The Case for Fine-Grained Stream Provenance

Boris Glavic #, Kyumars Sheykh Esmaili *, Peter M. Fischer *, Nesime Tatbul *

Database Group, University of Toronto, Canada
glavic@cs.toronto.edu

*Systems Group, ETH Zurich, Switzerland
{kyumarss, peter.fischer, tatbul}@inf.ethz.ch

Abstract: The current state of the art for provenance in data stream management
systems (DSMYS) is to provide provenance at a high level of abstraction (such as, from
which sensors in a sensor network an aggregated value is derived from). This limitation
was imposed by high-throughput requirements and an anticipated lack of application
demand for more detailed provenance information. In this work, we first demonstrate
by means of well-chosen use cases that this is a misconception, i.e., coarse-grained
provenance is in fact insufficient for many application domains. We then analyze the
requirements and challenges involved in integrating support for fine-grained prove-
nance into a streaming system and outline a scalable solution for supporting tuple-level
provenance in DSMS.

1 Introduction

Tracking provenance, exploring which input data led to a given query result, has proven
to be an important functionality in many domains such as scientific data management,
workflow systems [D+07] and relational database systems [CT09]. Previous techniques
have been traditionally classified according to their granularity: Coarse-grained prove-
nance tracks dependencies between input and output data at a very abstract level (e.g.,
streams), whereas fine-grained provenance does so for individual data items in the input’s
data collections (e.g., tuples or attribute values).

Surprisingly, in the area of data stream management systems (DSMS), there has been little
work beyond coarse-grained provenance (e.g., tracking the sensor sources from which
a data item originates [V107, LT10]). Recently, Huq et al [H10] have proposed to
achieve fine-grained stream provenance by augmenting coarse-grained provenance with
timestamp-based data versioning, focusing specifically on query result reproducibility at
reduced provenance metadata storage cost.

In this position paper we show that in fact many diverse stream processing applications
require fine-grained provenance, we broadly identify the main challenges involved in pro-
viding such support, and outline an approach to address these challenges in a scalable
way.

Use case Provenance generation Provenance retrieval
Relevant events & | Lifetime Retrieval Response
queries times
Ad-hoc human | all events (events of in- | time-bound iterative drilldown & | (milli)seconds
inspection terest not known before- | (minutes to | point queries
hand) hours)
Stream query | selected queries & | debugging ses- | lookup & replay & in- | (milli)seconds
debugging events sion teractive drilldown
Indicator-based | selected queries, all | retention period | Point & Analytic | offline
assurance events for indicators queries
Event ware- | selected queries, all | application- Analytic queries offline
housing events dependent

Table 1: Provenance Use Cases and Requirements

2 Motivation and Use Cases

Event stream processing has recently been gaining attraction in applications that not only
need to deal with large amounts of observed data, but also require the ability to trace
an output data item generated by the DSMS back to the input data that contributed to
its existence. Table 1 summarizes the result of a survey that we performed to identify
data stream applications which require fine-grained provenance [Ft10]. Due to space
limitations, we will only discuss the first use case in more detail and for the rest give brief
summaries.

Ad-hoc human inspection: In monitoring and control of manufacturing systems, sensors
are attached to machines and to key points along a supply chain as well as on the support
infrastructure. Sensor readings are processed by a DSMS in order to detect critical situa-
tions such as machine overheating or low inventory. These detected events are then used
for automatic corrections and also to notify the human supervisors who need to assess the
relevance of these events. To do so, the human operators need to understand from which
inputs these events where derived (i.e., the individual temperature readings). This requires
fine-grained provenance for events. Because of the interactive nature of human inspection,
the original events and their provenance become relevant only for short periods of time,
but should be provided efficiently to enable interactive drilldown.

If the DSMS outputs a machine overheating alarm event, the user would want to under-
stand which sensors measured high temperature values.

Stream query debugging & diagnosis: The high complexity of streaming queries re-
quires support for diagnosing system behaviour, up to the scope of events or even at-
tributes. Provenance helps in exploring the computational steps and the data that led to an
observed result and in understanding how errors have propagated. The scope of inspection
can be limited to particular queries or events of interest.

Indicator-based assurance: Monitoring and control systems often adhere to strict ac-
countability requirements and need to provide proof for correct operations, which are ex-
pressed as indicators. Provenance helps to establish the validity of these indicators by

providing the input events and computations they are based on.

Event warehousing: Event warehousing is used to collect raw and derived event streams
for mining and analysis. Provenance exposes how events became part of the warehouse.
Full provenance needs to be captured to allow complex analysis over such data.

The use cases summarized above clearly show that fine-grained stream provenance is a
critical requirement in several important application domains, each of which pose a diverse
set of requirements in terms of the generation, storage, and retrieval of provenance.

3 Challenges and Opportunities

In this section, we provide a discussion of the challenges that have to be addressed to be
able to extend a DSMS with efficient support for fine-grained provenance.

Infinity, Performance, and Aggregation: The key challenges for fine-grained prove-
nance for data streams stem from the combination of infinite data, high performance re-
quirements and the prevalence of aggregating operators.

Since data streams can potentially be infinite, we do not necessarily have a full view on
all items of a stream (e.g., some items may have not appeared yet). Moreover, it may
be impractical or even impossible to preserve all seen items for later processing. These
problems are often further aggravated by the strict performance requirements set up by
streaming applications, including high data rates and low latency. In addition, typical
streaming workloads combine multiple events into one, e.g., by aggregating or inferring
higher-level events and thereby reducing the load on downstream operators. Fine-grained
provenance needs to represent information about all contributing data items from the input,
thus negating many of these savings.

The high performance requirements of DSMS call for efficient provenance generation that
only instantiates complete provenance information when it is actually requested. Yet com-
puting provenance information lazily, i.e., only when it is requested, is not a good strategy
for DSMS, because access to the input data is required to compute the provenance of an
output data item and naive storage of the complete input is unfeasible. Eager generation
of provenance for all outputs does not solve this problem, because the size of fine-grained
provenance allows only for short-time storage of this information. Limited access to the
input data also restricts the direct applicability of standard optimizations for propagation
based approaches for provenance generation. A propagation-based approach computes
provenance by propagating annotations through the operators of a query that represent
partial provenance information. In relational systems these approaches can be optimized
by propagating, e.g., only the identifiers of input data items in the provenance of an output.
If necessary, the complete input data items represented by these identifiers can be recon-
structed from the input data, which is not necessarily available for DSMS. Coarse-grained
source provenance tracking mostly ignores these challenges, since, given the small size of
information, such as the sensor or stream it is derived from, it is reasonable to annotate a
data item with coarse-grained provenance.

Non-determinism: Some mechanisms applied by DSMSs to cope with issues like high in-
put rates (e.g., load shedding or approximations), unpredictable behavior of input sources
(e.g., delays or disorder), and certain operator definitions (e.g., windowing on system
time), may lead to non-deterministic behaviour. The non-deterministic nature of some
DSMSs severely restricts the use of some of the standard techniques developed for database
provenance for these systems. For instance, query rewrite techniques usually require re-
producibility of query results to deal with operations like aggregation.

Order: In contrast to the set or bag model of relational databases, data streams are typi-
cally modeled as ordered sequences, requiring a provenance model that incorporates order.
This ordering, however, can be exploited to compress provenance information (see Sec. 4).

In summary, most of the challenges for developing a provenance-enabled DSMS stem
from the transient nature of streaming data, its performance requirements, and the non-
determinism introduced to deal with high input rates and infinity. A major challenge is
to find a solution that balances the amount of data needed for provenance representation,
efficiency of provenance generation, and performance of provenance retrieval.

4 Solution Outline

We now present an approach to integrate provenance support in a DSMS, that addresses
the challenges outlined in Section 3. We strive for an eager propagation approach that
generates compressed provenance with low overhead. The provenance of an output is
modeled as a set of tuple identifiers, while keeping the original data items at the sources or
inside the query plan as long as they are needed for provenance retrieval. These identifier
sets will then be used to retrieve and reconstruct the complete input data items in the
provenance.

Propagation: Instrumenting the physical operators of a DSMS to propagate identifier
sets can be done very efficiently as long as the number of input items from which an
output is derived from is small. However, as discussed in Section 3, typical DSMS query
processing involves operations that compute a relatively small number of outputs from a
large number of inputs, i.e., we can expect the typical provenance of such queries to be
too large to be processed in this way. Fortunately, the relationship between an output data
item and its provenance follows specific patterns based on the operators used in the query.
These patterns can be used to apply very effective and specialized compression techniques
to reduce the load on the system. For example, a prevalent windowing method applied
by DSMS is sliding windows of fixed size. Given that streams are ordered, the content of
such a window can be represented as a single interval. If the slide is relatively small, the
provenance of two subsequent data items will overlap to a large extent. Thus, it may be
beneficial to store only the differences between the provenance of subsequent outputs.

Reconstruction for Retrieval: If provenance information is requested by a user, the input
data items in the provenance have to be reconstructed from the set of identifiers used to
represent the provenance. Obviously, this step needs access to the input data. As discussed
before, storing all the inputs for an unlimited amount of time is not feasible. Thus, we en-

vision an approach that stores only these parts of the input that belong to the provenance of
an output and purges inputs and provenance data using backpropagation of the computed
provenance and e.g., timeouts, driven by the application needs outlined in Section 2.

Covering Interval Compression: A more radical approach to reduce the overhead caused
by provenance generation would be to only propagate covering intervals during regular
query execution. Instead of computing the complete provenance of an output, we only
compute a (minimal) continuous subsequence (represented as a covering interval) from
the input that is guaranteed to contain all data items from the provenance. This approach
has the advantage of reducing the provenance generation overhead during the execution
of streaming query to a constant factor. However, this comes at the price of additional
computational cost during retrieval and additional overhed in order to provide the infor-
mation on which input data to keep. At retrieval time we have to compute the actual
provenance by feeding the input from the covering interval into a copy of the original
query network. Clearly, this approach is not applicable to queries with non-deterministic
behaviour. Creating a copy of the network does provide room for additional architecture
options, in particular in distributed settings: The copy does not need to be run on the same
nodes as the DSMS, but can be instantiated in a warehouse or on-demand in a cloud-style
setting.

5 Conclusions

In this work we motivated the need for fine-grained provenance in DSMS, discussed the
challenges involved with supporting this kind of functionality, and outlined a solution. The
conflicting requirements of precision and performance require a comprehensive approach
that carefully trades off expressiveness with a moderate overhead during processing and
retrieval, providing ample opportunities for research.

References

[C+09] James Cheney et al. Provenance in Databases: Why, How, and Where. Foundations and
Trends in Databases, 1(4), 2009.

[DT07] Susan Davidson et al. Provenance in Scientific Workflow Systems. IEEE Data Engineering
Bulletin, 32(4), 2007.

[FT10] Peter M. Fischer et al. Stream Provenance Use Cases. Technical report, ETH Zurich, 2010.

[H"10] Mohammad R. Huq et al. Facilitating Fine Grained Data Provenance using Temporal Data
Model. In DMSN, 2010.

[LT10] Hyo-Sang Lim et al. Provenance-based Trustworthiness Assessment in Sensor Networks.
In DMSN, 2010.

[VT07] N.N. Vijayakumar et al. Tracking Stream Provenance in Complex Event Processing Sys-
tems for Workflow-Driven Computing. In EDA-PS Workshop, 2007.

