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ABSTRACT

Managing temporal data is becoming increasingly important for
many applications. Several database systems already support the
time dimension, but provide only few temporal operators, which
also often exhibit poor performance characteristics. On the aca-
demic side, a large number of algorithms and data structures have
been proposed, but they often address a subset of these temporal
operators only. In this paper, we develop the Timeline Index as
a novel, unified data structure that efficiently supports temporal
operators such as temporal aggregation, time travel, and temporal
joins. As the Timeline Index is independent of the physical order of
the data, it provides flexibility in physical design; e.g., it supports
any kind of compression scheme, which is crucial for main memory
column stores. Our experiments show that the Timeline Index
has predictable performance and beats state-of-the-art approaches
significantly, sometimes by orders of magnitude.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Dictionaries, Indexing methods ; H.2.4 [Database
Management]: Systems—Query Processing

Keywords
Temporal Data, Temporal Operator, Index, Algorithm

1. INTRODUCTION

Temporal data management is a critical feature in most database
systems today. Instead of “update-in-place”, modern database
systems create a new version of an object. Once the cost of
keeping these additional versions has been paid, users expect rich
capabilities to query and process that data. For instance, users wish
to compare the current status of their investment “portfolio” with
the status AS OF a year ago. Querying a historical version of
the database is typically referred to as time travel [25]. Another
example is the analysis of how many orders are delayed as a
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function of time in a quality assurance system, thereby querying
all historical versions of the database over a certain time period.
This particular application is called femporal aggregation [12].
Applications such as Facebook Timeline have brought temporal
data and such temporal query operators to the limelight.

From an academic point of view, temporal data management has
been the subject of extensive research. Since Snodgrass’ seminal
work on defining the temporal data model [22], there has been a
large body of work in this area, summarized e.g., in [9, 20]. That
work covers proposals for index structures (e.g., multi-version B-
trees [3]) and algorithms for certain kinds of queries (e.g., temporal
aggregation [4, 12] and temporal joins [9, 27]).

From an industrial perspective, the adoption of temporal database
technology has been much slower. Based on Snodgrass’ proposal
of almost twenty years ago [22], SQL has included temporal fea-
tures only recently as part of the SQL:2011 standard [14]. Even that
standard, however, lacks many important features such as temporal
aggregation or temporal joins. Database vendors have also been
rather hesitant to ship products with temporal features. IBM DB2,
for instance, has added support for bi-temporal data only with its
latest version, which was released in 2012 [21]. The only exception
is Oracle, which has been supporting time travel using its Flashback
technology for more than 10 years [18]. But even Oracle Flashback
does not support temporal aggregates and joins.

Market traction and lack of incentives is clearly not the problem:
Customers are desperate to get rich temporal features. At SAP, for
instance, application developers of the financial (FI) and sales &
distribution (SD) modules implement temporal operators as part of
the application logic because the relational database products do
not support these features. Temporal operators are needed for these
applications for legal, compliance / auditing, and reporting use
cases (e.g., risk assessment). Implementing database functionality
in the application is not only bad from a developer’s productivity
perspective, it also kills performance as large volumes of data need
to be shipped from the database server to the application server.

The lack of support for temporal features in state-of-the-art
database systems has actually technical reasons. Looking closely
at the literature, it turns out that most of the work on temporal data
management is highly specialized and proposes index structures
and algorithms for a specific temporal function (e.g., temporal
aggregation). While all of these functions are important and de-
serve special attention and tuning, even a global player like SAP
cannot afford to implement a new data structure for each kind of
temporal query. From a customer perspective, the operational cost
of maintaining dedicated index structures on the same data for each
kind of temporal query can also be prohibitive.



To our biggest surprise, the most significant knock-out criterion
for the majority of the existing proposals from the research liter-
ature was performance. We did extensive experiments with the
best-of-breed approaches from the literature and found out that the
performance results were simply not acceptable for SAP HANA.
Digging deeper, it turns out that many of these proposals do not
parallelize well and do not work efficiently on modern hardware
with many cores, large main memories, and non-uniform memory
access (NUMA). For instance, all approaches that are based on
tree structures (e.g., B-trees) showed poor performance in our
experiments because, even in main memory, a sequential access
pattern is essential in order to avoid contention in the memory
system. Another problem with such tree-based structures is that
they only work well for queries with high selectivity; i.e., queries
that select a few tuples based on either a temporal or spatial cri-
terion. As many of our customer use cases involve analysis over
large volumes of data, including significant parts of the temporal
data, no approach presented in literature before was applicable for
SAP HANA. (Section 6 presents our most important findings and
performance results.)

The purpose of this paper is to share our experience with existing
techniques to process temporal queries and describe the approach
chosen for SAP HANA. The main contribution is to present a novel
index structure called Timeline Index and the algorithms used to
process different kinds of temporal queries on this index structure.
In a nutshell, we chose Timeline Indexes for the following reasons:

o Generality: The Timeline Index is a single data structure that
can be used to process a large variety of different temporal
queries. In particular, we can address all our customer use
cases. Besides, only a single Timeline Index per table is needed.

e Performance: As shown in Section 6, the Timeline Index out-
performs the best known approaches for each kind of temporal
query in our context (i.e., main memory column stores). In
some cases, the Timeline Index beats the best known existing
algorithms by orders of magnitude.

o Memory efficiency: The Timeline Index is space-efficient. There
are space/time tradeoffs, but even in a space-consuming variant,
the storage overhead is roughly only 15 percent.

e Flexibility: Many traditional techniques require that tables are
ordered by system time. This requirement limits the physical
design and can result, among others, in poor compression. The
Timeline Index sheds this limitation and can be used indepen-
dently of other decisions for physical database design.

o Applicability: The Timeline Index can be integrated naturally
into the HANA system. It can be implemented as a normal
table, thereby reusing the same structures and algorithms that
are already in place to efficiently maintain and process tables.

The main ideas of the Timeline Index and the algorithms pre-
sented in this paper are general: In principle, they can be applied to
both row and column stores. Nevertheless, the focus of our work
has been on main memory column stores because a core part of
HANA is exactly that kind of system. One may argue that temporal
databases grow so large that it is not economic to keep all informa-
tion in main memory. Still, utilizing compression, as well as the
continuing trend of larger main memories, and distribution over
clusters of machines, HANA is already able to handle (temporal)
queries on hundreds of terabytes of data in main memory.

The remainder of this paper is organized as follows. Section 2
gives an overview of existing work on temporal data management.
Section 3 briefly describes HANA, our target database system. Sec-
tion 4 presents the Timeline Index. Section 5 introduces algorithms

on how to process different kinds of temporal operators using the
Timeline Index. Section 6 gives the results of a comprehensive
performance study that compares the Timeline Index with existing
approaches for a variety of temporal queries. Section 7 contains
conclusions and possible avenues for future research.

2. STATE OF THE ART

Following Snodgrass” work on defining the foundations of the
bi-temporal data model in the early 1990s and the resulting TSQL?2
standards proposal [22], a large body of research on temporal data
has been established. Various algorithms and data structures have
been proposed for different temporal operators. We will provide a
brief overview, covering the parts which are relevant for our general
design and our specific use cases.

2.1 General Temporal Indexes

A first important direction of work is given by general methods
to model and organize temporal data. A survey by Salzberg et
al. [20] lists the typical access patterns (ZTimeslice, Key in Time
and Key/Time range) and provides an overview of how well various
index structures support these operations. Since most of these index
structures were developed in the mid-to-late *90s, they are designed
for hard-disk efficiency, optimizing the number of I/O operations
for updates and queries. Tree indexes over intervals or versions are
used, relying on various clustering strategies for time and key val-
ues, and partial replication for efficiency. Furthermore, some index
types were designed to “truncate” history with the goal of moving
it to other storage media ([15]), but distribution and parallelization
have not been researched widely. Given the design goals, some
proposals (such as [3]) have been proven to have (asymptotically)
optimal I/O behavior for a range of temporal queries. However,
given the different tradeoffs between access time, transfer speeds
and CPU cost, these structures will not necessarily perform best in
a main-memory setting.

We will briefly discuss those indexes that are most relevant to us:

The Time Index [6] (from now on referred to as Elmasri 1990
for clarity) is one of the earliest temporal indexing methods, and
provides explicit support for all our use cases. It is directly com-
parable to our proposed Timeline Index because it indexes only the
time dimension. Technically, the Time Index is a B™-Tree over
versions, in which each leaf page contains all active versions at
the beginning, and the changes afterwards. The multi-version B-
tree [3] (mentioned as MVBT) is one of the most advanced temporal
indexing methods. It provides an index for both key- and time-
dimensions with optimal I/O behavior. As a result, it is able to
support many query classes and exploit clustering over the time
and key space. Its implementation is based on a (logical) forest
of B-Trees sharing pages. In contrast, [19] provides a much
simpler index structure, based on a single BT -Tree and encoding
of windows over intervals, making it the closest match to the
Timeline Index. The query performance of [19] is also optimal;
the complexity of updates has not been studied yet.

2.2 Temporal Aggregation

A challenging temporal operator is temporal aggregation, in par-
ticular temporal grouping. In contrast to non-temporal, traditional
aggregates, temporal grouping computes the aggregates as running
values for time points or time intervals; e.g., the number of sales
that occurred for each point in time. Temporal grouping and aggre-
gation are well-researched topics. Snodgrass et al. [12] introduced
the first algorithm for computing temporal aggregation on constant
intervals. In this algorithm, for each aggregation function and each
attribute a separate data structure called Aggregation Tree is built.



Since this tree is not guaranteed to be balanced, it may degrade into
alinked list. In order to overcome the worst case, several variants of
the Aggregation Tree have been proposed. However, these variants
usually make special assumptions about the distribution of intervals
or suffer from the drawbacks of the original design.

Bohlen et al. [4] introduced an algorithm for temporal aggre-
gation based on AVL Trees for start and end point values. The
temporal aggregation is performed by traversing the start index
and inserting the tuples that are activated into the End Point Tree.
The tuples which expire are removed from the End Point Tree
(tuples are removed in their end time order), and the aggregate is
returned as a result. The actual cost depends on the type aggregate:
While cumulative aggregates like SUM and COUNT require little
storage and cost, certain aggregates such as MAX drive up the
resource requirements. We will discuss these issues in more detail
in Section 5.1 because they are relevant for the design of how to
process temporal aggregates with the Timeline Index, too.

Some of the general-purpose temporal index structures (e.g.,
[6]) are useful to compute temporal aggregates. Nevertheless, it
is worth noticing that some of them, as for instance the MVBT
tree, do not support temporal grouping and are limited to certain
aggregates like SUM and COUNT (e.g, the MVSB tree [28] which
is based on the SB-Tree [26]).

2.3 Time Travel

Establishing a consistent view of a (past) version of a database
is currently the most widespread use case of temporal operations.
Several database management systems provide support for this
operation, which is typically called time travel.

Oracle pioneered time travel with its Flashback feature [18],
which is integrated into the Oracle database product. IBM DB2
also provides support for management of temporal data and time
travel [21]. PostgreSQL offers a similar feature based on the
append-only design of the PostgreSQL storage manager [25].

SAP HANA [7] (which is described in more detail in Section 3)
provides a basic form of time travel queries based on restoring
a snapshot of a past transaction. ImmortalDB [16] by Microsoft
Research is another system that supports versioning and time travel
queries by chaining versions of records and navigating to the ap-
propriate version of a record. The indexing data structure used in
ImmortalDB is a TSB-Tree [15] which defines a time range for each
page in memory and keeps the data for the versions related to this
time range in the corresponding page. It is therefore expected that
the time travel operator performs quite well by accessing exactly
the pages that contain the data related to the target version.

Furthermore, Time Travel is supported by general-purpose tem-
poral index structures such as Elmasri 1990 [6] and MVBT [3].

2.4 Temporal Join

Temporal Joins contain predicates on both key and time domains.
Typically, two tuples are considered to be join candidates on the
temporal domain if their version ranges overlap.

There are two classes of algorithms for temporal joins: 1) Index-
based algorithms that use extra data structures for identifying tuples
or their locations, either based on their join-attribute or on their
temporal properties. 2) Non-index algorithms that directly work
on the temporal tables. A comprehensive survey on existing join
algorithms with support for temporal tables is provided by [9].
According to this survey, a valid-time natural join [23] can be
evaluated in three different ways [9]: Using nested-loop-based,
sort-merge-based and partition-based algorithms.

Elmasri 1990 [6] supports temporal joins by building a two-level
index which combines a B -Tree index over the join attribute with

Method Time Travel | Temp. Aggr. Temp. Join
SB Tree no yes ([26]) no

Bohlen 2006 no yes([4]) no
TSB-Tree yes ([15]) no no

Elmasri 1990 yes ([6]) yes ([6]) yes ([6])
MVBT yes ([3]) (MVSB) ([28]) | yes ([27])
Timeline Index | yes yes yes

Table 1: Supported Operations for different methods

a B*-Tree index over the time dimension. The idea is that each
leaf node of the top-level index (BT -Tree) includes a value of the
search attribute and a pointer to a separate index. Hence, there is
an index for each attribute value. This method suffers from high
memory consumption. As an alternative, [27] proposes several join
algorithms which exploit MVBTs, for instance clustering in space
and time, replication of records and linkage.

In summary, we can make three observations that motivated
our work on a new, uniform and general-purpose data structure
to support temporal queries: First, several general-purpose tem-
poral index structures exist, but they are not tuned for large main
memories and modern hardware. Second, production systems only
support one particular kind of temporal query (i.e., time travel),
even though there is demand for all kinds of operators. Third,
there is significant work on the other two types of queries (i.e.,
temporal joins and temporal aggregation), but all these approaches
have shortcomings which limit adoption in production systems.
Table 1 summarizes these findings on operators and specific access
methods.

3. THE SAP HANA DATABASE SYSTEM

SAP HANA [7] is a commercial database system which employs
both a column store and a row store for in-memory data processing.

3.1 Architecture of SAP HANA

SAP HANA was designed for supporting modern hardware such
as multi-core systems and large main memories. Especially fast
full column scans and customized operators as well as massive
intra- and inter-operator parallelism contribute to the performance
characteristics. Column stores are well suited for analytic queries
on big amounts of data, which originally was the core business of
HANA. Currently, HANA is being extended to be able to handle
both OLAP and OLTP workloads efficiently in one system.

HANA makes use of multiple compression schemes to reduce
the main memory consumption and improve query execution times.
To achieve high insert/update performance, updates and inserts
are first applied to one or multiple non-compressed delta stores
which are specifically tuned for high volumes of updates. HANA
periodically merges the new data from the delta stores into the
main store which is tuned for efficient reads. In order to guarantee
consistency, all operations (in particular queries) take deltas and
main stores into account.

HANA is a distributed database system which allows the de-
ployment of multiple servers for a single database. The biggest
installation (in our lab) so far consists of 250 nodes with 1 TB
each, which sums up to 250 TB of main memory. With an average
compression ratio of 5, this installation can load up to 1.25 PB of
raw data. HANA includes multiple engine types such as a text
engine, a graph engine, an OLTP engine, and others. Concur-
rency control is implemented in the OLTP engine using Snapshot
Isolation, which is an important prerequisite to implement clear
semantics for temporal data management.

Basic support for temporal data (transaction time) is already
available natively in HANA, but only a subset of possible op-
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Figure 1: Architecture Overview

erators are currently supported. The most prominent examples
for temporal data structures are the data store objects in the SAP
Business Warehouse product (BW, DSO) and the so-called “change
documents” in the SAP ERP system, where applications store the
history of business objects.

3.2 Integrating Timeline Indexes into HANA

The Timeline Index is implemented as a prototype based on
the architecture of HANA. We designed the data structures and
algorithms to fit the properties of modern hardware and with the
goal to be implemented into the SAP HANA product. Given this
perspective of a real system integration, all aspects of productive
software like performance, memory consumption, parallelism, and
complexity of algorithms had to be taken into account. Therefore,
the data structures should be simple, the memory overhead must be
low, incremental updates have to be supported, delta structures as
well as fast index reconstruction must be available. The Timeline
Index is general and can be applied to both the column store and the
row store of HANA. As temporal queries are often part of OLAP
workloads, however, we envision that Timeline Indexes are mostly
used with a columnar table layout.

4. TIMELINE INDEX

This section describes the data structures and basic principles
of the Timeline Index. Based on these data structures, Section
5 describes the algorithms used to implement various kinds of
temporal operators.

4.1 Fundamentals and Overall Architecture

The lower part of Figure 1 shows how HANA manages temporal
data [7]. The same architecture has been adopted by DB2 [21].
For every table, HANA keeps the current version of the table and
the whole history of previous versions of the table in separate
structures. For simplification we assume in this paper, that the
current version is always replicated to the Temporal Table. The
Current Table provides efficient access to the current state of the
database as such accesses are the most common use cases for
HANA. Temporal features (e.g., time travel) are implemented
using the Temporal Table, and this is where the Timeline Index
takes effect: It is an index that accelerates operations carried out
on a Temporal Table. For each Temporal Table, there is exactly
one Timeline Index. Temporal Tables and Timeline Indexes are the
focus of this work.

Our work is based on the standard formalism for bi-temporal
data, established by Snodgrass [22]: Each tuple of the Temporal
Table carries two time intervals [start;, end;) and [start,, end.),
representing transaction time and valid time (a.k.a. system time
and application time, respectively). For the purpose of this paper,
we will focus on the system time interval and call this interval
[start, end). The timestamps used in these intervals are discrete,
monotonically increasing and scoped at the level of a database. In
abstract terms, we call these values Version_IDs, in the concrete
implementation of our system we use Commit_IDs of transactions
as versions. Since HANA uses Snapshot Isolation for concurrency

LRVALY Name | Balance | Start |End |

1| Alice  $200 101 103

2| Ann  $300 102 107

3| Carl  $100 103 o
 Name | Balance | 4| Aiice  $500 103 106
Carl $100 5| Ellen  $700 105 oo
Ellen  $700 6| John  $400 105 106
(a) Current Table (b) Temporal Table

Figure 2: Example Current and Temporal Tables

Version Map Event List
1 101 1 —_—1
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2,3,4 103 5 1
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2,3,4,5,6 105 \ 3
2,3,5 106 \ 4
3,5 107 10 5
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4
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Figure 3: Timeline Index for Temporal Table of Figure 2b

control, these Commit_IDs provide discrete and monotonic tempo-
ral semantics.

Figure 2 gives an example of a Current Table (Figure 2a) and
a Temporal Table (Figure 2b) in the HANA temporal data model.
This example models a small banking application with customer
names and their account balance. The name of a customer is
assumed to be a key. For brevity, Figure 2 represents the tables as
they would be implemented in a row store; however, both Current
and Temporal Tables could just as well be implemented in the
HANA column store. Figure 2 shows that the new customer Alice
was inserted by Transaction 101. Transaction 102 created customer
Ann and Transaction 103 created Carl. In addition, Transaction 103
updated the balance of Alice, thereby invalidating the first version
of the Alice record (identified by ROW_ID 1) and creating a new
version of the Alice record (identified by ROW_ID 4). Transaction
104 did not update this table. Transaction 105 created two new
customers (Ellen and John) and Transactions 106 and 107 deleted
the accounts of Ann, Alice, and John. Figure 2a) shows the current
state of the table after all these transactions have been applied; Fig-
ure 2b) captures the whole history as needed for temporal queries
such as asking when Alice did have more money than Carl.

The Temporal Table of Figure 2b) is clustered by the Start
column. Sorting the table by Start sounds like a good idea for tem-
poral query processing and indeed many temporal index structures
assume such a design. Unfortunately, this design is not good for
compression: Systems like HANA automatically detect the best
way to sort a table, optimizing for compression ratio. It turns out
that Start rarely is the best clustering criterion for the Temporal
Tables of HANA. Therefore, the Timeline Index does not rely on
any physical order of the temporal data in memory.

4.2 Timeline Index Data Structure

Figure 3 shows the Timeline Index for the Temporal Table of
Figure 2b. The idea of the Timeline Index is to keep track of all
the visible rows of the Temporal Table at every point in time. To
this end, the Timeline Index returns all rows that are activated
or invalidated at each point in time. For instance, Row 1 of
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Figure 4: Checkpoint Index

the Temporal Table of Figure 2b) is activated at Version 101 and
invalidated at Version 103 of the database. The basic idea of the
Timeline Index has similarities to the LHAM approach [17]; the
algorithms are based on Counting Sort [13].

More concretely, a Timeline Index consists of two data structures
which are scanned concurrently to implement any kind of temporal
operation (Section 5). The first data structure is the Event List. The
Event List keeps track of each invalidation and activation event.
Activation events are marked with a “1” and invalidation events
are marked with a “0”. For instance, the first entry of the Event
List indicates the activation of Row 1. The second event indicates
the activation of Row 2, and so on. The events in the Event List
must be sorted by the (system) time when the event occurred; i.e.,
Row 1 was activated before Row 2. The order of events created
by the same transaction is undefined; for instance, the order of the
invalidation of Row 1 and activation of Row 3 is irrelevant because
these events were created by Transaction 103.

The second data structure of the Timeline Index is the Version
Map. The Version Map keeps track of the sequence of events that
are seen by each version of the database; i.e., by each commit of
a transaction. This is achieved by storing the end offset for each
version in the Event ID column. For instance, the Version Map of
Figure 3 indicates that Version 101 of the database sees only the
first event of the Event List; Version 103 of the database sees the
first five events of the Event List; its changes are contained in the
range after the second event (last event of the previous version) to
the fifth. By concurrently scanning and merging the Version Map
and Event List, it is possible to reconstruct all the visible rows of the
Temporal Table. All algorithms for temporal operators presented
in Section 5 exploit this feature. Figure 3 shows the visible rows
for each version of the database in red. Again, this information
is implicit and generated while using the Timeline Index: It is not
materialized because the space overhead would be prohibitive.

Both the Version Map and Event List can be implemented effi-
ciently using the existing structures of a column store like HANA;
i.e., these two structures are implemented as regular tables in
HANA and can be scanned and processed just like any other HANA
table. The only difference is that these two data structures are
append-only; that is, once an entry has been inserted into either the
Event List or Version Map, none of its fields will ever be updated.
This restriction is acceptable for indexing system time, but not for
application time. We will develop an index for application time as
part of future work.

Again, it should be noted that only one Timeline Index is needed
per Temporal Table and that the Timeline Index is significantly
smaller than the Temporal Table, in particular, if the table has many
columns. Our experiments (reported in Section 6) indicate that a
Timeline Index is typically only a small fraction of the size of a
Temporal Table, even if we include the additional space required
for checkpoints, which are discussed in the next section.

4.3 Checkpoints

Encoding the deltas between different versions in the Timeline
Index leads to a compact representation of how data evolves in time,
supporting temporal aggregations well. However, reconstructing

all tuples which are visible at a given version still requires the
traversal of the index up to that version, leading to linearly in-
creasing cost to access (later) versions. In addition, removing old
versions for archiving or garbage collection is not possible. To
overcome this problem, we augment the difference-based Timeline
Index with a number of complete version representations at partic-
ular points in the history. We call such a full view a checkpoint. As
shown in Figure 4, a checkpoint is a bit vector which represents
the visible rows of the Temporal Table at a certain version. In
this straightforward implementation, the length of this bit vector
is equal to the number of tuples stored in the Temporal Table at the
time the checkpoint was created. We index these checkpoints by
mapping the Version_ID at which the checkpoint was taken to the
checkpoint contents. In addition, together with the checkpoint, we
store the position of the entry in the Version Map, so that we can
start our scan there.

The cost for accessing a checkpoint is determined by the check-
point creation policy: If checkpoints are created at fixed version
intervals, the location of the latest checkpoint before a given ver-
sion can be computed in O(1) by a simple modulo operation. In
the example of Figure 4, checkpoints are taken regularly after 2
versions. If instead the distances are more varied (e.g., after a fixed
number of operations for the specific table), we have to search, e.g.,
by using a binary search algorithm. As in practice a relatively small
number of checkpoints is needed, even the overhead incurred by
a tree search becomes almost a small constant. With this basic
implementation we already reach a good tradeoff between storage
space, update cost and query performance.

Further improvements are possible by using techniques such as
delta checkpoints (storing the difference to a previous checkpoint,
trading some computation time for space gains), bit vector com-
pression such as run-length encoding or the Chord [24] bit vector
format. Beside the direct benefit for query processing, check-
points are also aiding archiving old temporal data on disk, garbage
collection, parallelization and distribution to different nodes of a
cluster by providing clear “cuts”. Therefore, we can freely discard
versions before the checkpoint, move them to a different location
(disk or remote storage) or query the archived data in isolation.
This enables storing all temporal data in main memory even if it
exceeds the capacity of a single machine.

4.4 Timeline Index Construction

Based on the design of our index, we can now describe how
to efficiently create and incrementally update it, even when the
underlying data is not in start time order. We will first show
the bulk algorithm for ordered data and then generalize it. The
maintenance algorithms are based on Counting Sort [13], as the
index was designed to work with this approach in mind: In a first
pass, we count the changed tuples per version and, based on this
information, we can create compact Version Map and Event List
tables and fill in the actual ROW_IDs in a second pass. The algo-
rithm requires an intermediate table with size equal to maximum
Version_ID, counting the number of events per version. First, all
counters are initialized with 0. Next, at the first linear scan of
the Temporal Table, we read the start time of each tuple, take this
value as position in the intermediate table and increase the counter
value at this position by 1. In the same pass, we do the same
for the end time if its value is not infinity. We can now scan the
intermediate table, sum up the number of events occurring before
the current version and write the value to the Event ID column of
the Version Map, easily determining the offset of the events seen
so far. Knowing the total number of versioned tuples from the
last Event ID, we allocate space for the Event List. Now, in a



second linear scan of Temporal Table, we write the ROW_ID for
each start and end at the Event ID given by the Version Map and
increase this position by one. This results in the events for each
version being sorted by ROW_ID, which minimizes random 1/O.
As outlined above, we add a “true” to the bit vector if the tuple is
activated at this version and a “false” if it is invalidated.

The overall cost of this algorithm is linear with respect to the
size of the Temporal Table since it needs to touch each tuple only
twice — once for counting the number of events per Version_ID and
once for writing the values to the Event List. The physical order of
the data is irrelevant, since the Counting Sort of all Version_IDs is
performed by the intermediate table.

Furthermore, the index can be updated incrementally by just
appending the new versions and the corresponding events to the
Timeline Index if the Temporal Table is sorted by start time. Storing
the Temporal Table in a different sort order, e.g., for achieving a
better compression, incurs additional effort which is dominated by
resorting the Temporal Table. In the latter case, the ROW_IDs are
not stable any more and need to be updated in the Timeline Index,
which can be done in linear cost. Alternatively, the index could be
dropped and recomputed.

Finally, in contrast to algorithms on other temporal data struc-
tures ([1, 3, 6]), this scan-based algorithm expressing version
differences lends itself well to parallelization and distribution.

S. HISTORY OPERATORS

The Timeline Index has been designed to provide efficient sup-
port for a wide range of temporal queries. This section covers three
common types of temporal queries and shows how the Timeline In-
dex supports processing these queries: (a) Temporal Aggregation,
(b) Time Travel, and (c) Temporal Joins.

5.1 Temporal Aggregation

The first temporal operator we discuss is temporal aggregation.
A typical example is a query that asks for the most expensive
product at each point in time. First defined in [12], temporal
aggregation involves the execution of an aggregate function for
each Version_ID; i.e., each state in which the database has ever
been in. Implementing temporal aggregation is demanding because
it requires aggregation along the time and the spatial dimensions
(e.g., product) and both of these dimensions have potentially many
values. Being so challenging, temporal aggregation has already
attracted considerable attention in the research literature [12, 4,
28]. The complexity of the temporal aggregation operator depends
on the kind of aggregate: selective aggregates such as MIN, MAX,
and MEDIAN are more complex than cumulative aggregates such
as SUM. Therefore, we describe these two kinds of aggregates
separately in the following subsections.

As already mentioned, temporal aggregation has not yet been
standardized as part of SQL. For the purpose of this paper, we ex-
press it with a special GROUP BY VERSION_ID () clause [11].

5.1.1 SUM, AVG, and COUNT

Example. What is the total sum of the account balances of all
customers whose name start with "A" at each point in time? This
query can be expressed as follows:

SELECT SUM(balance) AS sum
FROM Customer co

WHERE co.name LIKE 'A%’
GROUP BY co.VERSION_ID() ;

SUM, AVG, and COUNT are cumulative aggregates which means
that a new aggregate value can be computed directly from the
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Figure 5: Temporal Aggregation: SUM
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Figure 6: Temporal Aggregation: MAX

previous aggregate value and the changes between the next and
previous version of the database. As a result, this kind of ag-
gregation functions is the simplest case for temporal aggregation.
Figure 5 shows how such temporal aggregates can be computed
using a Timeline Index. For the sake of illustration simplicity, we
use a shortened representation of the Zimeline Index, which only
lists the ROW_IDs for each version and indicates an activation by
a “4” and an invalidation by a “—”". To compute a temporal SUM,
we scan the Timeline Index to determine the new and invalidated
Customer rows for each version. Furthermore, we keep a single
variable, sum, that keeps track of the aggregate value during the
scan for each point in time. For each entry of the Timeline Index,
we check the WHERE clause (if the query has one) for all the new
and invalidated Customers. If a Customer qualifies, we look up
the Customer’s balance from the Temporal Table and adjust the
sum variable accordingly (add the balance for a new Customer;
subtract the balance for an invalidated Customer). This way, the
sum variable reflects the correct aggregate value for each point time
during the scan through the Timeline Index.

COUNT aggregates are computed analogously. For COUNT, we
do not need to look up the balance values from the Temporal Table;
only the WHERE clause needs to be evaluated and the running
variable that keeps track of the count needs to be maintained. AVG
is computed from SUM and COUNT. Likewise, VARIANCE and
STDEV (standard deviation) can be computed from other aggre-
gates.

Complexity. Let N be the number of rows in a temporal table.
Let M be the number of events in the Event List in the Timeline
Index. N < M < 2 x N because each line in the table contributes
at most twice to the Events List (once for activation and zero or
once for invalidation). Since each event is processed exactly once
and updates of the aggregation variable have a constant cost, the
complexity of SUM and COUNT is O(M ), which is in O(N).

5.1.2 MIN, MAX, MEDIAN

Example. What is the price of the most expensive unshipped item
at each point in time?

SELECT MAX(li.l_extendedprice) AS max_price
FROM Lineitem 11

WHERE 1i.1_linestatus = "0’

GROUP BY 11i.VERSION_ID();

MIN, MAX, and MEDIAN are selective aggregate functions. That
is, we cannot compute the new aggregate value based on the old



aggregate value and information from the records that are activated
and invalidated. For instance, if the current maximum is USD 1900
and the value 1900 is invalidated, we need to know about the second
highest active value to retrieve the new maximum. In other words,
we need to keep state of historic tuples as we go along.

To that end, we use an algorithm inspired by online Skyline
computation [5] and introduce a data structure which is updated
incrementally: That is, at each point in time, we keep a list of
Top-K values. We keep those Top-K values sorted so that we
have immediate access to these values if the maximum, top two,
top three, or so values are invalidated. We keep all the other
activated values (i.e., the Top K+1, K+2, ... values) in a separate,
unsorted vector which we call Inserted Values. In addition, we
store all invalidated values which are not in Top-K in the Deleted
Values vector. These unsorted values are only needed if the Top-
K values are all invalidated which happens rarely if K is chosen
conservatively.

Figure 6 illustrates this approach. The Top-K values are repre-
sented as an ordered multiset (in order to simplify the invalidation
of identical values), backed by a red-black tree. In an experiment
with real-life HANA data and queries, we set K to 0.01% of the
number of distinct values in the data set and this way, almost all ac-
tivations and invalidations were handled from the Top-K multiset.

Computing the MEDIAN requires special attention, but makes
use of the same principles as MIN and MAX: Rather than keeping
one Top-K list, two Top-K lists must be maintained to compute
the MEDIAN. One list for the Top-K values below the median and
another list for the Bottom-K values above the median.

Complexity. Determining the complexity for selective aggregates
is more complicated since it involves an estimation of how the
different parts of the Top-K data structure are used. Assuming N
rows in the temporal table, each event is processed exactly once
and inserted/removed into/from the Top-K data structure. For tuple
activation, the new value is either added to the multiset or appended
to the (unsorted) vector of values that do not make it into the Top-K.
For invalidation, two possible cases may occur: 1) The value is not
in the multiset. In this case, the value will be simply appended to
the Deleted Values vector. 2) The value is in Top-K. In this case, the
value is removed from the Top-K multiset. If the Top-K multiset is
empty as a result of this deletion, it is rebuilt with the Top-K values
from the (unsorted) vector of values that initially did not make it
into the Top-K multiset. The complexity of all these operations is
as follows:

1. appending to one of the vectors: constant cost, i.e. O(1)
2. inserting or removing from the multiset: cost is O(log K)

3. refilling the multiset: costis O(2-(L+H -log H)+ H) where
L < N is the number of values in the bigger vector and H is
the number of elements that are retrieved from the irrelevant
vectors when the multiset gets empty. H is currently chosen
empirically as 2 - K. So the cost is O (V) assuming the cost
for a partial sort is linear for the table size.

For each tuple of the temporal table, each of the three cases de-
scribed above occurs with probability pl, p2 and p3, respectively.
Table 2 shows the values for these probabilities that we have
measured for data based on a real-world scenario, generated by the
TPC-H History Generator [10]. The worst-case for this algorithm
in the example of a MAX function is a descending sequence of
numbers. In this case, the cost is O(N log H). It can be deduced
from the resulting probabilities that the cheapest action 1) occurs
in almost all the cases (99.4%). The more expensive actions 2)

pl p2 p3
99.440040 % | 0.559953 % | 0.000007 %

Table 2: Top-K Probabilities
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Figure 7: Time Travel to Version 2005

and 3) are rare events. For this reason, the total execution time
is approximately linear with respect to the table size IV in the
expected case.

5.1.3 Custom Aggregation Functions

User-defined aggregate functions can also be supported using the
Timeline Index. While none of the specific techniques we used for
cumulative and selective aggregate functions are applicable without
knowing the semantics of the aggregate function, the Zimeline
Index is nevertheless useful: In any case, it creates a window of
visible tuples at each point in time and worst case, this window
can be scanned with linear effort to construct the aggregate value.
As part of future work, we intend to develop a framework that
allows users to plug in efficient implementations for user-defined
aggregates using a Timeline Index.

5.2 Time Travel

Establishing a consistent view of a previous version of the
database is the most commonly used temporal operator in com-
mercial systems. It allows the user to perform regular value queries
on a single, older version of the database and corresponds closely
to the pure-timeslice query class outlined in [20].

Example. At a given time in history, in how many cases did a
product at a supplier have a stock level of less than 100 items?

SELECT COUNT (%)

FROM Partsupp

WHERE ps_availgty < 100

AS OF TIMESTAMP ’2012-01-01"

For time travel, we need to establish a consistent version VS,
i.e., provide access to exactly all those tuples that are valid for
this version. As shown in Figure 7, we can achieve this by going
back to the nearest previous checkpoint (if it exists) or otherwise
the beginning of the Timeline Index. In the example of Figure
7, we use the checkpoint at Version 2000 in order to process the
query that asks for Version 2005. The active set of that checkpoint
is copied to an intermediate data structure. We then perform a
linear traversal of the Timeline Index and stop when the version
considered becomes greater than the version of the checkpoint,
thereby covering versions 2001 and 2003 in this example. For these
versions, we access the activated and invalidated ROW_IDs in the
Event List and apply the changes to the intermediate data structure:
2001 invalidates ROW_ID 1, 2003 activates ROW_ID 3. Once we
are finished, we can execute the query using the bit vector of the
intermediate structure as a filter.
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Complexity. The cost depends on the rate at which we take check-
points: The closer the better. Accessing a checkpoint can be done
in constant or (small) logarithmic cost, as outlined in Section 4.3,
whereas traversing the timeline and applying the differences is lin-
ear in the size of the Timeline Index. We will study the space/time
tradeoffs of the checkpoint rate in Section 6.4.

5.3 Temporal Join (Timeline Join)

The third and most complex query class is the so-called remporal
join. Just like temporal aggregation, this operator involves both
the spatial dimension (i.e., the join predicate) and the temporal
dimension (i.e., matching only tuples that were valid at the given
point in time). In the interval-based temporal model, this means
determining the interval intersection of versions.

Example. How many times did a customer with a balance smaller
than 5000 have an open order with total price more than 10?

SELECT COUNT (*)

FROM Customer TEMPORAL JOIN Orders

WHERE o_orderstatus = 'O’ AND c_acctbal < 5000
AND o_totalprice > 10
AND c_custkey = o_custkey

Our join algorithm, which we call Timeline Join, focuses on the
temporal dimension, thereby providing most of its benefits serving
temporally selective queries. It performs an equijoin on the non-
temporal (spatial) attributes, making it an instance of a temporal
equijoin [9]. Its output is a slightly extended Timeline Index for
the join result, where the entries in the Event List are not individual
ROW_IDs for one table, but pairs of ROW_IDs, one for each partner
in the respective table. This design has two benefits: 1) Additional
temporal operations can easily be performed on the join results,
enabling temporal n-way joins (in which the ROW_ID pairs become
n-tuples). 2) Lookup of tuples in the temporal tables (e.g., for
serializing the result or applying the WHERE condition) can be
performed in a lazy manner, i.e. late materialization. Timeline
Join is conceptually a merge-join on the already sorted Timeline
Indexes, augmented by a hash-join style helper structure for the
value comparisons.

Figure 8 shows how the Timeline Join works. The example
shows the join of two tables A and B with a composite predi-
cate: A (spatial) value equality A.PK = B.F'K and time inter-
val intersection [A.start, A.end) overlap [B.start, B.end). For
both tables a Timeline Index is required. In addition, we utilize
a hash-based Intersection Map, which relates each join key to
the matching ROW_IDs in each table, formally IMap: (v) —
({ROW_IDA},{ROW_ID3g}). To execute the join, we do a
merge-join style linear scan of both Timeline Indexes (both ordered
by Version_ID), using head pointers to the current row of each of
the indexes. Starting from small Version_IDs, we advance the head

pointer of the index with the lowest Version_IDs. When moving
the head pointers we perform the following steps:

e If tuple a is activated in index A, we add its ROW_ID to the
set for A in the intersection map, using the value of a. PK as
its key: IMap(a.PK)[0] U (a.rowl D).

e If tuple a is invalidated in index A, we remove its ROW_ID
from the intersection map, using the value of a. PK as key:
IMap(A.PK)[0] \ (A.rowID).

These steps are used for B in a similar fashion, using b. F' K as key
and the second set. In our example, when we advance the head
pointer for index B to version 103, we see the invalidation of the
tuple with ROW_ID 2. Its FK value is y, so we modify the y entry
in the intersection map, removing its ROW_ID 2 from the B set.

Changes to the Intersection Map will result in entries to the
result table. Individual join partners are added or removed, yielding
activation or deactivation pairs for this ROW_ID and its join partner.
‘We show this case in Figure 8, where the removal of ROW_ID 2 for
B at version 103 adds the invalidation pair (2, 2), since the B tuple
ROW_ID 2, values (c, y, 100, 103), was joined with the A tuple
ROW_ID 2, values (y, 100, 113) and now goes out of validity.
Complexity. In summary, the Timeline Join can be seen as a
combination of a merge-join and a hash-join that are both adapted
to consider temporal conditions as an extra predicate in addition to
the equality of the (spatial) join predicate. The cost and complexity
analysis of this join algorithm shows that it requires linear time with
regard to the number of versions.

6. EXPERIMENTS AND RESULTS

This section presents the results of experiments that assess the
performance of the Timeline Index for temporal aggregation, time
travel and temporal joins. In each case, the Timeline Index is com-
pared to the best-of-breed solutions from the literature. Further-
more, we compare our implementation of the Timeline Index with
the performance of commercial database systems that support time
travel queries. Additionally, this section presents measurement for
index maintenance and the storage requirements.

6.1 Software and Hardware Used

All experiments were carried out on a server with 192GB of
DDR3-1066MHz RAM and 2 Intel Xeon X5675 processors with 6
cores at 3.06 GHz running a Linux operating system (Kernel 3.5.0-
17). Our implementation of the Zimeline Index was integrated into
an experimental database system whose design closely resembles
that of the SAP HANA [7] database product: a column store that
carries out query processing entirely in memory. This prototype
is used inside SAP to experiment with new query processing algo-
rithms and data structures. It is written entirely in C++.

As mentioned in Section 4.3, the only tuning knob of the Time-
line Index is the frequency of checkpoints. This knob trades
memory consumption and update performance for query speed. We
studied three versions of the Timeline Index:

Dataset | SF_0 | SF_H | [lineitem| | |partsupp| | #versions
Tiny 0.01 0.01 0.3 Mio 0.1 Mio 0.2 Mio
Small 0.1 0.1 3.4 Mio 1.3 Mio 2.2 Mio
Medium 1.0 1.0 34 Mio 13 Mio 22 Mio
Large 10.0 10.0 340 Mio 132 Mio 220 Mio

Table 3: Dataset properties



1. No Checkpoints

2. Few Checkpoints: For each table, a new checkpoint was
created every 22 million versions for the Large dataset and
every 2.2 million for Medium.

3. Many Checkpoints: For each table, a new checkpoint was
created every 4.4 million versions for the Large dataset and
every 0.44 million for Medium.

Unless otherwise stated, all measurements are taken with data in
random physical order. For reference, we studied the performance
of two commercial database systems whenever possible. The first
commercial database system was the current release of HANA
(without Timeline Indexes) and the second commercial system is
referred to as System X because the license agreement does not
allow us to reveal its true identity. Furthermore, we studied the
performance of the following temporal index structures:

e Elmasri 1990: The Time Index as described in [6]. As no im-
plementation was available from the authors, we implemented
it ourselves. In its basic version, it only supports the time
dimension. To gain better query performance, we implemented
a two-level version, which uses a Time Index for every value.

e MVBT: The Multi-version B-tree in the Java-based XXL li-
brary', maintained by the authors of [3]. The MVBT provides a
combined key/time index and supports a wide range of temporal
queries. We tuned this implementation by using an in-memory
storage container (instead of a disk-based container) and by
adapting the page size for best performance. While we could
measure basic index operations and time travel, no support for
temporal aggregates and temporal joins is available in XXL.
Unfortunately, we could not get implementations for these
operations from the authors of [27] and [28]. Therefore, we
used our own implementation of MVBT-based temporal joins
and did not include experiments for temporal aggregation.

As additional baselines for the experiments with temporal aggre-
gation, we used implementations of the following algorithms:

e Snodgrass 1995: We used our own implementation of [12], as
no other implementation was available.

e Bohlen 2006: We used the authors’ implementation of [4].

Time travel is supported natively by the following commercial
database systems:

e SAP HANA: As a baseline, we used the release version of our
database system without the implementation of Timeline Index.

o System X: We compared our results to a (traditional) general-
purpose database system which is row-based.

For temporal joins, we compared the Timeline Index to our
implementation of a traditional hash join.

"http://xx1.googlecode.com/

Table TPC-H dbgen | Inserts | Updates | Deletes
Customer | 0.2 Mio 0.2Mio | 0.6 Mio | 0.0
Lineitem | 6.0 Mio 1.6 Mio | 1.2Mio | 0.2 Mio
Nation 25.0 0.0 0.0 0.0
Orders 1.5 Mio 0.4 Mio | 0.3Mio | 0.1 Mio
Region 5.0 0.0 0.0 0.0
Partsupp | 0.8 Mio 0.0 1.2Mio | 0.0
Part 0.2 Mio 0.0 0.0 0.0
Supplier 10000.0 0.0 0.0 0.0

Table 4: Operations per Table (SFp = 1.0 and SFy = 1.0)

6.2 Benchmark

There is no standard benchmark for temporal databases. Only
very recently, [2] proposed temporal extensions to the TPC-H
benchmark. As a result, we developed our own, application-centric
benchmark based on customer use cases and standard benchmarks
such as TPC-H and TPC-C. The goal was to cover a broad spectrum
of features of a temporal database system. A technical report
[10] describes this benchmark in more detail. All our benchmark
databases have a TPC-H schema (i.e., Customers, Orders, Lineit-
ems, etc.). As aresult, we can execute any TPC-H query on them.
In order to create a history, our benchmark databases are generated
in two steps:

e Step I: Generate a Version 0 of the database. This version is
generated using the TPC-H dbgen tool.

e Step 2: Generate a history by executing TPC-C transactions.
Each TPC-C transaction generates a new database version. As
a result, we can run time travel, temporal aggregation and tem-
poral joins on the resulting temporal database. We adapted the
TPC-C transactions to run on the TPC-H schema as described
in the CH-benchmark [8].

Corresponding to these two steps, our benchmark databases are
characterized by two scaling factors:

e SFy: Scaling factor of the dbgen tool creating Version 0.

e SFy: Number of update transactions applied in Step 2. An
example transaction is a new customer who registers his address
and places an order. As a result, SFy determines the number
of versions in the benchmark database.

Given the widely varying cost of temporal operators and spe-
cific implementations, we studied four different database scaling
factors (SFo = SFu): Tiny: 0.01, Small: 0.1, Medium: 1.0 and
Large: 10.0. These databases are characterized in Table 3. All
four databases fit into the main memory of our server. This fact
was exploited in the implementation of all approaches (Timeline
Index, commercial products, etc.) so that no I/O was carried out
as part of any of the experiments reported in this paper. For a
better understanding of the effects of creating versions with TPC-
C transactions, Table 4 shows how many inserts, updates and
deletes are carried out for each table of a Medium TPC-H database
with SFy = SFg = 1.0 (i.e., 2.2 million TPC-C transactions).
Note that this distribution of updates keeps the properties (such as
correlations and dependencies) of dataset equal to that of a normal
TPC-H dataset.

As benchmark queries, we adapted SAP customer use cases and
applied them to the TPC-H schema [10]. We will describe the spe-
cific queries used in our experiments together with the experimental
results in the following subsections.

6.3 Experiment 1: Temporal Aggregation

# Inserted Versions (Mio)Base Data| 0.04 | 0.09 | 0.13 | 0.18 | 0.22
IElmasri 1990 48.44  108.44{266.17|543.79(779.51|1064.76
Bohlen 2006 1.57 2.62 | 4.04 | 544 | 7.43 | 10.90
Snodgrass 1995 0.02 0.03 | 0.06 | 0.12 | 0.16 | 0.20
Timeline Index 0.0006 (0.0013|0.0020)0.0027)0.0039| 0.0051

Table 5: Temporal Aggregation: SUM [Tiny Dataset] (sec)

The first set of experiments studied the performance of the
Timeline Index for temporal aggregation. As baselines, we used
the classic algorithm Snodgrass 1995 [12] and the recently de-
vised algorithm Bohlen 2006 [4]. Furthermore, we studied the
performance of Elmasri 1990 [6] as a representative for a generic
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Figure 9: Temporal Aggregation [Medium Dataset]

[# Inserted Versions (Mio)Base Datal 0.04 [ 0.09 [ 0.13 [ 0.18 | 0.22

IElmasri 1990 55.39  |119.05[295.26/600.42881.98|1512.21
IBohlen 2006 8.53 | 19.61|54.46 (102.60[149.26| 198.73
Snodgrass 1995 0.01 0.03 | 0.06 | 0.11 | 0.16 | 0.21

Timeline Index 0.0011 (0.0025|0.00400.0056|0.0074| 0.0095

Table 6: Temporal Aggregation: MAX [Tiny Dataset] (sec)

temporal index structure. Since the performance of the methods
varied drastically, we split our results in two: 1) Figure 9 shows the
results for the two most competitive methods on a Medium dataset;
i.e., Timeline and Snodgrass 1995. 2) Tables 5 and 6 show the
results of all methods on a Tiny dataset; all other approaches (except
Timeline and Snodgrass 1995) timed out for any database bigger
than Tiny.

Figure 9a) and 9b) shows the running time to compute a temporal
aggregations according to the example of Section 5.1.1 with a SUM,
using the Timeline Index and Snodgrass 1995. Timeline Index
clearly outperforms Snodgrass 1995. The gap becomes larger when
the duration of the temporal aggregation gets longer (i.e., the more
tuples need to be aggregated). Comparing Figures 9a) and 9b),
the difference becomes even more pronounced when the table is
not ordered by the start field; ordering by some other criterion
is important to achieve optimal compression. While the Timeline
Index is robust and does not require temporal order, Snodgrass
1995 is particularly sensitive to the order and, thus, limits the
effects of compression in a column store. In a separate experiment
(not shown for brevity) we found out that ordering by start never
achieves the best compression factor for SAP HANA.

We also include the cost of “Index Only” operations, which gives
us some additional insights: 1) The (lower) cost of Index-Only
operations such as COUNT 2) The order-independence of index
operations, as the index cost is roughly the same for a) and b) 3) The
moderate, but order-dependent cost of fetching from the temporal
table, in contrast to the prohibitive cost of random I/O on disk.

Figure 9c) shows the results for the MAX temporal aggregation
query in Section 5.1.2. Again, this query is, in theory, more
complex to process with a Timeline Index whereas Snodgrass 1995
is agnostic to the aggregation function. Indeed, comparing Figures
9b) and c) the Timeline Index performs slightly worse for the
MAX query, but the effects are small. Overall, the Timeline Index
still clearly outperforms Snodgrass 1995. Even when varying the
benchmark parameters and testing other queries, we could not find
a single case in which Snodgrass’ algorithm was better.

Since Bohlen 2006 and Elmasri 1990 did not scale well for any
database bigger than 7iny, we present their results on the 7iny
dataset only. Tables 5 and 6 summarize all the results. Timeline

Selected Version (Mio)| 0 44 88 | 132 | 176 | 220
Elmasri 1990 na. | na. | na. | na. | na. |na.
MVBT 10.72{11.00 | 11.08 | 10.91|10.71 {9.33
System X 532 (561|821 |9.86| 8.86 |1.14
SAP HANA 1.07 | 1.42 | 1.75 | 2.09 | 2.54 {2.89
Full Scan 1.06 | 1.07 | 1.05 | 1.06 | 1.04 |1.05
Timeline Index 0.20 | 0.20 | 0.21 | 0.21 | 0.21 {0.22

Table 7: Time Travel for Variable Version [Large Dataset] (sec)

outperforms Bohlen 2006 by roughly two orders of magnitude and
Elmasri 1990 by four.

Even though we did not experiment with this feature, Timeline
provides an additional benefit: It is the only method that can
effectively process a temporal aggregation over a limited time
period; e.g., executing a temporal aggregation only for the years
2008-2010. Since the access to a specific version is fast (see next
experiment), the cost for this aggregation is effectively linear to the
number of versions in the query range, not in the table.

6.4 Experiment 2: Time Travel

Figure 10 and Table 7 show the performance of the Timeline
Index for time travel queries for a Large dataset. Again, we split
the presentation of the results for the various methods due to the
huge variance in performance.

We varied the point in time that is queried: At the very left,
the query is executed AS OF Version 0 of the database, the oldest
possible version. At the very right, the query is executed against the
current version of the database. We measured the Timeline Index
with checkpoints created every 11 million versions and studied
the two commercial database systems as well as the two general
temporal indexes. As an additional baseline, we examined a table
scan to process this query. Figure 10a) shows the results for the
case that all tables are ordered by start time. The clear winner in
this experiment is the Timeline Index: It performs well throughout
the spectrum.

The response time of a scan-based approach grows linearly with
the version number of the time travel target if the table is ordered
by start time. With a growing version number, more and more of
the table needs to be read and in an extreme case, the whole table
(with all versions of all tuples) needs to be read in order to find the
current version of all tuples.

The numbers for the release version of SAP HANA are signif-
icantly worse than the results that could be achieved with a scan
because the cost of restoring an old transaction context exceeds
the cost of a table scan. Figure 10b) shows the results for cases
in which the table was not clustered by start time; instead, it was
ordered to get the best possible compression. As can be seen, the
Timeline Index is robust and shows (almost) the same performance,
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independent of the ordering of the table. The additional cost
due to non-linear tuple fetching is minimal. The performance
of SAP HANA improves significantly because it benefits from
compression, thereby reading less data from main memory into the
CPU caches. The scan-based approach performs worse: Without
clustering by start time, this approach needs to read the whole table
in all cases.

Table 7 provides an overview on the remaining competitors:
System X is relatively fast to access the current version, but
otherwise the access time grows with the version number. It is
roughly an order of magnitude slower than Timeline. MVBT as
a temporal index gives approximately constant access time, but is
also relatively slow. We omit Elmasri 1990, because its index could
not be created within 24 hours for the Large dataset.

6.5 Experiment 3: Temporal Join

In this set of experiments, we studied the performance of using
the Timeline Index to process temporal joins. As a baseline, we
used a regular hash join. The performance of a temporal join
depends on two factors: (a) spatial selectivity, which determines
how many tuples of each relation match regardless of the tempo-
ral dimension and (b) temporal selectivity, which determines the
relation sizes for each version. Putting it differently, a temporal
join is a two-dimensional join, where selectivity in both dimensions
matters.

To test temporal joins with varying selectivity, we studied two
different join queries. First, we studied the temporal join query of
Section 5.3. This query is highly selective in the spatial dimension.
Figure 11a) shows the results for this query. Then, we studied the
following query which is less selective in the spatial dimension and,
thus, relatively more selective in the temporal dimension:

SELECT COUNT (*)
FROM Orders TEMPORAL JOIN Lineitem
WHERE 1_returnflag = "A’
AND o_orderstatus = 1_linestatus
AND o_totalprice < 2500

# Inserted Versions (Mio) |Base Data| 4.4 | 8.8 | 13.2 | 17.6 | 22.0
Elmasri 1990 T/0 T/O|T/O| T/O | T/O | T/O
MVBT 39.0 51.9|92.1|121.7|165.3|223.8
Bahlen 2006 13.0 25.4(42.0] 64.0 | 87.7 |114.0
Timeline - many checkpoints 0.1 1513452 | 73| 95
Timeline - few checkpoints 0.1 153451 | 72|93
Timeline - no checkpoints 0.1 143249 | 69 | 90

Table 8: Index Construction Time (sec) [Medium Dataset]

Figure 11b) shows the results for this query. In Figure 11a), it
can be seen that a traditional hash join is unbeatable if the query
has a high selectivity in the spatial dimension. As Elmasri 1990
creates a tree of keys and for each key a tree of all versions, spatial
selectivity can be exploited well by this data structure resulting
in a performance similar to hash join. Nonetheless, Timeline is
also very competitive, within a small constant factor of the hash
join. The performance of MVBT is somewhat unsatisfactory, as
we could only rely on an index-nested loop join, and not on the
fully optimized joins proposed in [27].

In turn, as shown in Figure 11b), Timeline Join is the best choice
if the selection along the temporal dimension matters. This result
agrees with the outcomes of all other experiments: The Timeline
Index is a great way to carry out any kind of selection in time.
In contrast, both MVBT and Elmasri 1990 time out for this query
because they rely on a space selective predicate.

6.6 Experiment 4: Index Construction and
Maintenance

The time for constructing a new Timeline Index data structure
is shown in Table 8. We measured the time for a complete in-
dex construction for the LINEITEM table with variable size and
we compared the results to other index structures. The time for
constructing an index for Elmasri 1990 was more than one hour
already with the Small dataset. Also for MVBT, index construction
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is very expensive. As shown by the measurements, the time for
constructing the Timeline Index is linear with respect to the table
size and much faster than an AVL tree used by Bohlen 2006. The
construction of a Timeline Index is very efficient, so it is even
feasible to construct the index lazily, e.g., with the first execution
of a temporal operator. Checkpoints put only a minimal overhead
on index construction.

Updates are supported well by Timeline Index by incrementally
appending events to the index. Yet, checkpoints result in additional
moderate costs. For space reasons, we omit the graph.

6.7 Experiment 5: Memory Consumption

The last experiment shows the memory consumption of the
Timeline Index and its competitors. We measured the memory con-
sumption for the LINEITEM table on the Large dataset. As a com-
parison, we show the memory consumption of the uncompressed
temporal table for LINEITEM, which is 35.2 GB. For this table,
the size of the Timeline Index is 3.8 GB, which is approximately
10% of the table memory consumption. The size of one checkpoint
is 40.5 MB, which is rather small because it is a single bit vector.
Therefore the memory consumption only slightly increases for few
checkpoints. For many checkpoints the memory consumption of
the index data structure is still only 17% of the table which is much
smaller than the memory required for MVBT and Bohlen 2006.
MVBT has to deal with replicated entries, if they span active and
outdated pages. The memory consumption of Elmasri 1990 is very
high because of the replication of data for different versions.

7. CONCLUSION

This paper presented a novel, versatile index structure for tem-
poral tables called Timeline Index. The Timeline Index is universal,
thereby supporting a large variety of temporal operators. Itis space-
efficient; typically the size is only a small percentage of the size of
a temporal table and a single Timeline Index per temporal table is
sufficient. It is flexible and does not limit other decisions of the
physical design such as compression. Furthermore, it integrates
nicely into an existing database system, thereby taking advantage
of highly optimized code paths to scan data, parallelize queries, and
works well on modern (NUMA) hardware. Temporal operators can
be nested and an efficient result construction can be achieved by
late materialization. The performance is predictable, with only a
single tuning knob, the number of checkpoints. Most importantly,
the Timeline Index is fast: It beats all best-of-breed approaches in
all our performance experiments with an in-memory column store;
in some cases by orders of magnitudes.

Currently, the most important line of future work is to apply
the Timeline Index to application time in addition to system time.
This way, the Timeline Index would become applicable to a full
bi-temporal data model.

Acknowledgments

We thank our colleagues at SAP, Andreas Tonder, Ingo Miiller and
Jonathan Dees for their valuable feedback and comments on our
work. We would also like to thank Michael Bohlen and Bernhard
Seeger (as well as their respective research groups) for providing
access to their index implementations.

8 REFERENCES

] G. Adelson-Velskii and E. M. Landis. An Algorithm for the
Organization of Information. In Proceedings of the USSR Academy
of Sciences, 1962.
[2] M. Al-Kateb et al. Adding a Temporal Dimension to the TPC-H
Benchmark. In TPCTC Workshop, 2012.
[3] B. Becker et al. An Asymptotically Optimal Multiversion B-Tree.
VLDB J., 5(4), 1996.
[4] M. H. Bohlen, J. Gamper, and C. S. Jensen. Multi-dimensional
Aggregation for Temporal Data. In EDBT, 2006.
S. Borzsonyi, D. Kossmann, and K. Stocker. The Skyline Operator.
In ICDE, 2001.
R. Elmasri, G. T. J. Wuu, and Y.-J. Kim. The Time Index: An Access
Structure for Temporal Data. In VLDB, 1990.
F. Férber et al. The SAP HANA Database — An Architecture
Overview. IEEE Data Eng. Bull., 35(1), 2012.
F. Funke et al. Metrics for Measuring the Performance of the Mixed
Workload CH-benCHmark. In TPCTC Workshop, 2011.
D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Join
Operations in Temporal Databases. VLDB J., 14(1), 2005.
[10] M. Kaufmann, D. Kossmann, N. May, and A. Tonder. Benchmarking
Databases with History Support. Technical report, SAP AG, 2013.
[11] M. Kaufmann, D. Kossmann, N. May, and A. Tonder. SQL Extension
for History Tables:. Technical report, SAP AG, 2013.
[12] N.Kline and R. T. Snodgrass. Computing Temporal Aggregates. In
ICDE, 1995.
[13] D.E. Knuth. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., 1998.
[14] K. G. Kulkarni and J.-E. Michels. Temporal Features in SQL: 2011.
SIGMOD Record, 41(3), 2012.
[15] D. B. Lomet and B. Salzberg. Access Methods for Multiversion Data.
In SIGMOD, 1989.
[16] D. Lomet et al. Transaction Time Support Inside a Database Engine.
In ICDE, 2006.
[17] P. Muth, P. E. O’Neil, A. Pick, and G. Weikum. The LHAM
Log-Structured History Data Access Method. VLDB J., 8(3-4), 2000.
[18] R. Rajamani. Oracle Total Recall / Flashback Data Archive.
Technical report, Oracle, 2007.
[19] S. Ramaswamy. Efficient Indexing for Constraint and Temporal
Databases. In ICDT, pages 419431, 1997.
[20] B. Salzberg and V. J. Tsotras. Comparison of Access Methods for
Time-Evolving Data. ACM Comput. Surv., 31(2), June 1999.
[21] C. M. Saracco et al. A Matter of Time: Temporal Data Management
in DB2 10. Technical report, IBM, 2012.
[22] R.T. Snodgrass et al. TSQL2 Language Specification. SIGMOD
Record, 23(1), 1994.
[23] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. Efficient Evaluation of
the Valid-Time Natural Join. In /CDE, 1994.
[24] 1. Stoica et al. Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. In SIGCOMM, 2001.
[25] M. Stonebraker. The Design of the POSTGRES Storage System. In
VLDB, 1987.
[26] J. Yang and J. Widom. Incremental Computation and Maintenance of
Temporal Aggregates. In VLDB, 2003.
[27] D. Zhang, V. J. Tsotras, and B. Seeger. Efficient Temporal Join
Processing Using Indices. In ICDE, 2002.
[28] D. Zhang et al. On Computing Temporal Aggregates with Range
Predicates. ACM Trans. Database Syst., 33(2), 2008.

[5

—

[6

[t

[7

—

[8

—

[9

—



