MXQuery With Hardware Acceleration

Peter M. Fischer **, Jens Teubner 2

'Department of Computer Science, University of Freiburg, Germany
peter.fischer@informatik.uni-freiburg.de

2Systems Group, Department of Computer Science, ETH Zurich, Switzerland
jens.teubner@inf.ethz.ch

Abstract—We demonstrate MXQuery/H, a modified version of
MXQuery that uses hardware acceleration to speed up XML
processing.

The main goal of this demonstration is to give an interactive
example of hardware/software co-design and show how system
performance and energy efficiency can be improved by off-
loading tasks to FPGA hardware. To this end, we equipped
MXQuery/H with various hooks to inspect the different parts
of the system.

Besides that, our system can finally really leverage the idea
of XML projection [3]. Though the idea of projection had been
around for a while, its effectiveness remained always limited
because of the unavoidable and high parsing overhead. By
performing the task in hardware, we relieve the software part
from this overhead and achieve processing speed-ups of several
factors.

I. INTRODUCTION

From a language perspective, XML-based data and query
processing has been unprecedentedly successful, penetrating
virtually all application areas that had been dominated by
domain-specific solutions and languages previously. System
makers, however, are scared by significant costs that are often
associated with the versatile data model. Parsing and memory
overheads often defeat the use of XML when the involved data
volumes become large [7].

XML projection [3] is known as an effective tool to min-
imize data volumes in the query processor. But the idea
cannot help with the parsing overhead, which dominates cost
in many real-world applications. Off-load engines for XML,
built in tailor-made hardware, have been suggested as another
approach to speed up XML processing [8], [5]. But it remains
unclear how such engines could be integrated with a software-
based counterpart that would permit the full-fledged XML
processing that is needed in real-world applications.

In this demonstration, we combine both strategies and
showcase a particularly effective case of hardware/software
co-design. We extend MXQuery, a mature XQuery processor
optimized for streaming [1], with an FPGA-based imple-
mentation of XML projection to obtain MXQuery/H, a full-
fledged XQuery processor with remarkable performance and
energy efficiency characteristics. As such, our demonstration
is equally relevant to people that work on high-volume XML
processing and to those interested in systems and modern
hardware aspects.

*This work was done while Peter Fischer was with the Systems Group at
ETH Zurich.

_{ g).Berson @profile @interest@

* *

Fig. 1. Non-deterministic finite-state automaton to evaluate projection path
//person/profile//interest. Each descendant step becomes a O*
loop in the automaton.

Our demonstration setup is designed for interactivity. Visi-
tors will be able to enter their own XQuery expressions and
observe the improvements of FPGA-based co-processing on
execution times as well as on memory and CPU consumption.

In the following, we sketch the main ingredients of
MXQuery/H, XML projection and hardware acceleration (Sec-
tion II); illustrate how they can be combined into a working
system (Section III); describe the setup of this ICDE demo
(Section IV); and then wrap up in Section V.

II. BACKGROUND
A. Projecting XML

To understand the idea of XML projection [3], consider the
following query (assuming an XMark schema):

for $p in doc (*auction.xml’)//person return
<person> <name> { $x/name } </name>
<num-interests>
{count ($x/profile//interest) }
</num-interests> </person> .

Q1)

During execution, this query will have to touch only very
few nodes out of a potentially large XML instance. And, what
is more, the relevant nodes can be described using a simple
set of projection paths:

{ //person,
//person/name #,
//person/profile//interest } .

Once derived from the input query (Marian and Siméon [3]
detail the derivation procedure), the set of projection paths
can be used to pre-filter the source document during load.
The filter preserves only those nodes (and their root-to-node
paths) in the document that match one of the projection paths.
In addition, nodes can pass the filter if they are a descendant
of a node matched by a #-marked projection path.'

1Observe how, e.g., the full subtrees below person and interest elements
are not needed to evaluate (01, whereas those below name elements are.

] LILLLll L ﬁltered XML
1 FPGA £
souse| [0Ly Trvcal —> |

Fig. 2. XML projection in the system data path. Data is filtered as it is
retrieved from the source and before it enters the software system.

The achieved filtering effect can be significant. For instance,
between 73 % and 99 % of all input data can be discarded in
case of the 20 XMark benchmark queries (average: 97 %). At
the same time, projection is easy to realize. All projection
paths are composed of child and descendant steps only
and can thus be evaluated efficiently with help of finite-state
automata. For instance, Figure 1 visualizes the state automaton
for the projection path //person/profile//interest.

On the flip side, projecting an XML document in software
cannot avoid the cost of parsing the entire input file or
data stream. Unfortunately, this cost in practice dominates
the execution time of any decent file- or stream-based XML
processor [7]. Typical parsing speeds for a modern XML
processor range between 10 and 30 MB/s.

B. Filtering in the Data Path

The high parsing cost can be avoided if XML projection
is implemented in hardware instead and applied before the
(projected) document enters the software system. The problem
then becomes an instance of filtering task in the data path,
for which field-programmable gate arrays (FPGAs) have been
found a good fit in the past [6].

Figure 2 illustrates this idea. As the data is retrieved from
its source, it is pre-filtered on the FPGA. The software-based
XML processor “sees” (and parses) only a small and relevant
subset of the original document.

C. Hardware-Based Projection

As mentioned before, projection paths can be matched
with help of finite-state automata (analyzing the root-to-
node path of each tree node v). It is known that FPGAs
can run finite-state automata very efficiently. The available
FPGA chip resources memory (flip-flop registers); logic gates
(lookup tables); and signal wires map very naturally to the
three ingredients of any state machine: states; conditions; and
transitions. By re-configuring these resources, the FPGA can
be tailored to run any FSM directly in hardware. Several
prototypes and systems have demonstrated the effectiveness
of this idea (e.g., [5], [9], [10]).

The idea has its drawback, however. Re-compiling and re-
loading the FPGA circuit for every workload change is a
very time-consuming process, ranging from a few minutes to
several hours. Obviously, this is not an option for an interactive
system like MXQuery. Therefore, in MXQuery/H we use a new
evaluation mechanism (using so-called ‘“skeleton automata’)
where workloads can be changed instantly and at any time.

To this end, we separate FSM characteristics into a static
part that is query-independent and a dynamic part that covers
all specifics of a particular query. We implement the static
part through a set of skeleton segments that we instantiate

(D proj. paths

| @ request
11 l\l'l 11
MXQ filtered 7 E® server
(client) ©) QZJ JFPGA |
reply TTTTTTT
Fig. 4. MXQuery/H system design. For each query, MXQuery/H sends

projection path information to the FPGA (D and a data request to the
server (2. Data is sent back and filtered on the FPGA (). All communication
is through an Ethernet network.

in the FPGA hardware. Once they are instantiated, the FPGA
circuit is fixed and need not be re-loaded even when workloads
change.

Query-specific aspects are covered by the dynamic part.
It is realized through runtime parameters available in each
skeleton segment. They are held in on-chip storage units (flip-
flop registers and FPGA Block RAM) and can be modified
arbitrarily at runtime. Workload changed can thus be accom-
modated instantly.

Figure 3 visualizes the idea. The figure shows four skeleton
segments (solid boxes) that are wired together to form a
chain. As indicated with dashed lines, each segment matcher
implements a small piece of a state automaton, with one
input and a back-loop transition. The conditions on the input
transition and the back-loop can both be defined through
runtime parameters.

The four segments in Figure 3 are parameterized to imple-
ment the state automaton that we saw earlier in Figure 1. To do
so, we set the incoming transition condition to the respective
tag name (or to true for the initial state), and we enabled the
back-loop where needed with a Boolean parameter.

Our “skeleton automaton” design runs at the same speed
as existing automata with off-line compilation (e.g., [5], [9],
[10]). The price we pay is a small space overhead. Still,
the design is compact enough to host several hundred XPath
location steps on low-end FPGA hardware. This is more than
enough for common uses of XML projection.

III. MXQuery/H = HARDWARE + SOFTWARE

To combine our hardware with the MXQuery XML proces-
sor, we realized the data path of Figure 2 as a physical Ethernet
network. MXQuery—already designed to work from network-
based sources in a streaming fashion [1]—requests its input
data from a network server. Rather than replying directly to
the XML processor, the server sends the raw XML stream to
the FPGA pre-filter. There, the data is projected and forwarded
to the MXQuery instance.

For effective filtering, the FPGA has to be configured with
the right set of projection paths before the document is sent.
Thus, we modified MXQuery to first infer this set (based on
the inference procedure of [3]) and send it to the FPGA as
a configuration instruction, before requesting the input data
from the server.

Figure 4 illustrates how a query is processed in MXQuery/H.
First, the software system sends projection path information to
the FPGA (D), then requests the XML data from the server).

tag name
runtime parameter

— - —
start true / \ person / \
e Ei " 40 F—--------- » 41}
\ / \ /
&7 SF
(. ol
_/ _/
true false

profile ;© ™ interest /~ | match?
”””” s G2) —mmmmmmmy 43—
\ / \\\ 7// .
i +3 |- XPath axis
| B -
v NPV runtime
true false parameter

skeleton segment skeleton segment

skeleton segment skeleton segment

Fig. 3. Two-part “skeleton automaton” design for hardware-based XML projection in MXQuery/H. The FPGA configuration mechanisms are used to realize the
static part of the automaton (drawn as solid lines), whereas all query-specific behavior is covered by the dynamic part (dashed lines) that can be parameterized

at runtime.

The reply is sent via the FPGA (3), which filters the data “in
the network.”

Performing XML projection in the Ethernet network is
inspired by common XML and XQuery use cases: 1) XML
as the common data interchange format needs to be routed,
filtered and transformed on the fly, ideally at wire speed.
2) Multi-tier or cloud-based XML databases distribute and
integrate XML data sources over multiple hosts, and need to
retrieve the relevant parts with maximum efficiency.

Apart from that, the design also allows us to make good
use of available FPGA features: modern Xilinx FPGAs ship
with a built-in Ethernet controller that allows for network data
processing at exceptionally low latency and high throughput.

All communication channels use plain XML. This makes it
particularly easy to mix and match components, potentially
also from alternative XML solution providers (in fact, we
successfully also paired our hardware implementation with the
open-source version of Saxon [4]). In the context of an ICDE
software demonstration, the feature comes in handy to analyze
and demonstrate individual system components easily.

A. Runtime Characteristics

For most XQuery processors and workloads, the observable
processing speed is determined by the capabilities of the
system’s XML parser. Unfortunately, XML parsing is noto-
riously hard to parallelize, such that even highly tuned XML
processors rarely achieve parsing rates beyond 30 MB/s—far
below the speed at which the data could be read from disk or
network (=~ 100 MB/s).

The parsing speed of MXQuery is even lower. As can be
seen in Figure 5, the off-the-shelf version of MXQuery (plotted
in light gray [[]) requires at least 2 seconds to evaluate even
very simple XMark queries over a 24 MB XML file (XMark
scale factor 0.2). MXQuery is bottlenecked here by its parsing
speed of around 12 MB/s.

XML projection in the network data path eliminates this
bottleneck and we see significant performance improvements
(shown in dark gray [l in Figure 5). For the 20 XMark queries
and our 24 MB input, the achieved speed-up ranges between
2.2x and 13.7x (note the logarithmic scale in Figure 5).

For XMark Query QI5, hardware-based projection even
exposes the next bottleneck in client/server-oriented XML
processing. Here the system became limited by the server’s
ability to send data fast enough via the physical 1Gb/s

FPGA Query
D%Ceur\r;]eernt Document Processor +
Projector Gul

Fig. 6. MXQuery/H demonstration setup.

Ethernet speed. The CPU demand on the client side is much
lower. As indicated using # in Figure 5, the actual client CPU
time needed to evaluate the query is actually less than the
211 ms our server needs to send all data through the network.

A second major bottleneck in XML processing, high mem-
ory consumption, is more difficult to measure reliably for
a Java-based XQuery processor like MXQuery. Roughly, we
found the maximum amount of memory needed during query
execution to be proportional to the amount of XML data
loaded into the software processor. By pre-filtering the XML
stream, we can thus run the XMark benchmark at much higher
scale factors than the off-the-shelf version of MXQuery could.

IV. DEMONSTRATION SETUP

To demonstrate MXQuery/H at ICDE 2012, we will bring
two laptops that represent the server and client machines, as
shown in Figure 6. Most interaction of the demonstration
visitors will be with the client side, where a GUI interface
lets users state their own queries; watch and modify the
runtime projection paths; and observe the effect of in-network
projection. To this end, we extended the MXQuery runtime in-
frastructure to provide information on execution performance,
memory consumption, and CPU utilization for both parsing
and query processing.

We will show hardware-based projection based on an
XUPVS5 FPGA development board, a widely-used and low-
priced (US$ 750) FPGA platform. It includes a low-end (but
easily sufficient for our purposes) Virtex-5 LX110T FPGA and
a 1 Gb/s Ethernet interface, which we use to connect the client
and server laptops (through a gigabit switch; see Figure 6).

The XUPVS5 board also includes an LCD display, which we

1000 +
= 1001
Q
=
& 107
=
b5t
5
10
0.1+

.
hernet wire speed

4
t

4
t

AN

0l Q2 03 04 05 06 Q7 08 Q9 QI0 Q11 QI2 QI3 QI4 QI5 QI6 Q17 QI8 Q19 020
XMark benchmark query

Fig. 5. MXQuery execution times for the 20 XMark queries (scale factor 0.2; &~ 24 MB) before ([J) and after (lll) input projection. With projection, Query Q15
becomes bound by the physical network speed. Without this bound, Q15 could run significantly faster, as indicated with .

will configure to show key performance characteristics, such
as throughput and network packet rates. With help of FPGA
design tools, demonstration visitors will also have the oppor-
tunity to inspect runtime internals of our “skeleton automaton”
system and get an impression of a typical development cycle
for hardware/software co-designed systems.

V. SUMMARY

There is a general consensus that hardware/software co-
design is the key to escape from architectural limitations of
current computer systems. In recent years, this has triggered a
large number of research and development efforts on the hard-
as well as on the software side.

Our work brings both worlds together and provides a work-
ing implementation of the complete stack. We off-load XML
projection to a tailor-made hardware solution and thus leverage
one of the particular strengths of FPGA hardware, regular
expression matching. At the same time, XML projection has
known-good properties that can significantly reduce the cost in
answering XQuery expressions. Our implementation confirms
this cost reduction with speed-ups in the range of 2.2x to 13.7x
on XMark benchmark data.

The motivation for this demonstration is two-fold: (a) we
illustrate the potential of hardware/software co-designed sys-
tems to increase efficiency and performance; (b) by giving a
concrete example, we show how applications can be designed
to benefit best from the characteristics of hard- and software.

MXQuery/H is work in progress. While XML projection in
hardware significantly reduces the amount of data that has to
go through software-based parsing, parts of the document now
have to be parsed twice: first in hardware then in software.
We are looking into techniques to avoid also (parts of) this re-
parsing cost, which could be achieved by using an alternative
“binary” format when data is forwarded by the FPGA.

The effectiveness of hardware support for XML parsing has
also been demonstrated previously in the context of the wire-
speed processor (WSP) [2] effort at IBM. WSP combines 4-16
PowerPC cores and various application accelerators—among

them support for XML parsing—within a system-on-a-chip
design. WSP does not, however, offer hardware support for
the processing of queries over XML data.

In terms of functionality, we also look at additional filter
criteria that could be used to further increase filter selectivity.
In particular, with support for value-based predicates (e.g., on
attribute values) some meaningful query types could even be
processed entirely in hardware.

ACKNOWLEDGEMENTS

This work is part of the Avalanche project at ETH Zurich,
funded by the Swiss National Science Foundation (SNSF) via
an Ambizione grant for Jens Teubner.

REFERENCES

[1] Irina Botan, Peter M. Fischer, Daniela Florescu, Donald Kossmann, Tim
Kraska, and Rokas Tamosevicius. Extending XQuery with Window
Functions. In Proc. of the 33rd VLDB Conference, Vienna, Austria,
September 2007.

[2] Hubertus Franke, J. Xenidis, Claude Basso, Brian M. Bass, Sandra S.
Woodward, Jeffrey D. Brown, and Charles L. Johnson. Introduction to
the Wire-Speed Processor and Architecture. IBM Journal of Research
and Development, 54(1):3:1-3:11, 2010.

[3] Amélie Marian and Jérome Siméon. Projecting XML Documents. In
Proc. of the 29th VLDB Conference, Berlin, Germany, September 2003.

[4] Michael Kay, Saxonica Inc. Saxon-HE 9.3.0.4].

[5] Roger Moussalli, Mariam Salloum, Walid A. Najjar, and Vassilis J.
Tsotras. Massively Parallel XML Twig Filtering Using Dynamic
Programming on FPGAs. In Proc. of the 27th ICDE Conference,
Hannover, Germany, April 2011.

[6] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on Wires—A
Query Compiler for FPGAs. Proc. of the VLDB Endowment (PVLDB),
2(1), August 2009.

[7]1 Matthias Nicola and Jasmi John. XML Parsing: A Threat to Database
Performance. In Proc. of the 12th CIKM Conference, New Orleans, LA,
USA, November 2003.

[8] Jan van Lunteren, Ton Engbersen, Joe Bostian, Bill Carey, and Chris
Larsson. XML Accelerator Engine. In Proc. of the Ist Int’l Workshop
on High-Performance XML Processing, New York, NY, USA, May 2004.

[9] Louis Woods, Jens Teubner, and Gustavo Alonso. Complex Event

Detection at Wire Speed with FPGAs. Proc. of the VLDB Endowment

(PVLDB), 3(1), 2010.

Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact

Architecture for High-Throughput Regular Expression Matching on

FPGA. In Proc. of the 2008 ANCS Conference, San Jose, CA, USA,

2008.

[10]

