 3. Next, we slide the
system window to [101, 103], giving tuples 1 and 3 again, followed
by sliding the system window to [102, 104], which gives tuple 3,
and so on. In Figure 1, this corresponds to keeping the vertical
dotted rectangle fixed and moving the horizontal dotted rectangle
down, one system time unit at a time.

In the third case, both windows slide. Suppose both windows
have lengths of 3 and slide intervals of 1, starting at system time
103 and application time 13. The first result of this query contains
tuples within system window [100, 102] and application window
[10, 12], which gives tuples 1, 2 and 3. Next, we move both
windows forward by one, giving a system window [101, 103] and
an application window [11, 13], which gives tuples 1 and 3. Next,
both windows slide by one again, giving a system window of
[102, 104] and an application window [12, 14], which only includes
tuple 3, and so on. In Figure 1, this corresponds to moving both
dotted rectangles one unit at a time.

2.3.2 Event-Oriented Windows
We also consider another definition of bi-temporal windows

which we refer to as event-oriented. Let t and t′ be two times-
tamps, with t < t′. An event-oriented system time window [t, t′]
contains tuples with StartSys or EndSys in [t, t′]; similarly, an
event-oriented application time window [t, t′] contains tuples with
StartApp or EndApp in [t, t′]. That is, an event-orient system
time window only contains those tuples which were inserted, mod-
ified or deleted between system time t and t′, and an event-oriented
application time window only contains tuples whose application
time intervals started or ended between application time t and
t′. These types of windows are useful in database auditing and
tampering applications, to extract data that were modified during
some period of time. Clearly, an event-oriented window includes a
subset of the tuples from its interval-oriented counterpart.

Returning to Figure 1, an event-oriented system time window
[105, 106] contains tuples 3 through 8, i.e., those with system time
ranges that start or end at time 105 or 106. Tuples whose rectangles
intersect the window rectangle but are not bounded at least once in
the window (e.g., TID=2) are not included.

2.4 Problem Statement
We now state the problem we want to solve. We are given a

bi-temporal table, which may be static or continuously receiving
new data, and we want to support queries with 1) fixed bi-temporal
windows and 2) the three cases of sliding bi-temporal windows
defined above, both interval and event-oriented, and both over
streaming and historical data. We are interested in retrieving all
tuples from a bi-temporal window range rather than searching for
particular keys2. The specific problems we address are 1) inserting
new data, 2) indexing the bi-temporal table to efficiently identify
tuples belonging to a particular system and application time win-
dow, and 3) incrementally recomputing the set of relevant tuples
when one or both windows slide. The second problem refers to
fixed window queries and to computing initial windows for sliding
window queries; we refer to these tasks as range queries. The third
problem refers to sliding window maintenance and we refer to these
types of tasks as change queries. The index should have a low
maintenance overhead when new data arrive, a low space footprint
and the means to easily partition or expire unneeded data.

3. RELATED WORK
Relational systems such as IBM DB2 [23], Oracle [21] and

Teradata [1] have recently started supporting some bi-temporal op-
erations. However, bi-temporal support is limited and bi-temporal
operators are not optimized.

While the proposed BiSW index is the first bi-temporal index
designed for window queries, there are alternatives [25]. Any
spatio-temporal index structure can be used—as we showed in
Figure 1, a bi-temporal tuple can be represented as a rectangle.
Examples include variants of B-trees (see, e.g., [2, 7, 8, 20]) and
R-trees (see, e.g., [5, 6, 18, 24, 29]). However, spatio-temporal
indices do not cope well with the open intervals occurring in bi-
temporal data, do not exploit the append-only nature of system time
or suffer from the high cost of index maintenance.

Temporal indices have been proposed to deal with the above
shortcomings. Two examples are the Timeline Index [14] and the
Bi-temporal Timeline Index [12]. The timeline index is a main-
memory log/change based index, but it only supports system time
and exploits its append-only properties. The idea is to divide
system time into buckets and log the transactions that have occurred
in each bucket. The bi-temporal timeline index maintains a timeline
index for system time in the same way as in [14]. Additionally,
for selected system time buckets, timeline indices are created for
application time, which index the application times of tuples that
were valid at the given system time. If a query needs to look up
an application time slice as of some system time that does not
have an associated application timeline index, a new application
timeline index is lazily built. This means that using the bi-temporal
timeline index to support bi-temporal sliding windows requires a
full application index construction for every system time slide.

The proposed index, BiSW, shares the idea of change indexing
with [12, 14], but it is a two-dimensional change index. Each entry
in the index records changes in both time dimensions, providing
(almost) symmetric access for querying, but exploiting the seman-
tic differences between system and application time for updates. As
a result, it is more effective and less complex than fully symmetric
spatial indexes for range queries and optimized for sliding window
queries.

In terms of window queries, there is a great deal of previous
work in data stream management; see, e.g., [11] for an overview.
However, data stream systems do not fully support bi-temporal
data. While bi-temporal stream models [3] and stream revisions

2Using the “key/valid/transaction” terminology from [25], our
queries are “*/range/range”.

[22] have been proposed, optimizing bi-temoral window queries
was not discussed. Some data stream systems employ system
or arrival time, while others rely on external application times-
tamps. In either case, stream tuples are assumed to arrive mostly
in timestamp order, and out-of-orderness is handled by techniques
such as buffering [31], overflow chaining [16] and punctuations
[28, 30]. Having one time dimension with append-only arrivals
greatly simplifies window maintenance and enables incremental
processing; see, e.g., [15, 19, 26]. Again, it suffices to partition
the single time dimension into buckets; new data are inserted into
the new bucket, and, to maintain a sliding window, we simply drop
old buckets when new ones are created. However, bi-temporal
windows require new solutions.

Finally, we point out related work on moving queries over spatial
data (see, e.g., [9, 27]), in which the region referenced in the
query changes over time, and the objective is to maintain the query
result. Moving queries are similar to sliding window queries, but
the challenges and solutions in the context of bi-temporal window
queries are different.

4. THE BISW INDEX
We now introduce the BiSW index, starting with the logical

design, which is a two-dimensional change log. Next, we explain
the physical design, which implements the two-dimensional change
grid as an application-time-partitioned sparse matrix. We then
present checkpointing optimizations that trade off storage space for
lookup times, and discuss the space and maintenance complexity.

4.1 Logical Design
When modelling bi-temporal data, it is useful to understand

which classes of records exist and how they evolve. There are
four classes of bi-temporal tuples, corresponding to four different
shapes, discernible by their end values in each temporal dimension:

1. Rectangles with two open sides, corresponding to tuples with
unbounded system and application end times; e.g., TID=7.

2. Horizontal half-open stripes, corresponding to tuples with
unbounded application end times but bounded system end
times, meaning that a newer version of this tuple exists; e.g.,
TID=1.

3. Vertical half-open stripes, corresponding to tuples with un-
bounded system end times, but bounded application end
times; e.g., TID=2.

4. Closed rectangles, corresponding to tuples with bounded
system and application end times; e.g., TID=5.

Since application time updates are accompanied by a system
time update and system time values are immutable (except for
being closed when a new version of the tuple is created), the only
updates that may happen to an existing tuple are (1) to (2) or (3) to
(4). All other transactions result in a new tuple that again falls into
one of the four classes.

Many of these shapes are open, so classical approaches such as
R-trees that rely on closed bounding boxes and balanced space
partitioning are not effective. Given that window processing is
based on changes in the data, we take a different approach in BiSW
by indexing the boundary points that define a shape.

The logical design of BiSW is that of a two-dimensional grid
of cells, in which a cell with coordinates (x, y) holds events that
occurred at application time x and system time y. To disambiguate
the meaning of these events, we also store their “role”. For this

19Chang Ge, Bitemporal Sliding Windows.

Checkpointing

Application Time
S

y
st

em
 T

im
e

10 11 12 13 14 15

100

102

105

CKP

106

16 17

107

CKP

101

104

103

+1+ 1+

+1-

+2+

-2+

+3+

1-

3+

+3-

+4+

-4+

+5+

3-

5+

-5+

+6+

+2 -2

+4

-4

+5

-5

+6

+5-

+8+

5-

8+

-5-

+6-

+7+

-8+

Figure 2: Representing the boundary points of bi-temporal tuples.
The shaded strips correspond to checkpoints (see Section 4.3).

purpose we use the following notation: opApp TID opSys, where
opApp and opSys can be + or−, representing the beginning or the
end of this tuple in application time and system time, respectively.

For example, consider TID=5 in Figure 1. Its starting point is
(13,105), so this particular cell of the index stores +5+, denoting
the beginning of application and system time intervals for tuple 5.
In application time, this tuple spans to 15, so we store −5+ in cell
(15,105). Similarly, since the system time of this tuple ends at 106,
we store +5− in cell (13,106) and −5− in cell (15,106).

Figure 2 illustrates the logical view of BiSW given the data from
Table 1. Ignore the shaded horizontal and vertical strips labeled
CKP for now. Note that tuples from class 1 such as TID=7 (open
system and application time range) only have one entry for them,
tuples from classes 2 and 3 such as TID=1 or TID=2 (one open
interval, one closed interval) have two entries, and tuples from class
4 such as TID=5 (closed in both times) have four entries3.

4.2 Physical Design
While a spatial index could store our boundary points, exploiting

order, storage locality, compression and efficient updates led us
to a sparse matrix design that is partitioned by application time
and relies on arrays of actually-present versions in system time.
Figure 3 describes how the running example from Table 1 is (par-
tially) translated and represented. For each application time, we
store a sorted array of system times (labeled Version) along with
the events that happened in the corresponding logical cell (Events).
This allows efficient scans and selections of a specific version (by
direct lookup or binary search over the version list). Note that
cells that do not contain any events, such as application time 12 or
system time 101, are not included in the physical implementation.

Depending on the distribution and granularity of application
times, the application-time partitions can be maintained in different
ways. First, a partition may not cover a single application time, but
a range, thus reducing the number of partitions. If the application
times are regularly distributed, a simple array pointing from appli-
cation timestamps to system time arrays is suitable, as in Figure 3.
In other cases (such as scientific applications), application times
3For class-4 tuples, the standard geometric interpretation calls for
just the diagonal points, +X+ and−X−. However, as we will see
in Section 5, we need three or all four points to answer bi-temporal
window queries efficiently.

14Chang Ge, Bitemporal Sliding Windows.

Physical Representation

Application Time

10 13

S
y

st
em

 T
im

e

…

11
Version Events

100 +1+

102 +1-

+2+

Version Events

102 -2+

+3+

105 +3-

+4+

Version Events

105 -4+

+5+

106 +5-

+8+

Figure 3: Physical design of BiSW

may have a higher resolution and a skewed distribution, and the
application-time partitions may be stored in a balanced tree.

The append-only property of system time ensures that the system
time arrays are only appended to, thus ensuring efficient updates.
When new data arrive, they are partitioned on-the-fly by their appli-
cation time, and appended to the end of the corresponding system
time arrays. For the updates happening at system time sys_t, only
those horizontal cells which share the same system time coordinate
sys_t will be touched. For example, returning to Table 1, tuples
with TID=7 and TID=8 are inserted into the database at system
time 106. Also, note that tuple 7 is a new version of tuple 6 and
tuple 8 is a new version of tuple 5, so we need to set the system
end time of tuples 5 and 6 to 106. This triggers the following index
operations at time 106: 1) append a cell with Version=106 under
application time 13, and store +5− and +8+ there, as illustrated
in red in Figure 3; and 2) append a cell with Version=106 under
application time 15, and store −5−, +6−, +7+ and −8+ there.

One may ask how to tell if newly inserted tuples are new versions
of existing tuples, and therefore how to tell if any existing tuples
must have their system end times updated. For this, we can
maintain a separate index structure, such as a hash table, that maps
non-temporal keys to TIDs. Note that we need this information
not only for BiSW, but also for any other choice of index on the
bi-temporal attributes.

4.3 Checkpointing
Indexing the boundary points avoids the overhead of indexing

open shapes, enabled append-only updateds, and, as we shall see in
Section 5, it provides an efficient way to maintain sliding windows
by identifying changes between adjacent system and application
time ticks. However, range queries such as those for finding the
initial windows for sliding window queries, incur a higher over-
head, since we need to check all the preceding cells in both time
dimensions to find previously-opened intervals that overlap with
the window. To speed up range queries, we introduce checkpoints,
which summarize the events that have occurred so far.

Figure 2 illustrates a system time checkpoint after time 105 and
an application time checkpoint after time 13, labeled CKP. The
system time checkpoint corresponds to the green horizontal strip.
It encodes the application start times (+X), and, if applicable,
application end times (−X), of tuples that are valid at time 105,
partitioned by application time. There are four such tuples: 2,
4, 5 and 6. All but 6 have a bounded application end time and
therefore all but 6 have both a +X and a −X in the checkpoint.
The application time checkpoint corresponds to the yellow vertical
strip. It encodes the system start times (X+), and, if applicable,
system end times (X−), of tuples whose application time range
includes 13, partitioned by system time. There are four such tuples:
1, 3, 5 and 8, of which all but 8 have a bounded system time and
therefore both an X− and an X+.

Checkpoints trade off space for query performance; e.g., to find
valid tuples at time 106, we refer to the illustrated checkpoint and
the cells corresponding to system time 106 instead of scanning all
the cells up to system time 106. To create a new checkpoint, we
go back to the most recent available checkpoint and only examine
the new events that have been recorded since then. One way to
implement checkpoints is using bitmaps.

Checkpoints also give us the ability to partition and prune the
index, since a checkpoint represents the full set of active tuples in
a more compact way than the index itself. This way, even with
continuous queries and tuples with arbitrary lifetime intervals, the
amount of history that needs to be stored can be bounded.

4.4 Space Complexity
While BiSW logically employs a grid over the system and ap-

plication times, its storage requirements are proportional to the
number of bi-temporal tuples; recall that at most four events are
required per tuple. This is expected to be much smaller than the
cross product of the two time domains since it is unlikely that every
system time will include transactions that update every possible
application time. As illustrated in Figure 3, each system time array
needs linear space in the number of versions it stores, and altogether
the arrays store a number of events that is linear in the number of
tuples. Partitioning by application time creates minimal overhead
since it only requires entries for application times that actually
exist. Depending on whether this partitioning is dense or sparse,
the cost of the directory over the partitions is linear or logarithmic
in the actual domain of application time. Finally, checkpoints need
as many entries as there are active intervals. However, in practice,
most intervals will not span the entire time range. Thus, the worst-
case complexity is O(kN) where k is the number of checkpoints
and N is the number of tuples.

Compared to the Bi-temporal Timeline index and other ap-
proaches that fundamentally rely on single-dimensional indices,
BiSW is more space-efficient (it does not maintain separate ap-
plication time indices at different system time points and there-
fore does not store the same tuple multiple times) and incurs no
overhead when looking up arbitrary combinations of system and
application times. Compared to spatial indexes, BiSW avoids the
impact of half-open shapes and therefore achieves better update and
querying behaviour.

5. USING THE BISW INDEX
We now describe how to use the BiSW index to answer bi-

temporal window queries. We use the following simple query,
written in a format inspired by streaming SQL query languages,
with “table” referring to Table 1:

select *
from table

[SYS, START 101, RANGE 4, SLIDE 1]
[APP, START 11, RANGE 3, SLIDE 2]

The initial instance of this query runs over the system time window
[101, 104] and application time window [11, 13]. In the next in-
stance, the system time window slides by one to [102, 105] and the
application window slides by two to [13, 15], and so on. We can
omit the START times if the windows are to end at the currently-
largest system or application time and slide as new data arrive, as
is the case in continuous queries.

We describe 1) how to use the index to answer the initial range
query and 2) how to answer change queries that identify changes
from one instance to the next, which may be used to incrementally
maintain the window contents. Throughout this section, we will

20Chang Ge, Bitemporal Sliding Windows.

Query evaluation – slide both times

S
y

st
em

 T
im

e

10 11 12 13 14 15

100

102

105

CKP

106

16 17

107

CKP

101

104

103

+1+ 1+

+1-

+2+

-2+

+3+

1-

3+

+3-

+4+

-4+

+5+

3-

5+

-5+

+6+

+2 -2

+4

-4

+5

-5

+6

+5-

+8+

5-

8+

-5-

+6-

+7+

-8+

Application Time

Figure 4: Windows arising from the example query.

refer to Figure 4, which takes Figure 2 and adds three rectangles,
corresponding to the initial instance of the bi-temporal window of
the above query and two subsequent instances. We will explain the
shaded regions shortly.

5.1 Event-Oriented Windows
For event-oriented windows, computing the initial instance is

simple: we report exactly those events which are stored in the cells
spanning system time 101 through 104 and application time 11
through 13. These cells are outlined in yellow in Figure 4, and
the initial events are −2+ and +3+. In terms of the physical
design (recall Figure 3), we need to access the application time
partitions 11 and 13, and for each, we access the system time arrays
in positions 101 through 104. If we have an index on the application
time partitions, we can locate the desired application start time in
time logarithmic in the number of application time partitions. Then,
we can use binary search to locate the desired system start time
within a system time array.

Change queries are also simple. When the windows slide, we
compute the negative delta, corresponding to expired events, i.e.,
those in cells that belonged to the previous instance of the windows
but not the current instance, and the positive delta, which consists
of new events in cells that did not belong to the previous instance.
Again, this can be done by accessing the appropriate application
time partitions in BiSW. In Figure 4, the next instance of the
windows is outlined in blue (ignore the grey strips corresponding
to the system and application time checkpoints, as we do not need
checkpoints for event-oriented queries). The negative delta is−2+
and +3+ and the positive delta is −4+, +5+, −5+ and +6+.

Index lookup gives “raw” events, but their interpretation is
straightforward. For example, the initial state of the query of −2+
and +3+ means that for TID=2, its application time interval ends
within the window and its system time starts within the window; for
TID=3, its system and application time intervals both start within
the initial windows.

5.2 Interval-Oriented Windows

5.2.1 Range Queries
We now turn to interval-oriented windows, where it is not imme-

diately obvious how to convert the events stored in the index into
intervals. First, consider the initial range query and assume there

are no checkpoints. To obtain the intersecting intervals, we find
those which started within the window plus those which started
earlier but have not yet ended. This corresponds to accessing cells
within the initial window as well as cells above it and to the left.
In Figure 4, to find events relevant to the first instance of the query
(i.e., system time window [101, 104] and application time window
[11, 13]), we need to examine the top-left region of the cells all
the way down to application time 13 and system time 104. These
events are: +1+, +1−, +2+, −2+ and +3+.

Next, we explain how to construct intervals from events. The
idea is to take the +X+ events (i.e., tuples 1, 2 and 3 in our exam-
ple), but whenever we see a matching−X+ or +X− event, check
if the application or system end time, respectively, is still within
the window. If not, we can immediately remove the corresponding
tuple from consideration. Since event +1− is in the cell (102, 10),
we know that the system end time of tuple 1 is 102, which is within
the initial range query. On the other hand, −2+ is in the cell
(11, 102), meaning that the application end time of tuple 2 is 11,
which is not within the initial range query4. Thus, we only report
tuples 1 and 3 in the initial query result.

To perform the reconstruction efficiently, it is crucial to scan
the index in order: we proceed in application time order and
scan each associated system time array in order. For each plus-
plus event, we add the corresponding tuple to a list of candidates.
When we encounter a corresponding minus-event, we check the
system or application end time of the event, as described above,
and decide whether to keep the tuple in the candidate list of remove
it. Note that the end times can be obtained from the index alone by
examining the cell co-ordinates of the corresponding event, and we
do not have to access the bi-temporal table.

There is one more piece of information that our range query
lookups return, which is useful for subsequent change queries.
As we are scanning the events, if we decide to keep a tuple in
the candidate list after seeing a minus-event, we also record the
tuple’s system or application end time in the candidate list. In the
above example, tuple 1 will be reported in the answer and it will be
marked as ending at system time 102. If the range query is just a
fixed window query, it can ignore this additional information.

5.2.2 Change Queries
When a bi-temporal sliding window query is issued, we first

perform a range query and then we repeatedly perform change
queries whenever the window or windows slide. Throughout the
execution, we need to maintain the result set along with the extra
information about end times, as described above. We now discuss
the first window-slide of our example query, i.e., the system time
window slides to [102, 105] and the application time window slides
to [13, 15], giving the rectangle outlined in blue. We know that the
initial range query returned tuples 1 and 3, and we know that tuple
1’s system time interval ends at 102. Our goal now is to calculate
the positive and negative delta.

The first step is to find expired events, i.e., the negative delta. For
this, we examine the previous result set and see if any tuple’s end
time is now outside the new window(s). Tuple 1’s system end time
of 102 is outside the new system time window [102, 105], so tuple
1 is added to the negative delta and removed from the result.

To improve the efficiency of computing the negative delta, we
should not scan the entire result set. One simple optimization is to
partition the result set: one partition stores tuples with no minus-
events, the next partition stores tuples that will expire one slide

4Recall that tuple intervals are closed on the left and open on the
right, therefore tuple 2’s application time interval of [10, 11) is not
within the application time window of [11, 13].

from now, the next partition stores tuples that will expire two slides
from now, and so on. For example, after computing the initial range
query, it is easy to compute that tuple 1’s system end time of 102
means that tuple 1 will expire one slide later.

The second step is to obtain new events. For this, we access the
cells within the new windows, and some additional cells. Those
additional cells are shaded light yellow and light blue in Figure 4:
the horizontal strip for system time 105, from the beginning of
applicaton time till 12, and the vertical strip for application times 14
and 15, from the beginning of system time till 101. To understand
why scanning these additional regions is necessary, observe that
there may be a tuple with a system start time of 105 but an old
application time, which did not overlap with the initial window but
now overlaps with the current window. We would miss these tuples
if we only examined the cells within the new windows. From these
regions, we obtain the following new events: +3−, +4+, −4+,
+5+, −5+ and +6+.

We now apply the same logic as in range queries and check the
end times of each minus-event to decide whether to keep it in the
candidate list or remove it. The system end time of tuple 3 is 105,
so this tuple remains in the candidate set. Similarly, the application
end time of tuple 5 is 15, so it also remains in the candidate set. On
the other hand, the application end time of tuple 4 is 13, which
is not within the new application time window, so this tuple is
removed from the candidate set. This gives a positive delta of tuples
5 and 6 (tuple 3 was already in the previous result set).

We now have all the information we need to update the result of
the query after the first slide. The old result, containing tuples 1 and
3, the negative delta of tuple 1, and the positive delta of tuples 5 and
6 give a new result with tuple 3 (and its system end time of 105),
tuple 5 (and its application end time of 15), and tuple 6. Again, it is
easy to compute that tuple 3 will expire three slides from now and
tuple 5 will expire one slide from now.

After the third slide, the system time window is at [103, 106]
and the application time window is at [15, 17]. We put tuple 5 in
the negative delta because its application end time is outside the
new application time window. Next, we scan the cells contained in
the new windows (outlined in red) as well as the regions shaded in
light purple and green5. The new events are: +5−, +8+, −5−,
+6−, +7+ and−8+. We also notice that the application end time
of tuple 8, which is 15, does not overlap with the new application
time window and we remove tuple 8 from consideration. Tuple 6’s
system end time of 106 is still in the window, so it remains in the
result. Finally, tuple 7 is added to the positive delta. Thus, the
updated result consists of tuples 3, 6 and 7.

Note that the above process applies to both continuous and
historical queries, with the only difference being that for historical
queries, all the data in Figure 4 already exist, whereas for continu-
ous queries, the grid in Figure 4 is being created as new data arrive,
one horizontal strip at a time. In both cases, we scan the same
regions when the windows slide: the horizontal strip corresponding
to new system times and the vertical strip corresponding to new
application times.

5.2.3 Exploiting Checkpoints
Figure 4 shows a system time checkpoint at time 105 and an

application time checkpoint at time 13. Checkpoints are very useful
for range queries. For example, suppose the initial windows are
as outlined in red, i.e., system time [103, 106] and application
time [15, 17]. Rather than scanning all the cells above and to

5We do not have to scan all the cells with system time 106 because
of the checkpoint at application time 13. That is why the green
interval does not extend all the way to the left.

Table 2: Data Set Properties
Data Set S SF_0 SF_H #tuples #app.versions #sys.versions
1 1 10 3 Mio 3 Mio 3 Mio
5 1 50 17 Mio 15 Mio 15 Mio
10 1 100 57 Mio 55 Mio 55 Mio

the left of this initial region, it suffices to go back till the near-
est checkpoint and only scan the remaining cells. Returning to
the physical implementation of BiSW, this can greatly reduce the
number of application time partitions and the corresponding system
time arrays that need to be accessed. Again, by examining the end
times of minus-events, the checkpoints tell us that tuples 3, 6 and
8 are candidates for the result, and all we have to do next is access
the cell (15, 106) to find that 7 is also in the result set but 8 is not.
Checkpoints can also be useful for change queries, as we saw in the
earlier example.

6. EXPERIMENTS

6.1 Setup, Data Sets and Contenders
We performed the experiments on a server with 256GB RAM

and 2 AMD Opteron 6276 CPUs with 16 cores running at 2.3
GHz. We used a Linux operating system with a 3.8.5 kernel. We
repeated each measurement ten times and report the average. Any
experiment taking longer than one hour was stopped.

For our datasets, we used the schema and data generator from
the TPC-BiH [13] benchmark. The generator uses the output of
the non-temporal TPC-H generator and adds a temporal dimension
to it by running additional update transactions (such as new order,
cancel order). Thus, while the update generator is running, the
system time advances linearly. We modified the TPC-BiH genera-
tor slightly and chose the application time interval for each tuple
from a uniform distribution. This modified TPC-BiH generator
yields a dataset for which the events are distributed uniformly in
the application and system time domains. The size of the dataset
is influenced by two scaling factors: SF0 is the scaling factor of
the non-temporal TPC-H generator used for initialization and SFH

determines the size of the history in terms of Millions of update
transactions. Table 2 summarizes the three data sets we generated
in terms of the number of tuples, the number of distinct application
times and the number of distinct system times. The queries were
run on the orders table which has predominantly closed application
times (most orders were completed at some point) and open system
times (orders stay in the system).

We implemented BiSW in C++ as a stand-alone, single-threaded
prototype and compared it with the following alternatives.

• BiTL [12] keeps a change log in the system time dimension
and creates application time change logs for selected system
time snapshots. Queries that only slide on application time
use the appropriate application time change logs. Queries
that slide only the system time or both times use the system
time change log and multiple application time change logs.

• B+-Tree. We used two independent B+ Trees, one for each
time dimension, from panthema.net/2007/stx-btree. Similar
to BiTL and BiSW, the B+ Trees index the start and end
points of intervals. The key in the B+ Tree is a time point
and the value is a pointer to a set that stores all the TIDs
with start/end points at that time point. We use the sign of
a TID to indicate openness of the interval, i.e., a positive
TID indicates an open interval. We used the default fan-
out of 128, thus each node had at most 2KB size. Bi-
temporal queries are answered by independently computing

the tuple IDs satisfying each window range (or change) and
then intersecting them. If only one time dimension is sliding
and the other is fixed, only one tree needs to be accessed.

• RR*-Tree [4]. Here, a 2-dimensional R-tree, with 8KB node
size, indexes the system and application time intervals. We
set all unbounded end times to the largest possible value.
We implemented bi-temporal window queries (as rectan-
gle queries) using the libraries from www.mathematik.uni-
marburg.de/seeger/code/rrstar.

• Table Scan. In addition to index structures, we also compare
the performance of scanning the four temporal attributes
(start and end times in each time dimension), vertically par-
titioned into a column store. To ensure a fair comparison
with the append-only behaviour of BiSW, we keep the data
in system time order.

6.2 Lessons Learned
Before presenting detailed results, we summarize our main ex-

perimental findings below.

• BiSW wins in query performance, often by a significant
margin. Some competitors come close for specific types of
queries or parameter settings, but none can compete overall.
On update performance it comes second after BiTL, but the
margin is small. Table (actually Column) Scan as a baseline
is often quite competitive, since it uses scans on compact,
contiguous data, which is a good fit to modern hardware.
Furthermore, the data points are sorted in system time, so
early stops are possible.

• BiSW is the only method that is viable for continuos queries,
consistently outperforming all competitors.

• Temporal skew has a major impact on query performance,
maintenance cost and storage requirements, but different
techniques are affected in different ways. Open intervals
cause RR* to suffer from bad selectivity/partitioning and
therefore poor query performance. BiSW has good query
performance even with many open intervals, but checkpoints
use more space because open intervals lead to tuples that are
valid throughout history and are stored in many checkpoints.

• Since it stores rectangles and not events, the RR*-Tree does
not give better performance for the simpler event-oriented
windows. Storing events as points is possible, but this would
in turn limit the performance for interval-oriented windows.

• For interval-oriented windows, the query performance of
BiSW depends on the position of the window in the system
and application time space because we must access some
cells from the beginning of time till the current window.
Fortunately, even with a small number of checkpoints, we
can reduce query costs significantly. However, checkpoints
increase the space and maintenance overhead of BiSW, espe-
cially if there are many tuples with long or open intervals.

• BiSW handles sliding on system time slightly better than
sliding on application time. This is because sliding on system
time while keeping the application time window fixed does
not require accessing new application-time partitions and
their corresponding system time arrays of events. However,
BiTL handles sliding on application time better because
sliding on system time requires BiTL to create a complete
application time index whenever system time slides.

0.01

0.1

1

10

1 5 9 13 17 21 25 29 33 37 41 45 49

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

System Time Window Start Position (Millon Version)

BiSW BiTL B-Tree

RR*-Tree Table Scan

(a) System Time

0.01

0.1

1

10

0 100 200 300 400 500 600 700 800 900

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Application Time Window Start Position (Thousand Version)

BiSW BiTL B-Tree

RR*-Tree Table Scan

(b) Application Time
Figure 5: Experiment 1: Query performance for fixed event-oriented windows as a function of the starting position of the window.

0.01

0.1

1

10

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

System Time Window Start Position (Millon Version)

BiSW (ckp=10)

B-Tree

BiSW (ckp=20)

RR*-Tree

BiTL (ckp=10)

Table Scan

(a) System Time

0.001

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Application Time Window Start Position (Thousand Version)

BiSW BiTL

B-Tree

BiSW (no ckp)

RR*-Tree Table Scan

(b) Application Time
Figure 6: Experiment 1: Query performance for fixed interval-oriented windows as a function of the starting position of the window.

6.3 Experiment 1: Fixed Window Queries
The first set of experiments describes range queries over fixed bi-

temporal windows. First, we vary the position of the fixed window
in the bi-temporal value space. We measure the query time over a
window that spans 5 percent of the value space in both dimensions
on the S=10 data set (refer to Table 2 for details). Figures 5 (event-
oriented) and 6 (interval-oriented) show the effects of moving the
starting position of the window in system time (a) and application
time (b) while keeping the other in the middle of the value space.
The logarithmic y-axes show the query running time.

For event-oriented windows (Figure 5), BiSW wins and is not
affected by the starting position of the window (we can go to
any starting position by accessing the appropriate application time
partition). RR* comes the closest, but it slows down as the starting
position moves away from the beginning, because it has to index an
increasing amount of open intervals which it cannot handle well.

For interval-oriented windows (Figure 6), all but RR* and Table
Scan consider prefixes of the window to find intervals that opened
before the window started, and therefore query times get worse as
the starting position moves. BiSW and BiTL (in the system time
dimension) benefit from checkpoints; “(ckp=x)” denotes the num-
ber of uniformly-distributed checkpoints. For BiTL, the number of
checkpoints corresponds to the number of application time indices.
In general, BiSW and RR* are the only indexing methods that can
substantially outperform a table scan, as they can exploit the bi-
temporal/spatial properties of the data. B-Trees can only handle
a single dimension well, whereas BiTL suffers from the cost of
constructing multiple application time indices.

Since interval-based windows are more challenging and have
more complex performance behaviour, we will focus on them in
the rest of this section.

We now illustrate scalability in Figure 7, given a fixed window
(a) close to the beginning of the value space (starting around 5% of
the space in both dimensions) and another (b) in the middle of the
time value space. The x-axes shows three different data set sizes
and the y-axes measure the query execution time. The first case

is generally cheap (small prefixes, few open intervals), but does
not permit the use of checkpoints. The second is more expensive
overall, but checkpoints are helpful. In both cases, B-Tree and
BiTL are worse than Table Scan; in the second case also RR*.

6.4 Experiment 2: Sliding on System Time
The second set of experiments focuses on the query cost with

a sliding window on system time. The cost depends on the fixed
window size in application time, the slide interval and the position
of the window. Figure 8 shows the effect of each of these param-
eters, again on the large data set with an initial window as in the
first experiment. When varying the fixed application-time window
size (Figure 8a), we expect the slide cost to increase, as a larger
area needs to be covered for each slide. BiSW shows exactly this
behaviour, and outperforms BiTL by a factor between 3 to 8, since
it can directly access the events needed for the delta. RR* and Table
Scan are significantly slower and not affected by the size. For an
increasing window slide (Figure 8b), we again see the expected
increase in cost when the area gets larger and more intervals are
retrieved. BiTL is affected the most since it needs to create an
increasing number of application time indexes, making it very slow.
In absolute numbers, BiSW is again the clear winner (up to a factor
of 16 faster than RR*), but its lead diminishes if the slides get very
big. The position of the sliding window (Figure 8c) has a similar
effect as the position of a fixed window (Figure 6b), while BiSW
is now even more effective since only the slide area in one prefix
dimension needs to be checked. Finally, when varying the scale of
the data sets, all methods scale equally well, retaining their relative
performance ratios. Due to space constraints, we omit the figure.

6.5 Experiment 3: Sliding on Application
Time

Figure 9 shows the results corresponding to Figure 8, but for
a sliding application-time window. The results are similar to the
previous experiment, but BiTL and RR* now perform better—the
former because it does not have to construct multiple application-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S=1 S=5 S=10
Q

u
e

ry
 E

xe
cu

ti
o

n
 T

im
e

 (
se

c)

Data Size

BiSW (ckp=10)
BiTL (ckp=10)

B-Tree
RR*-Tree
Table Scan

(a) Beginning of Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S=1 S=5 S=10

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Data Size

BiSW (ckp=10)
BiTL (ckp=10)

B-Tree
RR*-Tree
Table Scan

(b) Middle of Time
Figure 7: Experiment 1: Scalability with respect to data set size for fixed windows.

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25 30 35 40 45 50

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

AppWinLength / EntireAppRange %

BiSW
BiTL
RR*-Tree
Table Scan

(a) Size of app. time window

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

SysSlide / SysWinSize %

BiSW BiTL B-Tree RR*-Tree
Table Scan

(b) Slide interval

0.01

0.1

10

1 11 21 31 41 51 61 71 81 91

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Application Time Window Start Position (Thousand Version)

BiSW BiTL

B-Tree

BiSW (no ckp)

RR*-Tree Table Scan

(c) Position of app. time window
Figure 8: Experiment 2: Effect of various parameters on query performance for a sliding system time window.

time intervals and the latter because our data set contains fewer
open application time intervals than system time intervals.

6.6 Experiment 4: Sliding on Both Times
The fourth set of experiments covers windows that slide on

system and application time. Figure 10 shows the effect of three
parameters on the query execution time: window size, ratio of the
system to application time slide interval and data set size. In terms
of window sizes, BiSW wins again. An interesting insight can
be gained by modifying the slide ratio (Figure 10 c): RR* and
Table Scan are unaffected, as they perform the same operations
regardless of which time dimension slides. BiSW gains about a
factor of three in performance when the slide ratio changes from
mostly on application time to sliding mostly on system time, since
it can now always access the same application-time partitions.
BiTL gets worse by almost a factor of six since more and more
application time indices need to be created. We also evaluated the
slide interval. Since the results indicate no new insights over the
previous experiments, we omit the figure.

6.7 Experiment 5: Data Skew
Given the partitioning approach of BiSW, the granularity of time

in both dimensions may have a measurable impact on performance,
since it affects how much data will be accessed in any one partition.
Similar effects may be present for the other index types. To
investigate this effect, we modified our existing data set to reduce
the number of versions (but not data items) in each dimension and
thus either reduce the number of partitions (for application time) or
the length of each partition (for system time).

Figure 11 shows the results of reducing (a) application times and
(b) system times down to 100, ten and one. When the number
of application times decreases, both BiSW and BiTL see a cost
increase, since the application time is no longer selective (BiSW)
or provides room for indexes (BiTL). The other methods are not
affected. When the number of system times is decreased, the
cost increases for all approaches: BiSW and BiTL can no longer
perform long scans over the system timeline sequences, thus losing
efficiency. Table Scan loses performance since it can no longer be

easily limited to a part of the system-time sorted data, while RR*
has to contend with little selectivity in the system time domain.

6.8 Experiment 6: Space and Maintenance
Overhead

Next, we investigate the cost incurred by the index in terms of
space consumption and maintenance time.

The results in Figure 12 (a) show that both BiSW and BiTL are
very compact without checkpoints, requiring 9 and 6 % of the space
used by the table, while a B-Trees requires 30 % and RR* 40 %.
Adding checkpoints increases the memory consumption consider-
ably, as each checkpoint needs to represent all active intervals. For
application time, which consists mostly of closed-ended intervals,
the overhead is around a factor of 3 for 10 checkpoints; but for
system time, which consists mostly of open-ended intervals, this
leads to an increase by a factor of 5 for 10 checkpoints. Provid-
ing checkpoints in both dimensions and doubling the number of
checkpoints thus lead to the expected results, so that eventually
BiSW requires more storage than the actual table. It should be
noted, however, that the implementation of the checkpoints is not
at all optimized, using STL sets at every cell. Adaptive compres-
sion (switching between different representations) and incremental
checkpoints are likely to yield significant reductions in memory
consumption. When scaling the data set size (Figure 12 (b)), all
index types experience a similar effect. In order to assess the space
overhead of the application time partitions, we modified the ratio
of application times changes per system time changes. The results
showed that the space consumption was affected to a very small
degree.

While the previous experiments considered query processing
costs, we now examine the maintenance overhead of the different
indices. For each, we insert the entire data set and measure time
to completion. In Figure 12 (c), we show the effect of scaling the
data set. BiSW (and also BiTL and B-Tree) perform quite well,
and we will also see in the next experiment, the additional cost of
checkpoints is fairly moderate. RR* is more than 1.5 orders of
magnitude slower.

0.0

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25 30 35 40 45

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

SysWinLegnth / EntireSysRange %

BiSW
BiTL
RR*-Tree
Table Scan

(a) Size of sys. time window

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.2 0.3 0.5 0.7 0.8 1.0 1.2 1.3 1.5 1.7

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

AppSlide / AppWinSize %

BiSW BiTL RR*-Tree

(b) Slide Interval

0.001

0.01

0.1

1

10

0 4 8 12 16 20 24 28 32 36

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

System Time Window Start Position (Million Version)

BiSW

BiTL

BiSW (no ckp)

RR*-Tree

Table

(c) Position of sys. time window
Figure 9: Experiment 3: Effect of various parameters on query performance for a sliding application time window.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5 10 15 20 25 30 35 40 45

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

WinLength / EntireTimeRange %

BiSW

BiTL

RR*-Tree

Table Scan

(a) Size of window

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.1 0.5 1 5 10
Q

u
e

ry
 E

xe
cu

ti
o

n
 T

im
e

 (
se

c)

Slide Ratio (Sys/App)

BiSW
BiTL

RR*-Tree
Table Scan

(b) Ratio of slide intervals

0

50

100

150

200

250

300

S=1 S=5 S=10

Q
u

e
ry

 E
xe

cu
ti

o
n

 T
im

e
 (

se
c)

Data Size

BiSW
BiTL
RR*-Tree

Table Scan

(c) Data set size
Figure 10: Experiment 4: Effect of various parameters on query performance for a sliding both windows.

6.9 Experiment 7: Continuous Queries
Our experiments so far focused on static data, separately inves-

tigating query performance and index maintenance costs. How-
ever, sliding windows are commonly used in continuous queries
where data ingest and query processing happen simultaneously.
To efficiently support such workloads, index performance must
not degrade significantly with the amount of data. In Figure 13,
we show the throughput (in millions of tuples per second) that
the different techniques can achieve on two common continuous
query workloads: sliding windows on both time dimensions (a)
and sliding windows on system time only (b). The data set used
in this experiment contains 200 thousand tuples per system time
value (referred to as a batch), and the window slides whenever the
system time is incremented. The queries are started only once we
have enough data for complete window instances, so up to batch 6
we only see data loading.

The first case (Figure 13 (a)) covers windows that slides in
both system and application time with the incoming data, repre-
senting a consistent view on now-recent data that most streaming
applications need. The results show that BiSW is the only index
structure suitable for such a workload, as it can sustain a rate of
around 1 million tuples/second and keep this performance constant
over growing data. Given our currently naive implementation of
generating checkpoints by “stopping the world”, we see brief slow-
downs, but this can be easily overcome by continuously collecting
the information needed for checkpoints or delegating this task to
separate threads. BiTL fluctuates significantly more due to the
cost for slides between application checkpoints, reaching only an
average throughput of around 270K tuples/second. The higher
indexing speed observed in Figure 12 (c) is more than offset by
the much higher query processing cost. Not using an index at all
gives even better ingest rates (around 9 million tuples/second with
occasional drops due to reallocations), but querying by scanning
all the data is even more expensive and degrades quickly. On aver-
age, 150K tuples/second can be processed. Finally, the high cost
of indexing and the degrading performance with additional data
make the RR*-tree unsuitable for continuous queries, providing an
average throughput of only around 12K tuples/second. The B-Tree
has very high loading rates, but the query performance is orders of

magnitude slower so the results are not shown.
The second case (Figure 13 (b)) covers a window that is fixed in

application time but slides over system time, providing a view of
the revisions [22] of a particular time period. The overall trends
follow the observations in the previous experiments, with some
subtle differences: Since only one direction of sliding is needed,
the B-Tree becomes more competitive, but its throughput still does
not exceed 65K tuples/second. BiTL also sees slight speedup to
around 290K tuples/second since application times only need to
be checked, but no temporary indexes need to be built. Similarly,
Table Scan needs to check only application time attributes, and
therefore fewer columns need to be accessed.

7. CONCLUSIONS
In this paper, we initiated a study of bi-temporal windows, which

bring together the two important concepts of bi-temporal databases
and window queries over temporal attributes. We formulated and
solved a novel problem in this context: indexing to support queries
with fixed and sliding bi-temporal windows, over historical and
streaming data. We proposed and experimentally evaluated a new
two-dimensional index, called BiSW, that outperforms the state-of-
the-art in terms of lookup speed, maintenance overhead and space
complexity. There are many open problems in the context of bi-
temporal windows that we plan to study in future work, includ-
ing query optimization, benchmarking, and integrating bi-temporal
support in data stream systems and data stream warehouses.

8. REFERENCES
[1] M. Al-Kateb et al. Temporal Query Processing in Teradata. In

EDBT, 573–578, 2013.
[2] C.-H. Ang and K.-P. Tan. The Interval B-Tree. Inf. Process. Lett.,

53(2):85–89, 1995.
[3] R. S. Barga et al. Consistent Streaming Through Time: A Vision for

Event Stream processing. In CIDR, 363–374, 2007.
[4] N. Beckmann and B. Seeger. A Revised R*-Tree in Comparison with

Related Index Structures. In SIGMOD, 799–812, 2009.
[5] R. Bliujute et al. R-Tree Based Indexing of Now-Relative Bitemporal

Data. In VLDB, 345–356, 1998.
[6] R. Bliujute et al. Light-Weight Indexing of General Bitemporal Data.

In SSDBM, 125–138, 2000.

0

5

10

15

20

25

30

35

40

45

1 10 100

To
ta

l S
lid

in
g

Ti
m

e
 (

se
c)

app time range

BiSW
BiTL
B-Tree
RR*-Tree
Table-scan

(a) Varying the number of application times

0

5

10

15

20

25

30

1 10 100

To
ta

l S
lid

in
g

Ti
m

e
(s

ec
)

sys time range

BiSW
BiTL
B-Tree
RR*-Tree
Table-scan

(b) Varying the number of system times
Figure 11: Experiment 5: Effect of the size of the system and application time domains.

0 2000 4000 6000 8000 10000 12000
Table

RR*-Tree

B-Tree

BiSW (sys_ckp#= 0, app_ckp#= 0)

BiSW (sys_ckp#= 0, app_ckp#=10)

BiSW (sys_ckp#=10, app_ckp#= 0)

BiSW (sys_ckp#=10, app_ckp#=10)

BiSW (sys_ckp#=20, app_ckp#=20)

BiTL (ckp#=0)

BiTL (ckp#=10)

BiTL (ckp#=20)

Memory Size (Mb)

(a) Space: Number of checkpoints

1

10

100

1000

10000

S=1 S=10

SI
ze

 (M
b)

S=5

Data Size

BiSW (no ckp)

BiTL (no ckp)

B-Tree

RR*-Tree

Table

(b) Space: Data set size

1

10

100

1000

10000

S=1 S=10

M
ai

nt
en

an
ce

 T
im

e
(s

ec
)

S=5

Data Size

BiSW (no ckp)

BiTL (no ckp)

B-Tree

RR*-Tree

(c) Time: Data set size
Figure 12: Experiment 6: Indexing Cost

0,01

0,10

1,00

10,00

100,00

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Th
ro

u
gh

p
u

t
(m

ill
io

n
 t

p
s)

#Batch (Fixed Data Size S=5, batch size=200k, with sys and app ckp)

BiSW BiTL RR*-Tree Table-scan

(a) Sliding both times

0,01

0,10

1,00

10,00

100,00

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 101

Th
ro

u
gh

p
u

t
(m

il
lio

n
 t

p
s)

#Batch (Fixed Data Size S=5, batch size=200k, with sys and app ckp)

BiSW BiTL B-Tree RR*-Tree Table-scan

(b) Sliding system time only
Figure 13: Experiment 8: Continuous Queries

[7] H. Edelsbrunner. A New Approach to Rectangle Intersections Part I.
Int. Journal of Computer Mathematics, 13(3-4):209–219, 1983.

[8] R. Elmasri, G. T. J. Wuu, and Y.-J. Kim. The Time Index: An Access
Structure for Temporal Data. In VLDB, 1–12, 1990.

[9] B. Gedik et al. Processing moving queries over moving objects using
motion-adaptive indexes. TKDE, 18(5):651–668, 2006.

[10] L. Golab and T Joghnson. Data Stream Warehousing. In ICDE,
1290–1293, 2014.

[11] L. Golab and M. T. Özsu. Data Stream Management. Morgan &
Claypool Publishers, 2010.

[12] M. Kaufmann et al. Bi-temporal timeline index: A data structure for
processing queries on bi-temporal data. In ICDE, 471–482, 2015.

[13] M. Kaufmann et al. TPC-BiH: A Benchmark for Bi-Temporal
Databases. In TPCTC, 2013.

[14] M. Kaufmann et al. Timeline Index: A Unified Data Structure for
Processing Queries on Temporal Data in SAP HANA. In SIGMOD,
1173–1184, 2013.

[15] J. Krämer and B. Seeger. Semantics and implementation of
continuous sliding window queries over data streams. TODS, 34(1):4,
2009.

[16] S. Krishnamurthy et al. Continuous Analytics over Discontinuous
Streams. In SIGMOD, 1081–1092, 2010.

[17] K. G. Kulkarni and J.-E. Michels. Temporal Features in SQL: 2011.
SIGMOD Record, 41(3):34–43, 2012.

[18] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing Access
Methods for Bitemporal Databases. TKDE, 10(1):1–20, 1998.

[19] E. Liarou et al. Enhanced stream processing in a DBMS kernel. In
EDBT, 501–512, 2013.

[20] M. A. Nascimento and M. H. Dunham. Indexing Valid Time
Databases via B+-Trees. TKDE, 11(6):929–947, 1999.

[21] R. Rajamani. Oracle Total Recall / Flashback Data Archive.
Technical report, Oracle, 2007.

[22] E. Ryvkina et al. Revision Processing in a Stream Processing Engine:
A High-Level Design. In ICDE, 141, 2006.

[23] C. M. Saracco et al. A Matter of Time: Temporal Data Management
in DB2 10. Technical report, IBM, 2012.

[24] S. Saltenis and C. S. Jensen. Indexing of now-relative
spatio-bitemporal data. VLDB J. 11(1):1–16, 2002.

[25] B. Salzberg and V. J. Tsotras. Comparison of Access Methods for
Time-Evolving Data. ACM Comput. Surv. 31(2): 158-221, 1999.

[26] N. Shivakumar and H. Garcia-Molina. Wave-Indices: Indexing
Evolving Databases. In SIGMOD, 381–392, 1997.

[27] Z. Song and N. Roussopoulos. K-nearest neighbor search for moving
query point. In SSTD, 79–96, 2001.

[28] U. Srivastava and J. Widom. Flexible Time Management in Data
Stream Systems. In PODS, 263–274, 2004.

[29] Y. Tao and D. Papadias. Efficient Historical R-Trees. In SSDBM,
223–232, 2001.

[30] P. A. Tucker et al. Exploiting Punctuation Semantics in Continuous
Data Streams. TKDE, 15(3):555–568, 2003.

[31] S. B. Zdonik et al. The Aurora and Medusa Projects. IEEE Data Eng.
Bull., 26(1):3–10, 2003.

