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ABSTRACT
Continuous queries can run for unpredictably long periods of time.
During their lifetime, these queries may need to be adapted either
due to changes in application semantics (e.g., the implementation
of a new alert detection policy), or due to changes in the system’s
behavior (e.g., adapting performance to a changing load). While
in previous works query modification has been implicitly utilized
to serve specific purposes (e.g., load management), to date no re-
search has been done that defines a general-purpose, reliable, and
efficiently implementable model for modifying continuous queries
at run-time. In this paper, we introduce a punctuation-based frame-
work that can formally express arbitrary lifecycle operations on the
basis of input-output mappings and basic control elements such as
start or stop of queries. On top of this foundation, we derive all pos-
sible query change methods, each providing different levels of cor-
rectness guarantees and performance. We further show how these
models can be efficiently realized in a state-of-the-art stream pro-
cessing engine; we also provide experimental results demonstrating
the key performance tradeoffs of the change methods.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems - Query Processing; H.2.4
[Database Management]: Systems - Transaction Processing

General Terms
Reliability, Verification

Keywords
Continuous Query, Stream Processing, Query Lifecycle, Query Mod-
ification

1. INTRODUCTION
With the proliferation of dynamically generated data and the

need for its continuous monitoring to the end, we have witnessed
the emergence of data stream processing as a new data management
paradigm. Stream processing has proven to have a wide spectrum
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of practical applications with varying requirements such as real-
time financial analysis, network traffic monitoring, sensor-based
tracking. As a result, a significant number of academic (e.g., Bore-
alis [6], STREAM [21], TelegraphCQ [12]) and commercial (e.g.,
StreamBase [4], Truviso [5], IBM InfoSphere Streams [1], MS
StreamInsight [7]) stream processing engines (SPE) have been built
to meet these needs.

In SPEs, continuous queries over infinitely long data streams can
run for unpredictably long time periods. During their lifetime, these
queries may need to be modified either due to changes in applica-
tion semantics, or due to changes in the system’s behavior, as we
illustrate with a few examples in the next part.

1.1 Selected Use Cases
1. Security Monitoring:
Consider a bank that applies the following security policy for its

ATM machines (adapted from real-world policies we observed in
the compliance research project MASTER [2]): Block a customer
card upon 3 failed logins at the same ATM location within a time
window of 10 minutes. This policy can be implemented as a con-
tinuous count query on a 10-minute window over a stream of failed
login events. Now suppose that, due to a change in regulations, the
bank would like to change the window in this query to 15 minutes.
If this change happens while a user has already tried 2 failed logins
within 5 minutes, it is not obvious how the system should behave.
A naive approach would be to replace the query with the new one
immediately, discarding any existing state. In this case, the user
would be able to try up to 3 more logins in the next 15 minutes
in addition to the 2 failed ones in the past 5 minutes (leading to a
total of 5 tries over 20 minutes, not matching any policy!). A more
cautious approach would be to defer the query replacement until a
time there is no incomplete query state left, but in more complex
monitoring use cases such as stock trading, such times typically do
not exist. (Sections 3.3.3 and 3.3.4 show solutions).

2. Sensor Networking: Consider a network of temperature and
smoke sensors deployed over a forest in order to detect and moni-
tor wildfires. Again, continuous queries can be defined over these
sensor readings in order to signal unusual increases in sensor val-
ues. Whenever such activity is reported for a certain region of the
forest, the firefighters want to replace the currently running query
with a more specific query so that the possible fire can be located
with a higher degree of certainty. However, in sensor-based appli-
cations, there is already an inherent level of uncertainty and loss,
and it is also critical for the new query to take effect as fast as pos-
sible. Therefore, for this application a naive, but more responsive
approach is better (leading to the solution in Section 3.3.1).

In the above two use cases, the application semantics necessitates
query modification, albeit with different requirements. There are
also cases where the modification is triggered by the system itself.
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Figure 1: Running example - Q1: window size 3 slide 2 tuples.

3. Adaptive Load Management: SPEs need to deal with resource
overload, e.g., caused by fluctuating arrival rates. The most com-
mon technique is load shedding, e.g., by inserting/removing load-
reducing drop operators into/from selected parts of a running query
plan [22]. This yields a “cheaper” version of the query, while the
quality of the results becomes lower. A drawback of load shedding
is that it takes the control away from the query writer and introduces
non-deterministic behavior. In an alternative strategy, several ver-
sions of the same query are defined by the application in advance,
each tailored for a different load level (see the military use case in
[6]). As the system load changes due to fluctuations in input rates,
the system is expected to switch adaptively between different query
versions. It is crucial that the switch across different query versions
happens seamlessly and efficiently, with as little additional system
overhead as possible.

The above examples show the importance and diversity of query
modification capability in SPEs. Each requires a different tradeoff
between correctness parameters and performance, and provides dif-
ferent information to exploit. What is needed is a general-purpose,
reliable, and efficiently implementable model for modifying con-
tinuous queries at run-time.

Since these use cases cover specific areas of the problem space,
we now introduce a running example that will be used throughout
the paper. Q1 uses a tuple-based sliding window of size 3 and slide
2, applying a sum operation on the window (Figure 1). Without
limiting generality, we are using windows as a representative of
operators whose semantics exhibit non-trivial behavior on change.

1.2 Our Contribution
In this paper, we introduce a punctuation-based framework for

correctly modeling and efficiently implementing on-the-fly modi-
fications over continuous queries. Our framework provides a set
of basic control elements for starting and stopping queries, over
which various advanced change variants can be defined, each pro-
viding different levels of correctness and performance. Correctness
is defined through two types of criteria, Safety and Liveness [18].
Our model allows choosing different change variants for different
use cases as well as defining new ones as needed. We further show
how our model can be realized in a state-of-the-art stream process-
ing engine ([3]) with few code changes and provide experimen-
tal results, demonstrating the key tradeoffs across different change
variants.

The rest of this paper is outlined as follows. Section 2 introduces
the basic framework and methodology on which our modification
model is built. The description of the model itself follows in Sec-
tion 3. In Section 4, we describe how our model can be refined onto
real-life SPEs and provide an architecture and implementation on
a state-of-the-art SPE in Section 5. Results of our performance
study are provided in Section 6, giving guidelines about when to
use which method. After a summary of related work in Section 7,
we conclude the paper in Section 8 with directions for future work.

2. FRAMEWORK AND METHODOLOGY
Query modification can best be rooted in a general framework

that tackles the boundary conditions (e.g., start, stop) of continuous
queries. In order to achieve generality, precision, and determinis-
tic behavior, this framework should not rely on semantics of spe-

cific operators, timing, or state, which are all notoriously hard to
reason about (e.g., see [6] for an approach that encounters timing
issues). Instead, we focus on describing input and output streams,
annotating these with punctuations [24] which we call Control El-
ement. With this approach, semantics and execution of queries
are abstracted into their data dependencies. We define a minimal
set of basic control elements (including their impact on output and
their interaction) and derive complex control elements out of them.
Within the scope of this work, we primarily focus on queries with
a single input and output stream, a restriction which we plan to re-
move in future work. In this section, we will first introduce the
foundations of our model, then the basic control elements, their in-
teraction, and finally our methodology to model complex control
elements in a generic manner. Section 3 will describe the complete
execution of this methodology for query modification.

2.1 Foundations
To build our formal framework, we will first provide clear def-

initions for data streams and continuous queries. Moreover, we
introduce a set of mapping functions, which provide the basis for
all following definitions.

2.1.1 Streams
A stream S is an unbounded sequence of stream elements, where

each stream element has a tuple part and a position. The position
assures the total order among the stream elements.

Given our approach of inserting control elements into the stream,
there are two types of stream elements:

• Data Elements, which carry regular data values.

• Control Elements. which carry control metadata.

Control Elements do not directly take part in query processing
and therefore do not contribute to the query result. However, they
convey important information to our framework regarding how the
query should behave if encountering them. Control Elements are
punctuated into the input stream either by the user or by the system
itself, depending on the use case. The order among data elements
can be relaxed to a partial order (for models that process elements
in groups, such as STREAM [21]), only control elements need to
have a total order among them and with data elements. For clarity
of presentation, we assume total order among all stream elements
in the rest of the paper.

2.1.2 Continuous Queries
A continuous query is a query that is issued once but runs forever.

It takes a stream X as input and produces a stream Y as output. At
any point in time t, the answer to a continuous query Q is based on
the elements of its input stream X seen up to t, and this answer is
updated as new stream elements continue to arrive on X , following
the monotonicity definition in [19]. In our model, each continuous
query Q is defined by a unique query identifier and a query expres-
sion. As a convention, we use the notation of xi to indicate input
stream elements and yj to indicate output stream elements, where
x and y correspond to the tuple parts, and i and j correspond to the
positions (i, j ∈ N), respectively.

2.1.3 Query Mapping Functions
We use the notion of mapping functions as an abstraction of the

details of the query expression. Mapping functions are defined on
of a pair of streams (input and output stream) and establish a rela-
tionship between a single element in one stream to a set of elements
in the other. We specify two mapping functions, which capture the
data dependencies established by the query expression of a given
continuous query Q:
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Figure 2: Mapping Functions of Q1

• depends(yj), E �−→ {E}: Given an output data element yj ,
returns the set of all input data elements that yj depends on.

depends(yj) = {xi|xi ∈ X where Q(X) = yj}
• contributes(xi), E �−→ {E}: Given an input data element xi,

returns the set of all output data elements which xi has con-
tributed to.

contributes(xi) = {yj |xi ∈ depends(yj)}
We illustrate the query mapping functions in Figure 2, on query

Q1 of our running example. Note that the mapping functions are
not only driven by the query expression, but also the starting po-
sition, which is their reference point in the streams. For example,
in Figure 2, a mapping starting at the input element 1 instead of
3 would not give the sequence (14,11) as a result, but one start-
ing with 12. As we will show in the next section, this will play
an important role when defining lifecycle operations. In Section 4
we will describee how mapping functions work for individual op-
erators, and how, in turn, they can be composed for the mapping
function of a complete query.

2.2 Basic Control Elements
We establish a minimal set of basic control elements, which de-

fine basic lifecycle behavior and serve as building blocks for com-
plex control elements.

2.2.1 Start
Upon encountering a start control element, a query Q will start

producing output, otherwise the arriving inputs will be ignored.

• Fresh Start (FStart): We denote this control element xfstart

(and short F in figures where no details are needed), where
fstart is its position in the stream. Upon receiving an xfstart,
query Q will be started, i.e., the input data elements having a
greater position than fstart will contribute to the output. More
formally:

Yfstart = {yj ∈ Y | ∀xi ∈ depends(yj), i > fstart }
Yfstart is the output after receiving the xfstart control element.

Figure 3 illustrates Fresh Start applied on Q1. It is important
to note that a Fresh Start element restarts the starting position
of the underlying query mapping functions (depends(yj) and
contributes(xi)). As an example, applying Fresh Start after 1
instead of 3 in Figure 3 would shift the input sets of all windows
by one position. For completeness, we also investigated start
control elements that keep the mapping function as if the output
had just been surpressed, e.g. for a pause/resume operation.

We will not cover them in this paper for the following reasons:
1) Such start methods are not necessary to describe query mod-
ification, since a modification will establish a new mapping
function. 2) Maintaining a mapping function incurs an over-
head which can approach the cost of query execuction (e.g.,
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Figure 3: Fresh Start on Q1
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Figure 4: Immediate Stop vs. Drain Stop on Q1

for a complex pattern query), making it infeasible for all but
restricted cases. Details can be found in [15].

2.2.2 Stop
Upon encountering a stop control element, a query Q will even-

tually stop producing output. We define two kinds of stop elements:

• Immediate Stop (IStop: We denote this control element with
xistop (short I)), where istop is its position in the stream. Upon
receiving an xistop, a query Q will be immediately stopped, i.e.,
the input data elements having a position greater than istop will
no longer contribute to the output. More formally:

Yistop = {yj ∈ Y | ∀xi ∈ depends(yj), i < istop }
• Drain Stop (DStop): We denote this control element with xdstop

(short D), where dstop is its position in the stream. Upon re-
ceiving an xdstop, a query Q will be gradually stopped, i.e.,
Q will continue to produce output which has dependencies on
input data elements appearing before dstop and completing its
partially produced output elements. More formally:

Ydstop = {yj ∈ Y | ∃xi ∈ depends(yj), i < dstop }
Figure 4 illustrates Immediate Stop and Drain Stop applied on

Q1, showing that IStop discards the uncompleted window, whereas
DStop finishes uncompleted windows, but does not open new ones
and stops when there aren’t any windows left. As we will show later
in the paper, both stop elements not only provide relevant seman-
tics, but are also efficiently implementable on existing data stream
systems.

2.3 Interaction of Basic Control Elements
An important aspect to completely define the semantics of query

lifecycle is to cover the interaction of multiple control elements,
both for the single query cases as well as for the interaction of mul-
tiple queries and expressions, which can be derived from the single
query case. The interaction should maintain two design decisions
established so far: (1) Control elements should become effective
at the position they are specified, as defined in Section 2.2. (2)
The order of control elements determines which control element is
effective, superseding older ones.

We have chosen to use an interaction diagram, which can triv-
ially be turned into an automaton by defining the start and end states
for a specific operation. Figure 5 gives the states and the transitions,
which correspond to the basic control elements. Initially, a query
is in Stopped state, in which the starting position of the mapping
function has not been set up. Using FStart (F), the mapping func-
tion is set up and the query transitions into the Running state, in
which output is produced, as seen on Figure 3 for Q1. An IStop (I)
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directly changes to the Stopped state, while an additional Drain-
ing state is needed for DStop (D) in which the pending output is
produced. The transition from Draining to Stopped is not driven
by any control element and is also no ε-transition, but depends on
data elements (which we call λ). All these transitions can be seen
in the handling of the values (3,4,7) in Figure 4: after the arrival
of the IStop element, all following input can be ignored due to the
immediate change to the stopped state. For DStop, the Draining
state is kept until the arrival of 3, which closes the window and
triggers the transition to Stopped. Conceptually, the λ transition is
similar to the notion of Timed Automata [8], yet not based on time,
but on the progress of the underlying mapping function. Apply-
ing FStart in any state will re-initialize the mapping function and
lead to the Running state, while applying IStop when Draining im-
mediately stops the query. Applying DStop while Draining has no
effect, since neither extends nor restricts the output defined by the
previous drain. To sum up, all this behavior is consistent with our
design so far, and allows the specification of complex operations.

2.4 Creating Complex Control Elements
While the basic control elements can already support many use

cases, the real benefit of this approach is that it provides a solid
foundation to establish complex control and a modification model.
In order to do so, we propose the following methodology:

1. Formally define the new operation (e.g., Query Modification)
on top of our mapping functions. This leads to new complex
control element(s) (e.g., Change), and some small extensions
to our basic foundations (e.g., adding a query version number
to the query definition that originally consists of an identifier
and an expression (as defined in Section 2.1.2)).

2. Define the required/desirable behavior of the new operation,
through what we call Correctness Criteria (e.g., safety, live-
ness).

3. Derive the possible options for this complex control element
by the combination of the interaction diagrams of the individ-
ual queries, yielding a new interaction diagram with the pow-
erset of the states. Choose start and end states, and sequences
of transitions that connect them. Parameters influencing the
number of options are (1) the types of basic control elements
considered, (2) the number of control elements allowed, (3)
their order, and (4) the distance between two basic control
elements (e.g., directly following, data-driven, time-driven).

4. Evaluate the behavior of variants against the Correctness Cri-
teria.

Using this formalism, we can establish that all possible options
within the control element framework are covered. The next section
will show how we apply the above methodology to define query
modification operation.

We chose to show query modification as it is the most challeng-
ing and the least explored lifecycle operation. It adds a new set of
semantics to describe how results should behave in the transition
phase, which cannot be easily described by looking at one query.
Query Migration, Query Pause-Resume, or Query Re-Optimization

are much more constrained in this respect, can be more easily sup-
ported, and have also received much more attention in previous
work. We therefore discuss them in our technical report [15].

2.5 Discussion
We have strived to build our model on as few fundamental as-

sumptions as possible: The mapping functions and two classes of
basic control elements: start and stop. The mapping functions en-
sure that our model can be applied on any SPE, as long as its oper-
ations are monotonic (i.e., new input does not change old results).
The specific semantics of operators, their composition and the ex-
ecution model can all be catered for. Our choice of basic control
elements and their variants reflects the fundamental operations one
can perform on mapping functions. Intuitively, they provide all that
is needed and we can exhaustively derive all variants of stop/start
and complex elements from there. They also cover all the lifecycle
operations we have studied so far. At this time, it appears prema-
ture to establish a formal proof of their completeness with respect
to all possible lifecycle operations, since it is not even clear what all
lifecycle operations might be - we consider this a topic for future
work.

3. QUERY MODIFICATION
Having introduced our basic query management framework and

methodology in the previous section, we now show how Query
Modification can be modeled. In Query Modification there are two
versions of a query Q, namely Qold and Qnew, and we would like
to switch from the former to the latter. Following the first step in
our methodology, we will first express the Query Modification op-
eration by a new complex control element, which we call Change
(Section 3.1). Secondly, we will define Correctness criteria for
Query Modification (Section 3.2). In our basic framework, Change
can be translated into a combination of a Stop Control Element,
which targets Qold, and a Start Control Element, which targets
Qnew. However, as we will explain, there can be different vari-
ations of this combination, which we derive by interaction diagram
composition, and analyze them in Section 3.3. This is comple-
mented by an analysis of interaction of complex and basic control
elements in Section 3.4. Finally, we will conclude this section by
showing that our approach is as good as possible in terms of Cor-
rectness rules (Section 3.5).

3.1 Definition of Query Modification
In Query Modification, there are two versions of a query Q,

old (Qold) and new (Qnew), which are applied on a single input
stream. The change control element is formalized by extending
the query definition to include query versions (old and new). Ac-
cordingly, we will also use two pairs of query mapping functions:
dependsold(yold

j ) and contributesold (xi) for Qold, and dependsnew

(ynew
j ) and contributesnew(xi) for Qnew, respectively. In case

of Change we will have three output streams: Output stream of
Qold, output stream of Qnew, and Change output stream, denoted
by Y old, Y new, Y chg respectively. A change control element de-
fines how the Y chg is built from Y old and Y new.

As a running example throughout the rest of this section, we
want to Change Q1old (introduced earlier in Figure 2) into Q1new,
which is another continuous aggregation with a tuple-based sliding
window of size 2 and slide 2, applying a sum over each window.
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Figure 6: A lossy Change on Q1

3.2 Correctness of Query Modification
Inspired by the approaches in system design and verification [18],

we defined two general classes of Correctness criteria for Query
Modification: Safety and Liveness.

3.2.1 Safety Criteria
A safety property expresses that “something bad will not hap-

pen” during a given execution [18]. We identified Loss, Disorder,
and Duplicates as possible safety problems.

1. Loss: A common undesirable consequence of changing a
continuous query is losing some of the output elements. We
formalize this concept as the set difference between tuples of
the reference output stream (Yref ) and those of the observed
output stream (Yobs):

Loss = [Yref ]− [Yobs]

where Yref is the ideal output stream generated by a given
query Q consuming the change control element, and Yobs is
the output stream that Q actually generates. Intuitively, an
ideal or lossless Change for a query Q should not lose any
incomplete contributions from Qold, and at the same time,
it should include all contributions from Qnew. Note that in
Loss, only the existence of tuples is considered. Their posi-
tions, which contain the order information, are captured as a
separate safety issue later (hence, [ ] denoting a bag of tuples
instead of a sequence).
As an example, assume that we want to switch from Q1old

to Q1new by enforcing an IStop on Q1old and an FStart on
Q1new (i.e., Change = IStop + FStart). As shown in Figure
6, this leads to a lossy Change since it produces one fewer
output (11) than then the reference stream. This reference
stream would be modeled by a change using DStop + FStart.

2. Disorder: Order is a core property of data streams. There-
fore, disorder is another critical threat to safety in continuous
query execution. We identified two levels of order violation
for Change:

(a) Query-Level Disorder: In an execution that preserves
query-level order, no output stream element from Qold

should appear after an output stream element of Qnew.
(b) Stream-Level Disorder: In an execution that preserves

stream-level order, output stream elements follow the
order that is imposed by the query semantics and the
structure of the input streams.

Figure 7 depicts the difference between these two. Note that
to be able to illustrate the difference better, just in this ex-
ample, we used w=4 for Q1old instead of w=3. The upper
part of the figure shows that the output appears in the same
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Figure 7: Query- vs. Stream-level Disorder on Q1

order as the windows are closing, and the lower part shows
that the output appears according to the order of query ver-
sions, meaning that the output of the Qold will be seen first
and then the output of the Qnew will show up.

3. Duplicates: In case of Change, it is possible that the same
exact input elements contribute to both the outputs of Qold

and Qnew. These outputs are considered duplicates, since
they have the exact same dependency sets.

A complete formalization of the above can be found in technical
report [15].

3.2.2 Liveness Criteria
A Liveness property expresses that “something good must even-

tually happen” during a given execution [18]. We identified two
complementary Liveness criteria for Query Modification:

1. Termination of the Old Query: The system should guaran-
tee that Qold will eventually terminate, producing no more
output and freeing up its occupied resources. As an example,
DStop without any restrictions on the semantics of the query
expression may lead to termination problems (e.g., closing
condition of a semantic window never being satisfied).

2. Progress of the New Query: The system should guarantee
that Qnew will eventually progress, starting to consume and
process input. Note that Progress is not necessarily a prop-
erty that is observable in terms of the query output, since cer-
tain query semantics may prohibit the generation of output
(e.g., a selection query whose condition is never satisfied).

3.3 Change Control Elements
We will now derive the Change options by combining our basic

control elements (Start and Stop) in different ways (i.e., Step 3 in
our methodology). The key idea is to build a common interaction
diagram for both query versions from the interaction diagram of a
single query, as presented in Figure 5. On this common interaction
diagram, we can determine and evaluate the possible options to
perform the change. The resulting interaction diagram is shown
in Figure 8, on which each of the states is labeled with the state for
each of the queries (e.g., RS means Qold is Running and Qnew

is Stopped), and transitions are the combination of the individual
query version’s transitions (e.g., IStop for Qold on RS will lead to
SS). As outlined before, we want to stop Qold and start Qnew, so
our goal is to go from RS to SR. Table 1 shows the options to
do so on the left-hand side. We also model the distance between
executing these steps, in order to allow data operations during the
change (e.g., waiting for completion of a drain). In total, there are 8
options, of which one can be discarded (IStop-FStart with waiting),
since it does not provide any meaningful guarantees by adding a
distance when no activity is ongoing. Some of these options are
equivalent, since (1)they are executed next to each other with no
data operations in between, (2) changing the order of two control
elements does lead to the same target state, e.g., for both cases of
IChange.
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Figure 8: Lifecycle Interaction Diagram - Two Queries

Stop Type Order Distance Change Option
IStop I F direct IChange

IStop I F waiting n/a

IStop F I direct IChange

IStop F I at first result GIChange

DStop D F direct DChange

DStop D F drain completion DDChange

DStop F D direct DChange

DStop F D at first result GDChange

Table 1: Change Variation Derivation

As a result, we get 5 variants of change, which we will now
discuss in terms of their correctness, performance, and use cases.

3.3.1 Immediate Change (IChange)
In some applications, a Change should be performed as early as

possible, disregarding any partial results of Qold.
Formally speaking, this is expressed with an IChange control

element, depicted as xichange, composed of an IStop for Qold, fol-
lowed directly by an FStart for Qnew, or vice versa. Thus, the
output stream is defined as:

Y ichg = Y new
fstart || Y old

istop

=
{

ynew
j ∈ Y new| ∀xi ∈ dependsnew(ynew

j ), i > ichange
}

||
{

yold
j ∈ Y old| ∀xi ∈ dependsold(yold

j ), i < ichange
}

Note that (1) || is the append operator, which concatenates two
streams, and (2) each input element contributes exclusively to the
output element of Qold or Qnew.

Figure 9 shows an example of using IChange control element.
In terms of safety, IChange can cause Loss, since the partial re-

sults of Qold are discarded. It produces the outputs in the correct
order (both stream- and query-level), and does not generate any
duplicate output elements (see Figure 10(a)). Moreover, in terms
of liveness, IChange guarantees both the termination of Qold as
well as the progress of Qnew (see Figure 10(b)) 1. With respect
to the use cases introduced in Section 1, Sensor Networking is a
candidate for IChange, since loss is tolerable while the immediate
progress of the new query (in case of an emergency) and preserv-
ing the energy-saving requirements of the sensors need to be guar-
anteed. Given that IChange does not require DStop nor any other
kind of complex change coordination, its behavior corresponds to
what a typical SPE would do.

3.3.2 Delayed Drain Change (DDChange)
An alternative approach for Change is to ensure that Qold is

drained, and only then Qnew is started. We call the correspond-
ing control element DDChange, denoted as xddchange. Formally

1
Please see the technical report [15] for formal proof of these guarantees.
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Figure 9: Immediate Change on Q1
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Figure 11: Delayed Drain Change on Q1

speaking, it is composed of a DStop for Qold, followed by an FS-
tart for Qnew in a statically-incomputable distance . Thus, the out-
put stream is defined as:

Y ddchg = Y new
fstart|| Y old

dstop

=
{

ynew
j ∈ Y new| ∀xi ∈ dependsnew(ynew

j ), i > ?
}

||
{

yold
j ∈ Y old| ∃xi ∈ dependsold(yold

j ), i < ddchange
}

where ′?′ denotes the fact that the real position of the FStart ele-
ment which will be inserted is not known in advance. Therefore
the starting position of the mapping function for Qnew is different
to that of all the other change cases (which are all initialized at the
position of change), so that output after the change may also be
different. Figure 11 shows an example of using DDChange control
element.

In terms of safety, DDChange exhibits a behavior similar to that
of IChange; it also holds the exclusive contribution property.

3.3.3 Drain Change (DChange)
Both Change variants presented above can induce Loss, which

is not desirable in many streaming scenarios. This Loss is caused
by the input elements that are no longer picked up by Qold and
have not yet considered by Qnew, since Qnew is only started when
Qold has been completed. Next, we introduce Drain Change, which
is composed of a DStop for Qold followed directly by an FStart
for Qnew, or vice versa. Figure 12 shows an example of using a
DChange control element.

In contrast to previous Change variations, merging the output
streams of the old and the new queries is not straightforward in
Drain Change, due to the fact that we have overlapping output el-
ements. Hence, we distinguish between two variants of DChange,
xqdchange and xsdchange: QDChange, a Query-level order preserv-
ing Drain Change and SDChange, a Stream-level order preserving
Drain Change . In QDChange is the output stream is defined as:

Y qdchg = Y new
fstart|| Y old

dstop

=
{

ynew
j ∈ Y new| ∀xi ∈ dependsnew(ynew

j ), i > dchange
}

||
{

yold
j ∈ Y old| ∃xi ∈ dependsold(yold

j ), i < dchange
}

while the output stream in SDChange is defined as:
Y ddchg = Y new

fstart � Y old
dstop

=
{

ynew
j ∈ Y new| ∀xi ∈ dependsnew(ynew

j ), i > dchange
}

�
{

yold
j ∈ Y old| ∃xi ∈ dependsold(yold

j ), i < dchange
}

in which � is the interleave operator. It interleaves the output
elements from the new and the old queries based on their relative
dependencies on the input elements.

Going back to Figure 7, the Change element at the top is behav-
ing like a SDChange element, while the one at the bottom acts like
an QDChange element.

In terms of safety, both DChange variants are lossless and free of
duplicates, but neither of them can provide both order guarantees
at the same time. As will bed discussed further in Section 3.5, this
is not caused by the design of our Query Modification model, but
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is rather an inherent problem of Query Modification. In terms of
liveness, both DChange variants guarantee the progress of Qnew,
but not the termination of Qold. The DChange variants provide
a good match to the requirements of the Security Monitoring use
case, since they avoid Loss and end the execution of Qnew by drain-
ing.

3.3.4 Graceful Change (GChange)
The approaches discussed so far did not cater for performance,

in particular responsiveness, which measures the time elapsed be-
tween the last output of Qold to the first output of Qnew. By
keeping Qold running (instead of draining or stopping it) until the
first output of Qnew is produced, the responsiveness can be sig-
nificantly improved. We call this change method Graceful Change
(GChange).

We further distinguish between two variants of GChange: Grace-
ful Immediate Change (GIChange) and Graceful Drain Change
(GDChange). In GIChange, Loss can occur, but no Duplicates
and Disorder; whereas in GDChange, Duplicates and query-level
Disorder can occur, but no Loss. Qnew will make progress, since
it starts immediately, but the termination Qold is not guaranteed,
since it depends on the existence of output of Qnew, which is not
guaranteed. A typical good use of GChange is when Qnew has
a low output rate (e.g., very large window size and very small
window slide, very low selectivity, etc.). As shown in Section 6,
GChange can indeed outperform other Change approaches in terms
of responsiveness.

3.4 Interaction of Control Elements Revisited
So far we have defined the semantics of a single complex control

element by a translation to several basic control elements and their
interaction. In the next step, we need to cater for the interaction of
multiple complex control elements or of a complex control element
with a basic control element on the whole query. In particular, since
changes (apart from IChange) do not complete immediately, such
overlapping actions need to be properly defined. An examples of
such a case would be an IStop on a query that currently performs
a DDChange, as the user decides that results are no longer needed.
In this scenario, one would expect no more output after an IStop,
but the naive application of the DDChange translation means to
perform a FStart after draining, which would start the query again.

Similar to the interaction of basic control elements, we therefore
want to ensure that (1) control elements become effective at their
specified position, and (2) the order of control elements determines
that the latest control element is effective. The interaction diagram
for two queries (Figure 8) does not provide a direct answer, since it
only specifies the behavior of two query versions, no global oper-

ations. Yet it already contains the necessary foundations to define
our extended semantics:

For a basic control element appearing during a change, we can
translate IStop and DStop by applying them on both versions, thus
achieving stop semantics. In turn, FStart can be translated into
an IStop for Qold and an FStart for Qnew. This ensures a start
of Qnew with correct starting index, albeit with possible Loss on
Qold, since the change is turned into an IChange. A change ap-
plied after a basic control element will in any case lead to a running
query, since our definition of change requires lifeness. If the query
is already started or stopped, the implementation is obvious, for a
draining query we can again rely on the interaction rules of basic
control elements, since the stop of Qold will not extend the drain
period of the stop on the whole query.

For complex control elements following other complex control
elements, we can build an interaction diagram for three (or more)
query versions using the same rules as we built one for two query
versions in Section 3.3. In the case of 3 query versions, Qnew of
the first change is Qold of the second. We then translate the actions
that are applied to Qold (on the two-version case) onto the first two
queries. Due to space limitations and the general similarity to the
two-version change, the complete correctness analysis for multiple
overlapping changes is presented in our technical report [15].

As a result, we are getting a weak transactional model for change:
ensuring that we always complete a change is only possible for
IChange, while other change models do not provide this guaran-
tee. In our opinion, this is actually a desirable behavior, as it allows
more flexibility. In addition, stronger transactional models require
giving up strict definitions of position impact and sequential order
of Control Elements.

3.5 Correctness Rules for Change
In addition to covering the design space for change implemen-

tation, we investigated the correctness guarantee space. We have
observed some common patterns, which we were able to compile
into a set of rules. These rules help us determine that we indeed
provide the strongest possible guarantees. For space reasons, we
are present the actual rules in the paper, while their proofs can be
found in the technical report [15].

• LDD rule: In the general case, a Change policy can ensure at
most two out of three of the following guarantees: No Loss, No
Stream-level Disorder, No Query-level Disorder.

• LD rule: When Qnew has a larger depends-set than Qold, Dis-
order at stream level cannot occur. In this case, No Loss and
No Disorder can both be guaranteed.

• LT rule: No Lossless Change policy can guarantee Termi-
nation.

These rules show us that we have indeed covered all possible op-
tions for change when considering strong guarantees (at least two
out of LDD and no duplicates, as well as termination where pos-
sible). This can be seen by comparing Table 10 with the set of all
possible combinations of correctness guarantees. Other, new op-



tions will only reduce guarantees, and these reductions are typically
not useful (e.g., having no order at all, or one kind of disorder with
loss). Thus we have shown that our methods to express change
cover the relevant problem space and cannot be improved further
for the general case.

4. REFINEMENT AND MODEL MAPPING
So far, we have investigated our model for lifecycle and change

using a black-box mapping function that covers a single query with
a single input and a single output. To make our model applicable in
practice, we need to perform several steps: (1) Refine the mapping
functions and control elements to the level of operators, and deter-
mine how control elements need to be implemented on operators
and their compositions. In turn, this also allows us to work with
the compositions of queries. (2) Investigate how real-life SPEs can
be adapted to support the lifecycle and change model established in
this work.

4.1 Operator Composition
Since operators provide the building blocks for complete queries,

we now need to decrease our abstraction level to that of operators,
analyze each operator and then compose them in order to achieve
mapping functions and control element processing for complete
queries. In a first step, we do this by generalizing our query map-
ping functions (Section 2.1) to operators instead of queries, and
showing how to build a query mapping function from the operator
mapping functions. In a second step, we determine how control el-
ements need to be handled on this composition in order to achieve
the same semantics as with a single black-box mapping function,
thus completing the refinement.

Conceptually, mapping functions apply to operators in the same
way as they apply to entire queries, defining on which input data
item an output items depends and vice versa. We can thus comple-
ment our definition of mapping for an operators OP .

• depends(yj): Given an output data element yj , returns the set
of all input data elements that yj depends on.

dependsOP (yj) = {xi|xi ∈ X where OP (X) = yj}
• contributes(xi): Given an input data element xi, returns the set

of all output data elements which xi has contributed to.

contributesOP (xi) = {yj |xi ∈ dependsOP (yj)}
Queries are composed of these operators, forming a query plan.

In this composition, mapping functions are transitive, since the out-
put items of one operator form the input items for the next. We
can formalize this composition as follows, focusing on depends
(cotributes can be expressed in an analogous way):

Given a query Q with dependsQ() and operators OP1, OP2, ...
with dependsOP1(), ..., we prove: For Q = OP1, the single op-
erator determines the results for the full query, thus dependsQ() =
dependsOP1(),.

For a sequential composition, Q = OP1||OP2, we can see that
dependsQ(yj) = dependsOP1(dependsOP2(yj)),
since the transitive function composition holds.
Since operators are the basic building parts of queries, their map-

ping functions can be derived from their formal definitions. Instead
of analyzing each operator individually, we can categorize them in
two classes, each with different results for our analysis:

• Stateless operators (e.g., selection, projection) perform their
computation on one tuple at a time. More formally, for a state-
less operator op, each output stream element yj depends on
exactly one tuple:
∀yj ∈ Y, |depends(yj )| = 1

• Stateful operators (e.g., window-based operators, pattern match-
ing) perform their computation possibly on multiple tuples at a
time. More formally, for a stateful operator op, some (if not all)
output stream elements yj depend on more than one tuple:
∃yj ∈ Y, |depends(yj )| > 1

Given this method to derive the mapping functions from formal
operator specification and the composition rules for mapping func-
tions, we now can determine the overall mapping functions of se-
quential query plans. More complex operators and query plans such
as trees or DAGs follow the same approach, but need extensions on
the definition of the mapping functions and the composition.

4.2 Control Elements on Composition
In the previous section, we have defined how query mapping

functions can be composed out of operator mapping functions, thus
defining how output is computed. To complete this composition,
we need to determine the semantics in the presence of control el-
ements. More specifically, the following need to be investigated,
showing how each control element needs to be applied on a com-
position to achieve the same semantics as on the black-box query
mapping function.

YIS = Q(XIS )

YIS = OP2(OP1(XIS ))

YF S = Q(XF S )

YF S = OP2(OP1(XF S ))

YDS = Q(XDS )

YDS �=OP2(OP1(XDS ))

Applying FStart and IStop on the first operator of the composition
achieves the desired semantics, since (1) the control element is de-
fined on the input stream, (2) the first operator determines the con-
tributions to the following operators and (3) FStart and IStop affect
the output immediately. Due to the lack of space, we are not show-
ing the full proof here. For DStop, this useful property does not
generally hold, since the output elements which are drained can-
not be determined by considering the first operator alone, unless all
operators but the first are stateless. As example for such a problem-
atic drain consider nested windows, in which draining on the first
window operator will not permit the second to produce meaningful
results any more. The proof for this can be found in [15]. Instead,
we need a more complex coordination among operators, since the
first and intermediate operators do not have enough knowledge to
handle the control elements, and therefore need to delegate this task
to their following operators. This delegation ends when a dom-
inant operator is reached, which will determine the drain output
elements. On linear plans, the last stateful operator dominates the
query output, and previous stateful operators (we call them subor-
dinate) are to be kept producing output until the dominant operator
has determined all input for draining.

If there is a dominant function, the precise mapping functions
of the subordinate operators are not needed any more. Therefore,
we can also support user-defined functions without knowing the
detailed mapping function, as long as it is monotonic. For more
general query plans, a dominant operator can be constructed us-
ing techniques similar to those proposed in the literature for load-
shedding on multiple aggregates [23].

4.3 Our Framework on SPE models
The query modification framework that we have introduced in

this paper has been designed to be general, abstract, and conserva-
tive in terms of its assumptions, thus making it applicable in the
context of a broad range of SPEs and their query models. In prac-
tice, individual SPEs often provide more restricted models, and
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Figure 13: Query Modification architecture
therefore, our framework can be specialized for the SPE at hand.
By doing so, stronger correctness guarantees and more efficient
implementations can be achieved. For example, systems provid-
ing only count- and time-based windows (e.g., Borealis [6]) do, by
definition, always fulfill Termination and Progress criteria. Simi-
larly, for certain SPEs, the query mapping functions stay fixed over
a Stop/Start cycle, since time-based windows are opened based on
a pre-defined time domain, and are not influenced by the index po-
sition of the Start control element. Thus no issues deriving from
initializing a mapping functions come up.

Our approach reaches its limitations when (1) non-monotonic
operators are present, and (2) the output data elements are com-
puted in a non-deterministic way (e.g. affected by system time).
It can still be implemented, but the guarantees it can provide are
inherently weaker.

5. IMPLEMENTATION

5.1 General Architecture
Up to this point, we have discussed query lifecycle, in particular

query modification on the level of formal models. Since our goal
for this work has been to provide a complete picture of query lifecy-
cle, we studied ways to implement our proposed semantics. Many
approaches have been studied for efficient specific lifecycle oper-
ation in databases and SPEs, of whic we will provide an overview
in Section 7. Since these options typically solve a specific prob-
lem and make several assumptions in order to achieve good per-
formance, we instead chose to develop generic architectural exten-
sions that require only minimal changes to the SPE’s data and query
models, while allowing the implementation of the necessary con-
trol and change logic on top of its already existing architecture. We
then show how to incorporate this architecture into existing stream
processing engines. At a later stage, more optimizations can be
incorporated into this architecture.

For an SPE architecture to support query modification, we must
ensure that the system can keep track of multiple versions of a given
query, and execute them in a coordinated way during the change
period, while taking the chosen change policy and its correctness
guarantees into account.To achieve this, we propose the architec-
tural extensions shown in Figure 13. Let us now describe each of
the new components in this figure.
Query Versions: An SPE will keep track of each individual Query,
which in turn consists of a set of Query Versions. Query Versions
are stored in a Query Version Repository, possibly in an already
validated/compiled/optimized form, so as to avoid potential errors
and minimize overhead during the actual query modification pe-
riod. These versions can be added or removed from the repository
when not required. Each Query Version uses its own Gatekeeper
and Coordinator, and the whole repository shares a common Con-
trolManager and a Merger.
Gatekeeper: An important aspect of our framework is the imple-
mentation of the basic control elements (i.e., FStart, IStop, DStop),

since complex control elements can then be built on top of these.
As shown in the previous section, FStart and IStop can be imple-
mented by just affecting the first operator in the plan. Instead of
modifying each operator to support these semantics, we place a
special operator with an identity mapping function and the control
logic in front of the plan, which we call Gatekeeper. Therefore, we
do not need to change any operator, greatly simplifying the integra-
tion. Since we need to control each Query Version independently,
there is a Gatekeeper for each.
Drainable Operators: DStop, on the other hand, requires a slightly
more invasive approach for stateful operators: Stateful operators in
the query plan (e.g., windowing, pattern matching, joins) need to be
extended with the ability to perform draining (i.e., completing the
processing of the already started windows, but not initiating new
ones), yet this facility needs only to be enabled on the dominant
operator. For a given windowing operator implementation, only
minimal extensions are necessary, since it is already computing the
contributing elements when building the windows. For example,
for our MXQuery implementation, the draining extension required
only about 10 LOC to be added to the windowing operator.
Coordinator: Instead of extending all operators to propagate the
information necessary for a DStop to the dominant operator, we ex-
ternalize this logic into a separate component, called Coordinator.
It interacts with the dominant operator and the gatekeeper, pass-
ing on the relevant information and controlling the execution flow.
Control Manager: Control Manager is responsible for interpret-
ing the control elements. If the queries are known in advance, opti-
mizations can be performed by this component, such as identifying
common subexpressions, minimizing the state to be changed.
Merger: Merger combines the output of both query versions into a
single stream. The key task of the Merger is to establish the correct
delivery order over the two streams. For IChange, DDChange, and
QDChange, this is straight-forward, since all output of Qold will
be produced before that of Qnew. For SDChange and GChange,
additional order-related metadata (e.g., starting index) needs to be
known for each stream element. This component can be seen as the
implementation of the Append (||), and Interleave (�) operators.

5.2 SPE-specific Implementation
We implemented our architecture on MXQuery [10] and also

studied how an implementation on top of Borealis [6] could be
done. Given the differences in the data model, operator seman-
tics and execution strategies, this should provide a good coverage
of the SPEs space. MXQuery is an implementation of XQuery 3.0,
which has few implicit assumptions on the data model (sequences
of semi-structured items), expressive predicate-based windows and
a set of fully composable, Turing-complete expressions. It uses a
classical DBMS-style pull model, which requires explicit threading
for parallel query execution, yet simplifies output control and merg-
ing, since the output is always explicitly requested, and the end of
available output is explicitly indicated. Determining the relative de-
pends set for two items out of different versions (as needed by the
� (Interleave) operation, and thus the Merger) is conceptually diffi-
cult, given the flexible data model, the data creation operations and
the large number of operators. Due to the lazy execution strategy
of MXQuery (which ensures that only required data is read from
the input), observing the Gatekeeper before requesting the next el-
ement gives this information in a very lightweight way, thus not
requiring to change the data model and instrument the operators.

Borealis uses relational tuples in combination with a small num-
ber of streaming operators, most prominent count- and time-based
windows. Push-based operators are connected by queues and man-
ually composed to form a query network. A scheduler can decide



how to prioritize certain operators. This form of coupling sim-
plifies parallel execution, but makes it harder to determine when
all output for a given input has been produced, so that a switch
can be performed. This limitation can be overcome by instructing
the scheduler to prefer operators which are connected to closed or
draining Gatekeeper. When operators cannot process any more, the
scheduler can detect this, and indicate it to the Merger. Computing
the depends set for the � operation is simple, since aggregates on
windows will assign the maximum contributing timestamp to the
produced tuple, which correspond to the order-by-end semantics of
the window model.

6. EXPERIMENTS
Our experiments were performed on a system with an Intel Core2

Duo, 2.66 Ghz, 4 GB RAM, running Windows 7, Java 6 (both 32
bit). We ran two sets of experiments on top of MXQuery [10]: (1) A
synthetic data/query set to perform a sensitivity analysis for stateful
operators. (2) A Linear Road Benchmark [9] implementation to
study the impact of change on complex queries under strict time
constraints.

6.1 Sensitivity Analysis for Stateful Operators
Our sensitivity analyis focuses on the behavior of stateful op-

erators, since stateless operators will have a negligible effect on
change performance. MXQuery uses a predicate-based window
operator which can conveniently be used to express complex win-
dows constructs, including count- and application time-based win-
dows [10]. We study the impact of window size, and window slide
on performance, correctness criteria, and cost. Both versions of
our query compute a sum over count-based windows, since this
provides a clear way to define the workload and the expected re-
sults. The input data consists of a sequence of 2000 XML elements
containing an integer payload, which are fed to the system as fast
as it could consume it. The change control element is inserted after
1000 data items, ensuring that the system has reached a steady state
in terms of open windows and also has enough input to complete
the change. All measurements were repeated 100 times. For per-
formance we took the averages, for correctness we checked across
all these runs that we always saw the same results. Since standard
deviation on all results was small, we do not report it explicitly.

6.1.1 Response Time
In the first experiment, we vary the window size of Qnew be-

tween 10 and 100 elements, while keeping that of the Qold at 50.
Both queries are using a slide of 1, providing a significant overlap
amount the windows. As Figure 14 shows, the different impact of
window size on the response times (time between the last element
of Qold and the first element of Qnew) is quite profound for the
various methods: For IChange and DChange, the response time
is linear to the size of the new window (from 1.7 msec at WS=10
to 22.6 msec at WS=100), as processing of Qnew only starts when
Qold has ended, and the processing time is proportional to the num-
ber of input items in a window. For QDChange, the response time
is 0.2msec for window sizes of Qnew that are smaller than or equal
to 50, since the output of Qnew would have been produced earlier,
and needs to be held up until Qold finishes. Once Qnew has win-
dow sizes bigger than that of Qold, the same trend as for IChange
is visible, because now the size of the new window dominates.
The additional cost of synchronization between Qold and Qnew

causes response times to increase somewhat faster. For SDChange,
smaller windows of Qnew mean that the output of Qnew needs to
be produced before the output of Qold, yielding a negative response
time for the smaller values, e.g. -7 msec for WS=10. As the win-

Figure 14: Responsiveness on Window Size, Slide=1

dow size of Qnew increases, the response time increases, showing
values similar to QDChange for WS greater than 50. GIChange
shows “perfect” response times (3 microseconds), since Qold is
kept producing until Qnew can produce output, then it is termi-
nated immediately. GDChange uses the same approach, but drains
Qold, thus showing a “negative” response time of around 10 msec,
slightly more than cost of producing windows of Qold, as the two
queries run in parallel and need to be coordinated.

6.1.2 Correctness
We measure correctness by creating the reference streams ac-

cording to the definition in Section 3.2.1 and compare the outputs
against it. Figure 15(a) shows that there is constant loss (49 ex-
pected elements) for IChange and DDChange, corresponding to the
loss of a complete Qold window until Qnew picks up. QDChange,
SDChange, and GDChange do not show any loss, since the drain-
ing of Qold and the starting of Qnew are balanced to avoid this.
GIChange has loss proportional to the size difference of the new
window and old window, since Qold receives an IStop as soon as
the first output of Qnew is available, discarding the last window of
Qold. For disorder (Figures 15(b) and(c)) we also see the expected
results: IChange, DDChange, and GIChange never cause any dis-
order, since no overlapping results are produced. QDChange pro-
duces results out of stream order if the window size of Qnew is
smaller. The number of errors is proportional to the difference in
window size (e.g., 39 at WS=10), since as many “smaller” win-
dows are produced (due to the slide of 1) before the completion of
Qold and need to be delayed to maintain query order. In turn, SD-
Change shows the same behavior in respect to items out of query
order, while GDChange has has a number proportional to the win-
dow size of Qold, as it drains it after the start of Qnew. We only
see duplicates (i.e, exact same input to a pair of results from both
versions) when the window of size of Qnew is the same as that of
Qold and the change method is GDChange. Nonetheless it should
be noted that both GIChange and GDChange produce additional
results (with different inputs), both by the overlap of mapping func-
tions and the output produced by Qold while “waiting” for output
from Qnew (which is not part of the reference stream).

6.1.3 Cost
The different change methods also have a different runtime over-

head. In our measurements, we focused on the CPU cost, since the
actual memory overhead depends on how an SPE supports the shar-
ing of items, queues, etc. For all methods, we measured the CPU
time of the main thread over the whole experiment execution as
well as the use of any helper threads required to perform parallel
query execution. The cost of the main thread is almost the same for
all methods, thus we just show the results for the helper thread in
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Figure 15: Correctness results for different changes

Figure 16: CPU cost on Window Size, Slide=1

Figure 16, measured in milliseconds of CPU time. Since IChange
and DDChange do not execute both versions in parallel, there is
obviously no cost for them. SDChange and QDChange always
produce the reference output, so the relative cost stays the same.
For GIChange and GDChange, additional output of Qold is pro-
duced while waiting for output of Qnew, therefore we see a higher
cost in general and an increase with the window size of Qnew. In
our implementation, GIChange is slightly more expensive, since it
computes output that might be discarded, while GDChange avoids
that.

6.2 Other Experiment Results
We also performed tests with different slides and different rela-

tive positions of the change elements. The results showed the ex-
pected results. The bigger the slide and thus the smaller the over-
lap, the fewer correctness problems occur. If there are only tum-
bling windows, placing the change at the window change resulted
in error-free results for all methods.

Multiple changes performed in decreasing distance did not influ-
ence each other as long as draining areas of earlier query versions
did not overlap with the start of later versions. As soon as this over-
lap started, we would observe both additional overhead (due to a
higher number of version executed in parallel) as well as duplicates
and disorder.

Finally, we also tested the different change methods on the Lin-
ear Road Benchmark [9] workload, in particular on the Accident
Segment query. There are several differences compared to the syn-
thetic workload: (1) The query is significantly more complex, using
multiple nested windows with predicates, grouping inside windows
and parallel aggregation. (2) Data arrives using a specific timing
(3) Results are expected within 5 seconds. Yet the observed results
closely mirrored what we had seen on the synthetic data, with a
slightly bigger impact on the arrival timing and window slide on
the delays. In addition, our architecture extensions did not create a
significant overhead when no change was happening.

Important Irrelevant Method
Runtime Resources,
Implementation
Overhead

Loss, Response Time IChange

Loss, Query Order Response Time QDChange

Loss, Stream Order Response Time SDChange

Response Time, Du-
plicates

Runtime Resources, Imple-
mentation Overhead, Loss

GIChange

Response Time, Loss Runtime Resources, Imple-
mentation Overhead, Dupli-
cates, Order

GDChange

Table 2: Change Method Decision Matrix
6.3 Summary and Guidelines

The results of the conceptual as well as the experimental analy-
sis give a fairly clear answer to when to use which change method,
given that there cannot be a single winner which fulfills all criteria.
We have summarized the tradeoffs in Table 2. Generally speaking,
achieving zero loss and low response time incur additional imple-
mentation complexity and runtime overhead. So if neither of them
is required, using IChange is viable in environments like sensor
networks (due to limited resources) or complex query processors
(due to the implementation effort). When loss must be avoided,
but response time is less critical, QDChange and SDChange are
the most suitable. The order that is expected during the change
then determines which of them to use. Finally, Graceful Changes
address Response Time, trading it off with higher resource usage.
Among them, GIChange should be chosen if loss is tolerable, while
GDChange should be preferred if it is not tolerable. DDChange
is suitable only in very rare circumstances, since it does not pro-
vide stronger guarantees than IChange and requires drain support,
In addition, it does not always guarantee the same results as the
other change methods on Qnew, since the start position of the new
mapping function is set at the end of the drain area, and not at the
change element position as in all other approaches.

7. RELATED WORK
The basic vision for dynamic modification of continuous queries

(CQ) was first put forth by the Borealis project [6]. The Borealis
approach, however, is much more restricted: It focuses on specific
operators (such as windows) with specific changes (slide or size)
instead of allowing arbitrary changes on queries. No formal se-
mantics of change are given, and the architecture ties its strategies
to system time and execution speed. To our knowledge, this ap-
proach has never been implemented.

The use of control elements has been inspired by the punctuation-
based stream processing work of Tucker et al. [24], yet with differ-
ent semantics. In that work, data streams are annotated with punc-
tuations to mark the end of a subset of data in the stream, which are
then exploited for optimizations.

Query modification shares a lot of challenges and solutions with



other lifecycle problems in CQ, namely failure handling [16] and
plan migration [26, 25]. The guarantees defined by these ap-
proaches are a subset of ours, e.g. Hwang et al. [16] omit order and
liveness. A fundamental difference is that all of these approaches
try to maintain a semantically unchanged query over changes of
the infrastructure or execution plan, and change is driven by the
system. In our context, change can also be triggered by the appli-
cation, and therefore, we do not make assumptions about the timing
and semantics of the new query.

In a similar spirit, the extensive work on adaptive query process-
ing [14] targets a subset of the problem we are solving: No matter
how the actual query execution is modified, the semantics of the
query stay the same, and no errors are allowed to occur during
the adaptation. Our formal framework can describe the behavior
of such a system quite well, e.g. using stop and start to mark the
boundaries of an adaptation. In terms of implementation, many
approaches have been been studied on how to optimize this adap-
tation. In particular, reductions of resource consumption and im-
provements on transition time were studied. Many of these ideas
might be relevant for our work and could be incorporated in our
implementation. This will further improve performance on top of
our conservative approach, which avoids re-engineering of existing
SPEs.

Application-driven CQ changes are proposed by Lindeberg et
al. [20], who investigate changing window sizes in order to improve
results of a health monitoring use case. In contrast to our model,
this model is very restricted in terms of the allowed query modi-
fications (size change for tumbling windows) and use cases (heart
attack prediction), and provides no formal correctness guarantees.

Finally, our work also relates to stopping and restarting of long-
running in data warehouses [17, 11, 13]. In this case, some queries
are intentionally terminated and later restarted to deal with resource
contention. The restart should reuse some of the old state for ef-
ficiency reasons. Stopping and restarting the same query consti-
tutes a special case in our more general framework. Furthermore,
streaming has different semantic requirements than traditional ware-
houses, e.g., ordered data delivery.

8. CONCLUSION
In this work, we have presented a punctuation-based framework

for correct and efficient modification of continuous queries over
data streams. By representing query semantics with dependency
functions, we were able to establish a general model where com-
plex CQ lifecycle operations can be created out of the basic opera-
tions like start and stop. Moreover, our work builds on a powerful
methodology that allows us to easily extend our framework even
further to implement other query lifecycle operations beyond mod-
ification. We have also shown that an implementation of this frame-
work is possible on typical SPEs, without requiring much effort or
fundamental changes on the existing implementation.

Benchmark results on our prototype implementation clearly re-
veal the practical aspects and significant performance/correctness
tradeoffs among our query modification techniques.

For future work, we foresee three directions: 1) Extending our
modification model to queries with operators that accept multiple
input streams (i.e., join and union); 2) Optimizing change perfor-
mance by exploiting query knowledge (e.g., by identifying com-
mon subexpressions across versions to minimize change cost); 3)
Utilizing our methodology for other query lifecycle operations and
settings, such as query migration.
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