
AGILE: Adaptive Indexing for
Context-Aware Information Filters

Jens-Peter Dittrich
jens.dittrich@inf.ethz.ch

Peter M. Fischer
peter.fischer@inf.ethz.ch

Donald Kossmann
kossmann@inf.ethz.ch

Institute of Information Systems
ETH Zurich

8092 Zurich, Switzerland
www.dbis.ethz.ch

ABSTRACT
Information filtering has become a key technology for mo-
dern information systems. The goal of an information filter
is to route messages to the right recipients (possibly none)
according to declarative rules called profiles. In order to
deal with high volumes of messages, several index structures
have been proposed in the past. The challenge addressed in
this paper is to carry out stateful information filtering in
which profiles refer to values in a database or to previous
messages. The difficulty is that database update streams
need to be processed in addition to messages. This paper
presents AGILE, a way to extend existing index structures
so that the indexes adapt to the message/update workload
and show good performance in all situations. Performance
experiments show that AGILE is overall the clear winner
as compared to the best existing approaches. In extreme
situations in which it is not the winner, the overheads are
small.

1. INTRODUCTION
Information filter systems manage continuous streams of

messages that must be routed according to rules or so-called
profiles. Examples for such information filters are publish &
subscribe systems [8] or Email spam filters.

In order to implement information filters, several methods
have been proposed in the past. Examples are SIFT [21],
LeSubscribe [9], or YFilter [7]. The focus of all that work
was on the development of scalable index structures in order
to group and index profiles. A major shortcoming of the
existing approaches is that they are very inefficient if profiles
refer to values in a database that are subject to change. We
call such a database a context. For instance, a profile could
indicate that a specific message containing a purchase order
is only relevant for a warehouse if the warehouse has enough
items in stock. The number of items in stock can change

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

rapidly and updating the indexes in such a situation is very
costly using one of the existing techniques.

This paper presents Context-aware Information Filters
(CIF). In contrast to traditional information filters, a CIF
has two input streams: (a) a stream of messages (e.g. orders)
that need to be routed and (b) a stream of context updates
such as the new values of items in stock. This way, a CIF
provides a unified solution to tailor information delivery for
the routing of messages and to manage context information.

The challenge of building a CIF is that the two goals to
route messages and record context updates efficiently are in
conflict. As mentioned above, traditional approaches to in-
dexing profiles are very efficient in routing messages, but are
very inefficient when it comes to processing context updates.
Context updates can be implemented most efficiently if there
are no profile indexes at all; in this case, however, message
filtering becomes prohibitively expensive. To close this gap,
we present AGILE. AGILE is a generic way to extend ex-
isting index structures in order to make them resilient to
context updates and achieve a high message throughput at
the same time. AGILE adopts some ideas from moving ob-
ject databases [16, 14, 15], but generalizes those ideas and
applies them to a different application domain; i.e., informa-
tion filtering. The effectiveness of making index structures
adaptive has also been shown in [19, 4], but with different
goals and strategies.

1.1 Use Cases for CIF
To establish better understanding of what a context is and

what the benefits of a context-aware information filter are,
a few use cases are sketched in the following:

Message broker with state. A message broker routes mes-
sages to a specific application and location. One example
(stated above) is sending an order message to the warehouse
that has the item in stock and is closest to the customer.
Each message can change the state of the receivers and af-
fects future routing decisions dynamically.

Generalized location-based services. With an increased
availability of mobile, yet network-connected devices, the
possibilities for personalized information delivery have mul-
tiplied. So far, those services mostly use very little context
information, such as the location of the device. A more gen-
eral solution is to extend those systems to a more elaborate

context. As an example, a researcher could be interested
in announcements of talks on certain topics. However, the
researcher is only interested in such announcements if she is
on campus, has less than one hundred unread Emails, and
the talk is before her last appointment on that day.

Stock brokering. Financial information systems require sen-
ding only the relevant market updates to specific applica-
tions or brokers. Often, relevance is determined by the
stocks in the portfolio. Stocks may change rapidly for day-
traders that buy and sell at extremely high rates to take
advantage of small and transient price differences. In this
example, the portfolio represents the context, which must
be updated frequently.

To sum up, some contexts have a high update rate (in-
ventory, portfolio), others have a low update rate (location
of the warehouse), but many have varying, “bursty” update
rates (location of a person, portfolio data). All examples
involve a high message rate and a large number of profiles.
Skipping updates in order to reduce update rates has to be
avoided because it leads to costly errors in information fil-
tering.

1.2 Contribution Summary
This work makes four major contributions:

1. We introduce the concept of a Context-Aware Informa-
tion Filter (CIF), and define its special requirements
in terms of high context update rates as well as high
message rates (Section 2).

2. We introduce a CIF-architecture in which intermedi-
ary filter stages are allowed to generate false positives
as trade-in for higher update rates. To ensure cor-
rectness, false positives are eliminated in a separate
post-filtering step (Section 3).

3. Based on a review on how existing methods can be
adapted to support CIF in Section 4, Section 5 presents
the generic algorithm AGILE. This algorithm extends
best-of-breed index structures to automatically adapt
to high update rates.

4. We present the results of comprehensive performance
experiments in order to study the tradeoffs of AGILE
(Section 6).

2. PROBLEM STATEMENT
The main issue for context-based information filters can

be summarized as follows: “Given a large set of profiles,
high message rates and varying rates of context updates,
provide the best possible throughput of messages”. No mes-
sage must be dropped or sent to the wrong user because a
change in context has not yet been considered by the filter.
This constraint rules out methods that update the context
only periodically. In the following, we define the terms con-
text, profile and message.

2.1 Context
In the literature on ubiquitous [20] and context-aware

computing, a wide range of context definitions has been pro-
posed. Most of these definitions focus on the notion of loca-
tion ([6] gives an overview). For the purpose of this work,
we use the following, more general definition: A context is

Figure 1: Example messages, contexts and profiles

a set of attributes associated with an entity; the values of
those attributes can change at varying rates. Figure 1 gives
examples of the contexts of two users. User 1 is currently in
her office, whereas the location of User 2 is unknown.

Gathering context information is outside the scope of this
paper and has been addressed, e.g., in the work on sensor
networks [22], data cooking [11], context/sensor fusion [3],
or the Berkeley HiFi project [5]. The only assumption that
is made in this work is that the values of an attribute of a
context can change and that these changes are triggered by
a stream of context updates.

2.2 Messages
A message is a set of attributes associated to values. For

example, a message announcing a talk can be modeled as
shown in Figure 1. Often messages are delivered in XML.
Nevertheless, we use the simplified attribute/value model in
this paper for reasons of understandability while maintain-
ing generality.

2.3 Profiles
A profile is a continuous query specifying the information

interests of a subscriber. Expressions in profiles can refer to
a static condition or a dynamic context. Static conditions
change relatively seldom, since they specify abstract inter-
ests. In contrast, context information can change frequently.
We define profiles as proposed in pub/sub-systems [9], using
the disjunctive normal form (DNF) of atomic comparisons.
This definition allows the use of context information in pro-
files in multiple ways: Message attributes can be compared
with constants and with context attributes. The latter is the
novel aspect of this work and a significant extension to the
way profiles are defined in traditional pub/sub systems and
information filters. This extension enables easier modeling,
richer profiles and, as we will see, several opportunities for
optimization.

An example for a profile is displayed in Figure 1. The
profile asks for the delivery of messages of the type talk an-
nouncement, if the talk is today, the user is on campus, has
less than 100 unread mails, and the talk starts before the
last appointment.

If messages and/or context information are represented
in XML, then profiles involve XPath expressions. Again, we
use the simplified attribute/value model for ease of presen-
tation and without loss of generality.

!"#$%&'(
)*+
(

',-./&(
,-0&1

∧
∨

2-0&1&' !&+.& 3*'#),/#&+

4&'5/#(
6,#%

)"/'&(
7*',#,8&'

9*-#&1#(
:"-".&:&-#

;#+&":(*)

9*-#&1#(
<70"#&'

;#+&":(*)

=!&''".&>
!"#$%&0
3+*),/&'?

;#+&":(*)

!&''".&'

Figure 2: Architecture of a CIF

3. CONTEXT-AWARE
INFORMATION FILTERS

This section introduces a processing model and a reference
architecture for Context-Aware Information Filters (CIF).

3.1 CIF Processing Model
Figure 2 shows the processing of a CIF. The CIF keeps

profiles of subscribers and context information. The CIF
receives two input streams: a message stream and a context
update stream. These two streams are serialized so that
at each point in time either one message or one update is
processed.

In order to deal with the two input streams, a CIF must
support the following methods:

1. handle message(Message m):
Find all profiles that match the given message m, con-
sidering the current context state. Return this set of
Profiles.

2. update context(Context c,Attribute a,Value v):
Set the attribute a of context c to the new value v,
i.e. c.a := v. All profiles referencing this context must
consider this new value.

3.2 CIF Architecture
As shown also in Figure 2, a CIF has four main com-

ponents: (a) context management, (b) indexes, (c) merge,
(d) postfilter. A similar architecture without context man-
agement has also been devised for (traditional, non-context-
aware) information filters in [10]. In the following, the pur-
pose of each component and suitable algorithms are de-
scribed.

3.2.1 Context management
The first component manages context information. It

stores the values of static attributes and values of context
attributes which are used in predicates of profiles. Any con-
text change is recorded by this component. This component
interacts heavily with indexes and postfiltering, which both
consume this information. Both indexes and postfiltering re-
quire values of constants and context attributes in order to
evaluate predicates of profiles for incoming messages. Often,
the context manager can keep all relevant context informa-
tion in the main memory.

3.2.2 Indexes
Given a message, the information filter must find all pro-

files that match. This filtering can be accelerated by in-
dexing the profiles or predicates of the profiles. The most
important method supported by an index is probe, which is
invoked by the CIF’s handle message method. probe takes
a message as input and returns a set of profiles that po-
tentially match that message. Furthermore, an index pro-
vides insert and delete methods in order to register new
profiles or delete existing profiles. As will be shown in Sec-
tion 5, an index should also support an update method in
order to deal with context updates. Indexes for profiles and
predicates have been used in traditional information filter-
ing systems and have been subject to extensive studies in
literature; e.g., [21, 9, 13, 7].

An index can be classified by four different aspects:

• Target: Value indexes index the constants and values
of attributes. The B-Tree, R-Tree [12], R∗-Tree [2],
Spatial/Moving Object Indexes [16] and Interval In-
dexes [13] are popular examples of value indexes. On
the other hand, structure indexes index the structure,
i.e., the type of the profile; for XML messages, the
structure is represented by XPath expressions in the
profiles. Examples of structure indexes are YFilter [7]
and Data Guide [1]. For the model of Section 2, only
value indexes are relevant. Integrating structure in-
dexes into the AGILE framework is future work.

• Accuracy: Depending on the index accuracy, prob-
ing an index can result in false positives; i.e., an ex-
act index returns exactly those profiles that match a
given message. In contrast, a fuzzy index may return
a superset of the profiles that match. False positives
are then eliminated in the architecture of Figure 2 in
a final postfilter step. By allowing false positives, the
performance of index operations can be improved. The
drawback are increased costs for postfiltering.

• Dimensionality: A single index might cover all pred-
icates of all profiles. Alternatively, there could be sev-
eral indexes: each index covering only those predicates
that involve a certain set of attributes or even one in-
dex per attribute.

• Scope: Indexes are typically used to index all values
of a given attribute. These indexes are full indexes. Al-
ternatively, indexing can be limited to certain values.
These indexes are called partial indexes [18]. Partial
indexes could, for instance, be used to index constants
or context values that are rarely updated but not to
index values that are updated frequently.

As will be shown in Section 5, the key idea to implement-
ing adaptive context-aware information filters is to control
the accuracy and scope of indexes. With regard to the target
and dimensionality, context-aware information filters oper-
ate in the same way as traditional (non-context-aware) in-
formation filters.

3.2.3 Merge
As mentioned in Section 2.3, profiles are conjunctions and

disjunctions of predicates. Since it is not efficient to use a
high-dimensional index to cover all conjunctions and dis-
junctions [9], an individual index typically only covers one

type of predicate (e.g., predicates on a specific attribute of
a message). Therefore, several potential indexes are probed
in order to process a message [9, 10]. In other words, the
merge operation takes several intermediate result sets of pro-
files as input and carries out conjunctions and disjunctions
on those sets of predicates. For instance, consider a mes-
sage announcing a talk for 5PM ; assume that there are two
indexes that index all predicates concerning attributes type
of message and time of events, respectively. Then, both
of these indexes are probed to process the talk announce-
ment message and the merge step carries out unions and
intersections on the two resulting sets of profiles in order
to determine those profiles that match the message in both
regards (type and time).

Several optimization techniques for this merge operation
exist. One idea is to optimize the order in which intersec-
tion and union operations are applied. Another class of op-
timizations involves the algorithms and data structures used
to implement the intersect and union operations (bit maps,
compression, early stop, iterators and block-wise operation).
Since the implementation of the merge operation was not the
focus of this work, we chose to exploit techniques described
in [9] because these seemed to represent the state-of-the-art
in this respect.

3.2.4 Postfilter
The last step of processing a message eliminates false pos-

itives. This step is necessary if inaccurate indexes are used
or if the merge operation does not involve all kinds of pre-
dicates. The postfilter operation takes a set of profiles
as input and checks which profiles match the message by
reevaluating the predicates of the profiles based on the cur-
rent state of the context. Of course, short-circuit evaluation
for conjunctions and disjunctions is allowed in order to speed
up the postfilter operation. Nevertheless, depending on the
number of profiles that need to be checked, this step can be
expensive.

4. STATE-OF-THE-ART
This section describes existing approaches to implement-

ing information filters and shows how these can be adapted
for context-aware information filters (CIF).

4.1 No Index
The brute-force approach is to use no index at all. As

a result, the index and merge components are trivial: they
do nothing. All the work is carried out in the postfilter
operation. Figure 3 shows pseudocode for the implementa-
tion of the handle message and update context operations
based on the CIF processing model of Section 3.1. The main
advantage of the NOINDEX approach is that the update con-
text operation is cheap, since no indexes need to be main-
tained. On the negative side, the handle message operation
is expensive because the postfilter operation is applied to all
profiles.

4.2 Eager Full Indexing
The opposite to the NOINDEX approach is an approach that

makes aggressive use of indexes and keeps all indexes up-
to-date and 100 percent accurate. We call this approach
EAGER. This approach represents the traditional approach
taken in information filtering systems [9]. Figure 4 shows
the pseudocode for this approach, where AttI depicts the

Function NOINDEX.handle message

Input: Message m
Output: Set of matching profiles RES
(1) RES := postfilter(m, <all profiles>)
(2) return RES

Procedure NOINDEX.update context

Input: Context c, Attribute a, Value v
(1) DataStore[c].a := v;

Figure 3: The NOINDEX Algorithm

Function EAGER.handle message

Input: Message m
Output: Set of matching profiles RES
(1) RES := merge(index[1].probe(m), ...,

index[AttI].probe(m))
(2) If (NOT fullyIndexed(m))
(3) RES := postfilter(m, RES)
(4) EndIf
(5) return RES

Procedure EAGER.update context

Input: Context c, Attribute a, Value v
(1) For (i:=1 to AttI)
(2) If (index[i] indexes a)
(3) index[i].remove(c.a)
(4) index[i].insert(c.a,v)
(5) EndIf
(6) EndFor
(7) DataStore[c].a := v

Figure 4: The EAGER Algorithm

number of indexes. The big advantage of EAGER is that the
handle message operation is as cheap as it can get, thereby
exploiting the state-of-the-art index structures for informa-
tion filters [9]. If indexes exist for all attributes of a message
(fullyIndexed evaluates to TRUE), the postfilter step can be
avoided altogether. For performance reasons, usually only
attributes for selective predicates are indexed so that a post-
filter step is necessary; however, postfiltering is applied to a
small set of profiles only, rather than to all profiles, as it is
done in the NOINDEX approach.

The big disadvantage of the EAGER approach is that the
update context operation is expensive because it involves
maintaining indexes, potentially with every context update.

4.3 Partial Indexing
The idea of partial indexes is to reduce the cost of the

update context operation by reducing the scope of an in-
dex. If an update is outside the scope of an index, then the
index need not be updated. For instance, assume the index
involves the context.inbox unread attribute (see example
of Figure 1), and the scope is constrained to [0; 50]. Then
a context update from 100 unread Emails to 101 unread
Emails need not be reflected in the index because profiles
associated to that context are not being indexed by the par-
tial index. The drawback of this approach is that for a
probe operation, all non-indexed values must be processed
in a brute-force manner.

The idea of partial indexing goes back to Stonebraker [18],
and was further studied in [17]. Stonebraker studied partial
indexing in the more traditional database context (rather
than for information filtering). Obviously, the most impor-

tant issue is how to define the scope of a partial index. Sec-
tion 5 shows how to exploit the idea of partial indexing and
at the same time automatically set the scope of a partial
index based on the message and context update workload.

4.4 Lazy Updates, GBU
Lately, there has been work on moving object databases [16,

15] and the basic insight of that work is that updates often
exhibit a high degree of locality. For instance, people of-
ten change their location within a building and they do not
make big jumps to totally different places. This observation
can be exploited in order to implement index updates more
efficiently and, thus, reduce the cost for the update context
operation. The idea is that updates that remain within the
bounding box of a leaf node of an index are not propagated
to non-leaf nodes of the index; propagation only occurs if the
new value is outside of the bounding box of the old value.
If propagation is necessary, then locality is also exploited as
much as possible. The most recent example of such an ap-
proach is GBU on R-Trees [14]. The approach can be applied
to enhance both eager and partial indexing. For simplicity,
we will only apply this approach to eager indexing and refer
to the resulting approach as GBU. Due to space constraints, it
is not possible to describe GBU in full detail. The interested
reader is referred to [14].

5. ADAPTIVE INDEXING: AGILE
This section presents the AGILE (Adaptive Generic Index-

ing with Local Escalations) algorithm. We present the gen-
eral idea of the algorithm in Section 5.1. The following sub-
sections give a more formal and complete description of the
approach and show how it can be applied to interval skips
lists [13], the best known value index structure for informa-
tion filtering.

5.1 General Idea
The key idea of AGILE is to dynamically reduce the accu-

racy and scope of an index if context updates are frequent
and to increase the accuracy and scope of an index if context
updates are seldom and handle message calls are frequent.
This way, AGILE tries to act in the same way as the NOINDEX
approach for update context operations and like the EAGER
approach for handle message operations, thereby combin-
ing the advantages of both approaches. In order to do so,
AGILE generalizes techniques from PARTIAL and GBU.

The operation to reduce the accuracy is called escalation;
it is triggered by context updates in order to make future
context updates cheaper. The operation that increases the
accuracy of an index is called deescalation; it is triggered
by handle message events in order to make future message
processing more efficient. Both operations are carried out
in the granularity of individual index entries. This way,
the index remains accurate for profiles that are associated
with contexts that are rarely updated and the index moves
profiles that are associated with contexts that are frequently
updated out of scope. As a result, AGILE only escalates and
deescalates as much as necessary and can get the best level
of accuracy for all profiles.
AGILE is generic and can be applied to any index structure;

in particular, it can be used for the index structures devised
specifically for information filtering. It works particularly
well for hierarchical index structures.

!"#$%&'(')= *

+
,- ,- ,-,- ,- ,-

.
,- ,- ,-

/
,- ,(01- ,-

+
,-,(- ,-

.
,- ,- ,-

/
,- ,1- ,-

!="
1=/

!=#
1=/

⇒
Figure 5: Escalate: A=2 → A =3

!"#$%&'(')= * !="
+=,

!=#
+=,

-
./.(/ ./

0
./ ./ ./

,
./ .+/ ./

-
./.(/ ./

0
./ ./ ./

,
./ .+/ ./⇒

Figure 6: Cheap Update: A=3 → A =1

!""#$%&%'"()
)=*
+=,

-
./.)/ ./

0
./ ./ ./

,
./ .+/ ./

-
././ ./

0
./ ./ ./

,
.)/.+/./

)=*
+=,

⇒
Figure 7: Deescalate A

Example. To demonstrate the key ideas of the approach,
Figures 5 to 7 show how escalation and deescalation work for
a simple binary search tree. The binary tree shown in those
figures could, for instance, be part of a message broker which
routes order messages to a warehouse, if the warehouse has
enough items in stock. For this purpose, the number of items
available are the keys (represented by integers), whereas the
warehouses are the identifiers (represented by capital let-
ters). At the beginning (left-hand tree in Figure 5) both
warehouses A and B have two items in stock.

In order to implement AGILE on a binary tree, the struc-
ture of a node is extended. In addition to the key k, every
node has three sets of identifiers:

• left: this is a set of escalated identifiers (i.e., profiles)
which are associated with the key range]−∞, k[

• right: this is a set of escalated identifiers (i.e., profiles)
which are associated with the key range]k, +∞[

• exact: the set of non-escalated identifiers which are
associated with k

Example Escalation. Figure 5 shows how an identifier, A,
is escalated. This operation is triggered by increasing the
stock of Warehouse A by one; i.e., a context update from two
to three. Rather than carrying out an insert and delete
on the binary tree, the escalation moves the Identifier A up
to the left set of the parent node (Figure 5). What this
means is that A has less than five items in stock, but the
index does not capture the precise value anymore. When a
new order for four items arrives, then the index returns A
as a possible warehouse to fulfill the order. In fact, A is not

able to fulfill the order (it only has three items in stock),
but the index at this point is not accurate enough to detect
this, and thus A must be filtered out in the postfilter step
of the CIF. Warehouse B is not considered as a possible
warehouse to fulfill the order because B is in the exact set
of Node 2 so that the index has accurate knowledge of the
number of items in stock for B. Likewise, Warehouse A is
not a candidate warehouse for an order that asks for five,
six, or more items because the index knows that A has less
than five items in stock.

Example Cheap Update. Obviously, escalations as shown
in Figure 5 make the handle message operation more expen-
sive: the index is less accurate, resulting in false positives
that must be filtered out in the postfilter step. The advan-
tage is that context updates become cheaper. Now, consider
that two items are taken out of stock of Warehouse A. As
a result, Warehouse A has only one item left. As shown in
Figure 6, the index need not be adjusted at all in order to
reflect this change and, thus, the update context operation
is as cheap as for the NOINDEX approach in this case.

Example Deescalation. Figure 7 shows how deescalation
is performed. This operation is triggered if the handle mes-
sage operation is called several times for orders of, say, three
or four items and Warehouse A was returned by the index
as a potential candidate and had to be filtered out by the
postfilter step. If this happens, AGILE decides to deescalate
the index entry for Warehouse A in order to improve the
performance of future calls to the handle message opera-
tion. As shown in Figure 7, deescalation involves adjusting
the index such that an entry from a left or right set is moved
into the appropriate set of a lower node. Deescalating from
a left or right set of a leaf node involves inserting a new leaf
node and moving the identifier into the exact set of this new
node. In the example shown in Figure 7, A is placed into
the left set node of Node 2. After the deescalation, Ware-
house A will no longer be considered a possible warehouse
to handle orders for two or more items.

As mentioned above, the advantages of AGILE are that
it effectively combines the advantages of the NOINDEX and
EAGER approaches in a fine-grained way. It can deal with
workloads in which certain contexts are frequently updated
by escalating the entries for those contexts: in the extreme
case to the root of the data structure or even outside of the
scope of the index. Likewise, AGILE is suitable for workloads
in which context updates are seldom and many messages
need to be processed; in this case, no escalations take place
and AGILE behaves just as traditional information filtering
systems. On the negative side, AGILE does incur certain
overheads. One is that depending on the index structure
used, the memory requirements can increase. This is def-
initely true for the binary tree used in the example above
or for B+-Trees; it is, however, not true for the interval
skip list [13](Section 5.4). Another overhead is incurred by
escalations and deescalations. For this reason, it is very im-
portant to control when escalations and deescalations take
place. Alternative approaches to controlling these move-
ments are described in Section 5.5.

5.2 Properties of AGILE Indexes
As mentioned above, the escalate and deescalate oper-

ations can be implemented on any index structure, and thus

Symbol Meaning

i Identifier of an object
k(i) Key of object i
K(i) Set of keys associated with object i by the in-

dex
E(i) Set of keys associated with object i after esca-

lation
D(i) Set of keys associated with object i after

deescalation

Conditions k(i) ∈ K(i), E(i) ⊃ K(i), D(i) ⊂ K(i)

Table 1: Overview of symbols in Sec 5.2

AGILE can be used to extend any index structure for context-
aware information filtering. Formally, every index maps
each key k to a set of identifiers {i}. This mapping is re-
turned by the probe operation of an index, i.e. probe(k)→{i}.
Vice versa, every index internally associates an identifier i
to its key k. We refer to this key k as k(i) (Table 1). What
makes AGILE special is that it generalizes indexing and as-
sociates an identifier to a set of keys, denoted as K(i). In
the left-hand tree of Figure 5, for instance, identifier A is
associated to the set of keys {2}, i.e., k(A) = {2}. In the
right-hand tree of Figure 5 (after escalation), identifier A is
associated to the set of keys]−∞, 5[.

Based on this generalization to sets of keys, the probe
operation is defined as follows.

probe(k) = {i|k ∈ K(i)}

In other words, the index returns identifier i when probed
for key k if and only if k is in the set of keys K(i) associated
to i. Clearly, this generalization of indexing can result in
false positives for each k %= k(i); i.e., the key of identifier i is
not k. In order to avoid false negatives, it is crucial to make
sure that k(i) ∈ K(i).

The insert and delete operations of an index are not
modified and are the same as in the basic (non AGILE) ver-
sion of the index. However, AGILE allows efficient implemen-
tations of the update operation that assigns a new value to
an identifier. One special case is the following: if the new
value of i, k′(i), is already an element of K(i), then nothing
needs to be done in order to implement the update; in other
words, update becomes a no-operation in that case. Figure 6
shows an example for this kind of update. Depending on the
index structure, it might be possible to find other cheap ways
to implement the update operation: for instance, it might
be cheap to implement K′(i) = K(i) ∪ {k′(i)}.

What are escalations and deescalations in this framework?
Both operations re-assign a new set of keys to an identifier.
For an escalation, the new set of keys, E(i), is typically a
superset of the old set of keys; i.e., E(i) ⊃ K(i). Deesca-
lation is the inverse operation which makes the index more
accurate. For a deescalation, the new set of keys, D(i) is
always a subset of the old set of keys; i.e., D(i) ⊂ K(i).

Escalations are carried out as a result of update context
operations in order to make future calls to update context
cheaper. Deescalations are carried out as a result of a han-
dle message operation in order to reduce the number of
false positives for future calls to handle message. Both are
very general concepts and in theory, E(i) and D(i) can be
any set of keys that fulfill the constraints k(i) ∈ E(i) and
k(i) ∈ D(i), respectively. In practice, however, E(i) and
D(i) are determined by the particular index structure used.

Function AGILE.handle message

Input: Message m
Output: Set of matching profiles RES
(1) RES := merge(AGILEindex[1].probe(m),...

AGILEindex[N].probe(m))
(2) ForEach p in RES
(3) f := test(p, m)
(3) If (f > 0)
(4) RES := RES \ {p}
(5) If (DEpolicy(p))
(6) AGILEindex[f].deescalate(p)
(7) EndIf
(8) EndIf
(9) EndFor

(10) return RES

Procedure AGILE.update context

Input: Context c, Attribute a, Value v
(1) For (i:=1 to Att)
(2) If (AGILEindex[i] indexes a ∧

(c.a /∈ AGILEindex[i].probe(v))
(3) AGILEindex[i].escalate(c, v)
(4) EndIf
(5) EndFor
(6) DataStore[c].a := v;

Figure 8: The AGILE Algorithm

The basic idea of AGILE is not new. In some sense, R-Trees
and other indexes for spatial data apply a similar approach.
In R-Trees, identifiers are associated with bounding boxes
which can also be interpreted as sets of keys. Also subset
semantics are used in order to implement the probe oper-
ation and false positives occur when a path of an R-Tree
is inspected although it does not contain any relevant data.
The difference is that AGILE uses escalatations and deescala-
tions in order to control the accuracy of the index, whereas
an R-Tree does not adjust its accuracy depending on the
update/probe workload.

5.3 AGILE Algorithm
Based on the escalate and deescalate operations, we are

now ready to present the algorithms for the handle mes-
sage and update context operations. Figure 8 shows the
pseudocode of these two methods. The algorithm for the
handle message operation is almost the same as the al-
gorithm for the EAGER approach (Figure 4, Section 4.2).
The only difference is that a special implementation of the
postfilter operation is used (Lines 2 to 9). If a profile is de-
tected to be a false positive (i.e., test in Line 3 fails for one
of the predicates of the profile), then a DEpolicy function
(Line 5) determines whether to deescalate the index for that
profile. The function that tests the profile (test) returns 0
if the profile matches the message. If not, test returns a
reference to the index for the predicate that failed; this in-
dex returned the profile as a false positive and therefore is
a candidate for deescalation (Line 6). Since deescalation is
an expensive operation, it is not necessarily a good idea to
carry it out whenever a false positive occurs. Alternative
policies that determine when to deescalate are described in
Section 5.5.

The algorithm for update context is straightforward. In
the first step (Lines 2 to 5), it checks whether an escalation
is necessary. In the second step (Line 6), the context is
updated, just as in every other CIF approach (Section 4).

!" !# $! $% && '"

()*

(*

(+*()*

()* (+* (+*

(,*(,*

()-,* (+-)*

... ...
(*

(+*

(*

(*

(*

Figure 9: ISL A=[21;33], B=[10;21], C=[0;40]

!" !# $! $% && '"

()* ()*

()*

(+*(+*

(),+*

--- ---

(.,)*

(*

(.* (* (*

(*

(.* (* (*

(!*

Figure 10: ISL Escalation: A=[21;33]→ A=[21;36]

5.4 AGILE Indexes

5.4.1 AGILE Interval Skip Lists
The best known value index structure for information fil-

tering is the interval skip list (ISL) [13]. An ISL is a hi-
erarchical index structure that is applicable to all ordered
domains (e.g., numerical values, dates, and strings). Each
identifier of a profile is associated with one or more ranges
of values. Furthermore, each range is associated with a set
of identifiers. Ranges are organized hierarchically so that
all ranges covering a given value can be found more quickly
(logarithmic complexity in the average case).

Figure 9 gives an example for an ISL on a numeric do-
main: the number of items ordered in an incoming purchase
order message. The three identifiers A, B, and C correspond
to predicates of profiles of warehouses. Identifier A refers to
the predicate 21 ≤ order.quantity ≤ 33, thereby speci-
fying that Warehouse A is only interested in orders with
quantities in that range. Identifier B refers to the predi-
cate 10 ≤ order.quantity ≤ 21, Identifier C refers to the
predicate 0 ≤ order.quantity ≤ 40. As a consequence, A
is associated with the ranges [21;29] and [29;33]. Likewise, B
is associated with the ranges [10;17] and [17;21]. Finally, C
is associated with the ranges [0;17] and [17;40]. (The range
marker for 0 is not shown in Figure 9. In addition, the skip
list in figure 9 contains other intervals which are not explicity
marked for ease of understanding, i.e. starting and ending
at 17 and 33.) If a new order with, say, quantity = 25 ar-
rives, this messages if filtered in the following way. First the
top-level ranges are inspected in order to find the matching
top-level range: that is [17;40]. Since C is associated with
that range, C is immediately output as a matching profile.
Next, the matching second-level range is found by inspecting
the children of [17;40]: the result is range [17;29]. Since no
identifier is associated with this range, no output is gener-
ated in this step. Finally, the matching bottom-level range
is found among [17;29]’s children: that is [21;29]. Since A is
associated with this range, A is output.

Figure 10 shows how an escalation can be implemented in
an ISL. Predicate A is changed from [21;33] to [21;36], pos-
sibly due to an increase in the number of items on stock. As
a result, A is no longer associated with the (bottom-level)

range [29;33]. Instead, A is associated with the (second-
level) range [29;40]. In general, an identifier is promoted to
the lowest higher-level range that fully covers the new range.
As for the simple binary tree in Section 5.1, escalations can
result in false positives. After escalation, for instance, Ware-
house A will be considered as a match for an order with
quantity = 39. On the positive side, another update, say,
from [21;36] to [21;39] is cheap because the index need not
be changed.

Deescalations are carried out in an analogous way: An
identifier is moved from a higher-level range to one (or more)
lower-level ranges. At the bottom-level, a deescalation po-
tentially involves generating a new range marker (i.e., a
range split).

5.4.2 Other AGILE Index Structures
We plan to study AGILE for a large variety of index struc-

tures as part of future work. In the following, a brief sketch
of how AGILE can be applied to the most popular index
structures is given:

1. Hash Table: An escalation is implemented by asso-
ciating an identifier with the whole domain of values.
Effectively, this means deleting the identifier from the
hash table and keeping it in a separate list of identi-
fiers that are returned for every probe. Deescalations
are implemented by re-inserting the identifier into the
hash table and deleting it from the ‘escalate’ list.

2. B-Tree, B+-Tree, R-Tree: As for binary search
trees, special buffers must be implemented for each
node in order to implement escalations and deescala-
tions. Logically, an escalation is implemented by mov-
ing an identifier into the buffer of its parent. Deesca-
lations are implemented by moving an identifier to a
child node. There are several ways to implement the
buffers and, thus, escalations and deescalations. We
will explore their tradeoffs as part of future work.

5.5 Deescalation Policies
As mentioned in Section 5.3, it is important to control

when deescalations occur. There are several different poli-
cies conceivable in order to decide when to deescalate an
index. Ideally, an index should be deescalated if the cost for
the deescalation is lower than the cost of eliminating false
positives in the postfilter step of future handle message op-
erations. Since it is impossible to look into the future, we
list some simple heuristics in the following:

1. Always: Every false positive encountered by the post-
filter triggers a deescalation. While this strategy is
trivial to implement (the DEpolicy function of Figure 8
returns true for every call), it is obviously sub-optimal:
in update-intensive workloads, indexes are deescalated
and possibly re-escalated before the cost of deescala-
tion is amortized.

2. Fixed: A fixed number of false positives FP is ignored
until a deescalation is performed. Again, this strategy
is easy to implement; the DEpolicy operation keeps
a counter and returns true whenever the counter is 0
modulo FP , and false otherwise. always is a special
case of fixed with FP = 1. In practice, a good value
of FP is 1000 (Section 6).

3. Auto: auto operates like fixed and ignores a certain
number of false positives FP before a deescalation is
triggered. The difference is that the value of FP is ad-
justed dynamically according to the following formula:

FP = C · #updatesPerformed
#falsePositives

In other words, if many context updates are carried
out, then deescalations should be rare (large FP). On
the other hand, if many false positives are detected as
part of handle message operations, then deescalations
should become more frequent (small FP). Here, C is
a constant; in our prototype, we set C = 3000 and
that worked very well for all workloads that we have
encountered so far. (We experimented with other val-
ues for C, but the sensitivity was very low. Therefore,
we do not show the results in this paper.)

We will study the trade-offs of the different approaches in
Section 6. Clearly, more elaborate policies are conceivable
and we plan to study such policies as one avenue for future
work; the experiments presented in Section 6, however, in-
dicate that the simple policies described here work very well
for a large range of workloads.

6. PERFORMANCE EXPERIMENTS AND
RESULTS

In order to study the advantages and disadvantages of
AGILE in the context of CIF, we implemented AGILE and
compared its throughput for various workloads with the
throughput of traditional approaches to implement infor-
mation filters (Section 4). This section presents the results
of these experiments.

The two factors determining the performance of AGILE
are the number of false positives for message probes and
the probability that a context update results in an escala-
tion. Both these factors should be small and depend on the
distribution of attribute values in messages, the locality of
context updates, and the mix of new messages and context
updates.

6.1 Software and Hardware used
The information filter used for the performance exper-

iments was built using the architecture described in Sec-
tion 3. In order to implement the individual components,
the following design choices were made:

1. Context Management: The data store, which man-
ages all context information, was implemented as an
in-memory table that maps (context, attribute) pairs
to values. This is similar to what other information
filter systems do [9]. In addition, there are links which
directly connect each profile to its corresponding con-
text.

2. Indexes: As an index structure, Interval Skip Lists [13]
(ISL) were used for all index-based approaches (EAGER,
GBU, AGILE). ISL are the state-of-the-art indexes to
index predicates for information filtering. The ISL im-
plementation used is from [13]. Not all predicates of
all profiles were indexed, but only the most selective
attributes (as proposed in, e.g., [9]) so that postfil-
tering was always necessary. Depending on the cho-

Parameter Description Values

Att Overall number of attributes,
used in messages contexts and
profiles

8

CB Percentage of profiles referring
to context attributes

90

AttI Indexed attributes 2
P Number of profiles 500,000
Val Values for messages, contexts

and constants
0–10,000

Msg Messages per Run 10,000
∆U Maximum Distance of context

updates
1–2,500

UP Context Updates per Profile 1–10,000
UpdAtt Percentage of updates on in-

dexed attributes
0; 25–100

Table 2: Workload parameters

sen approach, however, more or less profiles had to be
postfiltered.

3. Merge: The Merge component was implemented mak-
ing use of (compressed) bitmaps in order to represent
sets of profiles.

4. Postfilter: This step was implemented by applying
each profile of the intermediate set to each message
individually. Short-circuiting was used if a profile con-
sisted of conjunctions and disjunctions of predicates.
Furthermore, we laid out the contents of the predi-
cates in memory in such a way that the access locality
(processor cache hits) was improved.

Based on this infrastructure, we implemented the follow-
ing approaches: NOINDEX (Section 4.1), EAGER (Section 4.2),
GBU (Section 4.4) and AGILE (Section 5). Both the fixed and
auto deescalation polices were used for AGILE. The parame-
ter FP was varied between 10 and 10,000. PARTIAL was not
considered as part of this experimental performance evalua-
tion because of the difficulty to configure this approach (i.e.,
setting the scope of each index depending on the workload).

All software was implemented in C++. All experiments
were performed on a 3.2 GHz Pentium 4 machine with 2
GB of RAM running Linux 2.4. At the beginning of an
experiment, all indexes were fully deescalated for AGILE;
escalations happened then as part of context updates in the
workload. In all experiments, there was a warm-up phase
with 500 messages and a varying number of context updates
(depending on the workload parameter settings) before the
system throughput was measured.

6.2 Workload
When selecting the workloads to test the different meth-

ods, we followed the requirements derived from the Use
Cases (Section 1.1): The number of profiles is high, most
profiles refer to contexts. Low, high and varying context
update rates are studied. In addition to these application-
specific parameters, we evaluated the impact of parameters
that are derived from the expected behavior of the methods,
such as the locality of updates or distribution of updates over
attributes.

We created messages, profiles and context values accord-
ing to the parameters shown in Table 2. Both messages
and contexts were sets of attribute/value pairs. The overall

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 1 10 100 1000 10000

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

UP

NOINDEX
EAGER

GBU
AGILE

Figure 11: Exp1, Normalized Troughput, Vary UP
∆U=150, UpdAtt=25, FP=1,000

number of attributes (Att) in both cases is 8. Profiles con-
tain only conjunctions of simple predicates1. Predicates, in
turn, specify an epsilon environment around a constant or
a context value. 90 percent of the profiles refer to context
attributes (CB), thus putting the emphasis strongly on the
contexts. The selectivity of profiles on individual attributes
was chosen in a way that there was a global selectivity or-
der among the attributes. For the index-based methods, we
put indexes on predicates involving the two most selective
attributes (AttI). The number of profiles (P) was 500,000
for all experiments.

The values used in message attributes, context attributes
and constants (Val) are of type float and are taken uni-
formly from the range [0; 10, 000]; here, we followed Hanson’s
experimental setup [13]. Similar results can be expected for
other data types and domains. To determine the sensitivity
on the locality of updates, the distance between the old and
new value of a context update was varied uniformly in the
range [−∆U ; +∆U]; ∆U varied from 1 to 2500. We quanti-
fied all values to three relevant digits (Q) in order to create
a reasonably large number of different values.

The distribution of updates over the attributes (UpdAtt)
was uniform, issuing about 25 percent of the updates on
attributes of indexed predicates. In Experiment 3, where
the impact of this parameter was specifically analyzed, we
varied this ratio from 0 to 100 percent.

To test the adaptivity of AGILE towards evolving work-
loads, we used a constant message number (Msg) of 10,000
Messages per turn, while using different rates of context up-
dates. In order to characterize the update load, we used
the unit (Context)“Updates per Profile” (UP), taking the
number of profiles into account.

6.3 Experiment 1: Throughput inSteadyState
The first experiment studied the throughput of the al-

ternative approaches. The context update rate (UP) was
varied from 1 (very few updates) to 10,000 (many updates).
∆U was set to [-150;+150], and FP = 1000.

Figure 11 shows the relative throughput, normalized to
the throughput of AGILE. Table 3 shows the absolute through-

1We also experimented with profiles containing disjunctions.
However, the throughput results were almost identical for
the same filtering selectivity. Therefore, we do not present
the results of those experiments in this paper.

UP 1 10 100 1,000 10,000

NOINDEX 27 28 28 21 9.5
EAGER 484 366 106 13 1.4
GBU 472 375 125 19 2.1
AGILE 472 390 178 58 10.1

Table 3: Exp. 1, Throughput [Msg/sec], Vary UP

UP 1 10 100 1,000 10,000

NOINDEX 0 0 0 0 0
EAGER 0.024 0.24 2.4 24 240
GBU 0.024 0.23 2.2 20 180
AGILE 0.024 0.22 1.4 4 11

Table 4: Exp. 1, Index Updates [Mio.], Vary UP

UP 1 10 100 1,000 10,000

NOINDEX 4, 000 4, 000 4, 000 4, 000 4, 000
EAGER 12 12 12 12 12
GBU 12 12 14 19 32
AGILE 13 19 72 250 700

Table 5: Exp. 1, Prof. to Postfilter [Mio.], Vary UP

put results. It can be seen that AGILE has the best perfor-
mance in this experiment. For low update rates (UP=1),
EAGER, the traditional (non-context-aware) approach to im-
plement information filters, slightly outperforms AGILE, but
the margin is small (2 percent). For all other workloads,
AGILE is the clear winner; in the best case, it has a 2.5 times
higher throughput than the best other alternative. For each
competing approach, there is at least one workload for which
AGILE outperforms that alternative by an order of magni-
tude.

The other algorithms follow the expected pattern. NOINDEX
is not competitive at low update rates: due to the lack of
indexes that support message probes, it is almost 20 times
slower than the index-based methods. For high update rates,
NOINDEX becomes increasingly attractive, but even at very
high context update rates (UP=10,000), it is outperformed
by AGILE. EAGER shows a good performance for low update
rates. However, its performance deteriorates quickly with
a rising number of updates. For very high update rates
(UP=10,000), it is outperformed by AGILE by a factor of
10. GBU is slower than EAGER for low update rates due to
its additional postfiltering overhead, but it performs better
than EAGER when the update rate increases. Nevertheless,
GBU is also clearly outperformed by AGILE.

A more detailed understanding of these results can be
gained by looking at the number of executed index updates
(Table 4) and the number of profiles that need to be in-
spected in the postfilter operation (Table 5). As expected,
the number of index updates increases for all index-based
methods with an increasing context update rate (Table 4).
Due to escalations, this number increases much slower for
AGILE than for the other index-based approaches. GBU is
better than EAGER in this respect because GBU is designed
to take advantage of update locality. Nevertheless, GBU is
not as competitive as AGILE. Due to escalations, the num-
ber of profiles that need to be postfiltered increases with an
increasing update rate for AGILE (Table 5) and it is much
higher as for the other index-based approaches. However,
for high update rates, it is more important to control the

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100

C
om

pl
et

io
n

Ti
m

e
fo

r 1
0K

 M
es

sa
ge

s
[s

ec
]

 UpdAtt

NOINDEX
EAGER

GBU
AGILE

Figure 12: Exp. 2, Completion Time, Vary UpdAtt
∆U=150, UP=1,000, FP=1,000

costs of context updates than the costs of postfiltering.

6.4 Experiment 2: Vary UpdAtt
The second experiment studies the impact of varying the

distribution of updates to indexed and non-indexed attribu-
tes (UpdAtt). Figure 12 shows the total time used to execute
a workload of 10.000 messages and 500 Mio. updates
(UP=1000). Obviously, the performance of NOINDEX is inde-
pendent of the UpdAtt parameter. AGILE is also very robust
because it adapts to the update workload. This observation
indicates that AGILE reduces the complexity for choosing
the right attributes to index (the physical database design
problem which is known to be very difficult) by taking the
update ratio from the list of things to worry about. The
performance of EAGER and GBU suffers severely, if context
updates hit indexed attributes; for those approaches choos-
ing the right attributes to an index is much more critical
than for AGILE.

6.5 Experiment 3: Vary ∆U
Both GBU and AGILE take advantage of the locality of con-

text updates. Therefore, parameter ∆U impacts their per-
formance. Figure 13 shows the completion time for vary-
ing ∆U from very high update locality (∆U close to 0) to
very low update locality (∆U = 2,500 which is 25 percent
of the whole scope of possible attribute values). UP was
set to 1,000 in this experiment. Again, the performance of
NOINDEX does not depend on this parameter and NOINDEX is
used as a baseline. Since EAGER does not exploit the locality
of updates, the performance of EAGER is also also indepen-
dent of the ∆U parameter. EAGER slightly benefits from a
high locality of updates due to processor cache effects and
because those updates only have localized impact on the
index structure. The performance of GBU, which was par-
ticularly designed for a high locality of updates, and AGILE
depend strongly on this parameter. With decreasing local-
ity, GBU quickly shows almost the same behavior as EAGER.
Due to its ability to escalate the index gradually, AGILE’s
performance decreases more slowly with a decreasing local-
ity of updates, up to the point at which AGILE behaves like
NOINDEX.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 500 1000 1500 2000 2500

C
om

pl
et

io
n

Ti
m

e
fo

r 1
0K

 M
es

sa
ge

s
[s

ec
]

∆U

NOINDEX
EAGER

GBU
AGILE

Figure 13: Exp. 3, Completion Time, Vary ∆U
UP=1,000, UpdAtt=25, FP=1,000

 1

 10

 100

 1000 2000 3000 4000

Th
ro

ug
hp

ut
 [M

sg
/s

ec
]

Messages Processed

NOINDEX
EAGER

GBU
AGILE Auto

Figure 14: Exp. 4, Throughput, Update Burst
∆U=150, UpdAtt=25

6.6 Experiment 4: Update Bursts
In the previous experiments, we tested streams of mes-

sages and updates with a fixed update rate. We now turn
to an experiment that studies how AGILE adapts when there
are bursts of context updates. The workload studied has the
following characteristics:

1. 1,000 messages with 0.1 Updates per Profile (corre-
sponding to UP=1)

2. 1,000 messages with 100 Updates per Profile (corre-
sponding to UP=1000)

3. 3,000 messages with 0.3 Updates per Profile (corre-
sponding to UP=1)

Figure 14 shows the throughput at different moments in
time; the throughput is computed for every batch of 100
messages. It can be seen that the message throughput drops
during the update burst (between Message 1,000 and Mes-
sage 2,000) because message probes and context updates
compete at this time. The message throughput increases
again after the update burst is over. Again AGILE is the
overall winner; during the burst, it shows (almost) the same
performance as NOINDEX which is the best approach in this
situation. In the other phases, it shows (almost) the same
performance as EAGER and GBU which are the best options if

 1

 10

 100

 1000 2000 3000 4000

Th
ro

ug
hp

ut
 [M

sg
/s

ec
]

Messages Processed

AGILE FP 10
AGILE FP 100

AGILE FP 1000
AGILE FP auto

Figure 15: Exp. 4, Vary FP on AGILE
∆U=150, UpdAtt=25

Alg/ AGILE
FP

NOINDEX EAGER GBU
Auto 10 100 1,000

Msg/sec 18 8.8 12.15 39.8 30.25 36.7 37.4

Table 6: Exp. 4, Average throughput

update rates are low. The average throughput for the whole
workload (i.e., considering the total time to process all 5,000
messages) is shown in Table 6, and again it can be seen that
AGILE is the overall best approach.

One interesting aspect of this experiment is to show how
quickly AGILE can adapt to such bursts and to the end of
such a burst. Figure 14 shows the throughput of AGILE if
auto is used as a deescalation policy (Section 5.5). Looking
closely at Figure 14, it can be seen that at the beginning
of the burst, it indeed takes AGILE some time to adjust to
the new workload characteristics so that for a short period
of time, it shows sub-optimal performance. Also, it takes
AGILE some time to adjust to the new workload characteris-
tics when the burst is over: at this point, deescalations must
be carried out in order to increase the accuracy of the in-
dexes. In all, this experiment shows that AGILE is very well
capable to adapt to changes in workload characteristics.

Figure 15 and Table 6 show how alternative deescalation
strategies fare in this experiment. Indeed, auto outperforms
fixed in this experiment, but the differences are not large.
Furthermore, the fixed policy is not very sensitive to the
right setting of its tuning parameter FP.

7. CONCLUSION
Information filtering has matured to a key information

processing technology. Various optimization techniques and
index structures have been proposed for various kinds of ap-
plications, data formats and workloads. Considerable pro-
gress has been made in this area in the recent past. At
the same time, it has become clear that these systems and,
therefore, the corresponding indexes must be context-aware.
This paper picked up this challenge by providing simple ex-
tensions to existing index structures for information filter-
ing systems. We called this approach AGILE for Adaptive
Generic Indexing with Local Escalations. The proposed ex-
tensions are universal and can, in theory, be applied to any
index structure. The key idea is to adapt the accuracy and

scope of an index to the workload of a context-aware infor-
mation filter or more generally, to information filtering and
message routing with state. In periods in which updates
are seldom, an AGILE index behaves almost like its tradi-
tional counterpart, with only slight overheads. In periods in
which context updates are frequent, AGILE automatically
restructures the index in such a way that updates become
cheap.

Performance experiments showed that AGILE can im-
prove the message throughput of a context-aware informa-
tion filter by as much as one order of magnitude, compared
to traditional approaches to implementing information filter-
ing systems. Furthermore, performance experiments showed
that AGILE has further advantages: it is robust to poor
physical design (e.g., too aggressive indexing), and it can
gradually adjust to changes in the locality of updates as
well as changes in the update rates. Furthermore, AGILE
is able to deal with workloads with bursts.

The first results of our performance experiments with AG-
ILE are very promising and open up many avenues for future
work. This work was geared towards data dissemination ap-
plications and consequently, the implementation was based
on interval skip lists, the best-known index structure for
those applications [13]. As part of future work, we plan to
apply AGILE to more traditional database workloads; e.g.,
transaction processing and the TPC-C benchmark. This
work will involve applying AGILE to B+-Trees; there are
several alternative ways to do that and we plan to explore
these alternatives. We also plan to study other index struc-
tures such as R-Trees and hash tables (in memory and exten-
sible hash tables on disk). There are also many details of the
framework that deserve more investigation; simple deescala-
tion policies worked very well for interval skip lists and data
dissemination with information filters, but for other index
structures and applications more elaborate policies might be
needed. Furthermore, an escalation/deescalation policy can
have better control to which levels in a hierarchical index
structure to escalate and deescalate, respectively. This way,
it might be possible to achieve even better performance.

Acknowledgements. We would like to thank Dongseop Kwon
for the discussions at the beginning of this projects. We
would also like to thank our colleague Cristian Duda for
proofreading.

8. REFERENCES
[1] S. Abiteboul. Querying Semi-Structured Data. In

ICDT, 1997.
[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.

The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles. In SIGMOD, 1990.

[3] R. R. Brooks and S. Iyengar. Multi-Sensor Fusion:
Fundamentals and Applications in Software. Prentice
Hall, 1997.

[4] H.-J. Cho, J.-K. Min, and C.-W. Chung. An Adaptive
Indexing Technique Using Spatio-Temporal Query
Workloads. Information and Software Technology,
46(4):229–241, 2004.

[5] O. Cooper, A. Edakkunni, M. J. Franklin, W. Hong,
S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
and E. Wu. HiFi: A Unified Architecture for High
Fan-in Systems. In VLDB, 2004.

[6] A. K. Dey. Understanding and Using Context.
Personal and Ubiquitous Computing Journal, 5(1):4–7,
2001.

[7] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. Fischer. Path Sharing and Predicate Evaluation for
High-Performance XML Filtering. TODS,
28(4):467–516, 2003.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The Many Faces of Publish/Subscribe.
ACM Comput. Surv., 35(2):114–131, 2003.

[9] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira,
K. A. Ross, and D. Shasha. Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe
Systems. In SIGMOD, 2001.

[10] P. M. Fischer and D. Kossmann. Batched Processing
for Information Filters. In ICDE, 2005, to appear.

[11] A. R. Golding and N. Lesh. Indoor Navigation Using a
Diverse Set of Cheap, Wearable Sensors. In 3rd
International Symposium on Wearable Computing,
1999.

[12] A. Guttman. R-Trees: A Dynamic Index Structure for
Spatial Searching. In SIGMOD, 1984.

[13] E. Hanson and T. Johnson. Selection Predicate
Indexing for Active Databases Using Interval Skip
Lists. Information Systems, 21(3):269–298, 1996.

[14] M. L. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. L.
Teo. Supporting Frequent Updates in R-Trees: A
Bottom-Up Approach. In VLDB, 2003.

[15] B. C. Ooi, K. L. Tan, and C. Yu. Frequent Update
and Efficient Retrieval: An Oxymoron on Moving
Object Indexes? In Web Information Systems
Engineering (Workshops), 2002.

[16] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and
M. A. Lopez. Indexing the Positions of Continuously
Moving Objects. In SIGMOD, 2000.

[17] P. Seshadri and A. N. Swami. Generalized Partial
Indexes. In ICDE, 1995.

[18] M. Stonebraker. The Case for Partial Indexes.
SIGMOD Record, 18(4):4–11, 1989.

[19] Y. Tao and D. Papadias. Adaptive Index Structures.
In VLDB, 2002.

[20] M. Weiser. Some Computer Science Issues in
Ubiquitous Computing. CACM, pages 74–84, 1993.

[21] T. W. Yan and H. Garcia-Molina. The SIFT
Information Dissemination System. TODS,
24(4):529–565, 1999.

[22] Y. Yao and J. Gehrke. Query Processing in Sensor
Networks. In CIDR, 2003.

