
Poster: Distributed Streaming Reconstruction of
Information Diffusion

Peter M. Fischer Io Taxidou Bernhard Lutz Michael Huber
{peter.fischer,taxidou,lutzb,huberm}@cs.uni-freiburg.de

University of Freiburg, Germany

ABSTRACT
Recent advances in social media have triggered a massive engage-
ment of user population: a large part of people’s lives has shifted
to social media platforms and real events are reported while they
are happening (e.g. in Twitter). As a result, such platforms have
become an important source of information, being used by profes-
sionals as well, e.g. journalists, for fast access to news and events.
Social media maintain an underlying network of social connections
over which such information propagates. Information diffusion in
social media has attracted attention, by analyzing how information
is propagated from user to user and who is influenced by whom.
Given the scale and speed of such information, systems that can
keep up with such fast rates are required. In this poster, we present
a system for real time reconstruction of information diffusion that
encompass the challenges of analyzing fast data streams combined
with large social graphs.

CCS Concepts
•Information systems → Data streams; Stream management;
•Theory of computation→ Streaming, sublinear and near lin-
ear time algorithms; Distributed algorithms; •Human-centered
computing→ Social network analysis;

Keywords
Information Diffusion; Realtime social media analysis

1. INTRODUCTION
Modern social media like Twitter or Facebook encompass a

significant and growing share of the population, which is actively
using it to exchange messages. This has a profound effect on the
way news, events and all kind of information are spreading in
terms of frequency, reach and speed. Given its broad coverage
of the world as well as its fast reaction times, social media acts
as a powerful ”social sensor”. Driven by this relevance, there
is significant interest in performing fast, scalable and thorough
analyses. Particularly, assessing the relevance and trustworthiness
of a piece of information in a timely way is a key challenge.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

DEBS ’16 June 20-24, 2016, Irvine, CA, USA

c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4021-2/16/06.

DOI: http://dx.doi.org/10.1145/2933267.2933294

1

Social Graph Cascade

Stream of (filtered)
messages

Cascade 1 Cascade 2

 [....] M(U1)

M(U2)

M(U3)

M(U4)

M(U5)

U1

U2 U3

U4

U5

Figure 1: Streaming Influence Inference

Consider the user case of an online journalist. In order to take
advantage of the rapid update rates, the huge amount of information
and the coverage of events while they are happening, journalists
need fast and accurate information diffusion analysis: 1) under-
standing how information reaches them, 2) what is their own impact
after publishing, 3) detecting the full diffusion process and assess
the relevance of trends, events and moods.

In order to tackle such a use case, systems that can derive such
influence in real-time are needed. Information in social media
arrives in fast rates, reaching virality (millions of messages) in
short time and affecting a large part of the population. In order to
keep up with the stream of messages, incremental and distributed
computations are required. Complementary, given the need to trace
information diffusion and identify who is connected with whom,
processing the social graph in a fast way becomes a necessity.
Considering the current sizes of social graphs (320M active users
in Twitter), partitioning and distribution need to be performed in
such a way that quality of results is not affected.

2. RECONSTRUCTING CASCADES
Although there is related work on how to model [3], recon-

struct [1] and analyze the properties [11, 5] of information diffusion
in term of “cascades” (temporal graphs with users as nodes and the
spread/influence as edges), there is almost no research on how to
perform such analyses on real-time in the presence of both very
fast streams and huge social graphs.

In previous work [9], we have developed a single-site, incremen-
tal algorithm that can reconstruct information cascades containing
retweets, i.e., explicitly forwarded short messages on Twitter. Ex-
tended versions of this algorithm are presented here to outline the
challenges of reconstruction and possible improvements.

The algorithms handle retweets, since they constitute a common
vector for information diffusion. Twitter, however, includes only
information on the original message of a retweet, but not on the
intermediate steps or the full cascade. Since it makes only minimal

assumptions on the model and data - such as order of exposure
and social graph connectivity as carrier, the algorithm is also suited
to reconstruct other types of diffusion, e.g. hashtags where the
grouping of messages is much weaker. The idea core idea (as
shown in Figure 1) is to correlate the stream of messages (and
the users that emitted such messages) with the underlying social
graph. Influence edges -coloured in red over the social graph- are
derived when a user emits a message and is connected via the social
graph to users who previously also emitted this content. In Figure 1
we see that when user U4 emits a message two of his connections
U2 and U3 have emitted the same message before, as a result we
generate two influence edges that connect U4 with U2 and U3.

A naive implementation of this idea would have cubic complex-
ity: For each newly arriving message Mn+1 we need to check if
the user Un+1 who created it is connected to any of the users U1

to UN who created the previously arriving messages M1 to MN ,
where either the user has K connections or each of these users has J
connections. Within the scope of this work we only consider direct
connections, but for future research multiple hops may be relevant
in order to compensate for missing information. Similar to join
processing, we can now exploit indexing and domain knowledge:
the order among the prefix or the connections may not matter, so
we can treat them as set and get efficient containment checks. This
leads to two algorithm variants that are shown in Figure 2): The
first variant treats the follower connections of U1 to UN as sets
and iterates over the prefix of messages seen so far (M1 to MN)
to check if Un+1 is contained in any (or several) of these sets.
The second treats the users in the prefix (U1, ..., UN) as a set and
iterates over the friend connections of Un+1 to check if any of them
is contained in the set. Clearly, the former works better for small
cascades with heavily popular users, while the latter works best
with large cascades of not-so-well-connected users. Variants of
these algorithm can switch between these iteration types according
to the relative size of each of these sets and the iteration targets,
since both the cascade sizes and the connection set sizes are heavily
skewed in practice. This computation provides incremental results
(as each newly arriving message can be handled individually) at
high speeds. In [9] we used prefix iteration and observed that the
complete reconstruction of all influence paths in a cascade with
around 10K messages is completed in less than 5 seconds.

Problem Statement and Challenges
Since we want to construct cascades on real time on all possible
users we need to address the data scale and rapid rates. In periods
of heavy traffic, hundreds of thousands of cascades are taking place
in parallel, consisting of up to hundred of thousands or millions of
retweets. Complementary, the social graph consists of hundreds of
millions of users with dozens of billions of edges; clearly querying
such a graph for real-time computations creates a considerable
overhead, as its raw size by far exceeds the RAM available to
commodity systems.

In turn, the main bottleneck of these algorithms is the size of
iterations and the access latency to the sets. For the latter, we
observed that even in the centralized algorithm it is massively
affected by increased access latency. Switching from a hash- based
approach to a sorted-list-based approach (in order to save space)
gave slowdowns by more than an order of magnitude. In turn, a
first attempt of distributing only the data by utilizing a request-
response based approach to the social graph adjacency lists led to a
slowdown by three orders of magnitude.

According to our observations, when computing the influences
edges, we encounter very low selectivity in the connection sets: the
average degree of a node in the cascade is slightly above one, yet

M1 U1

M2 U2

Mn Un

...

Mn+1

Un+1

Stream of
messages

Connections
of previous

users

M1 U1

M2 U2

Mn Un

...

Mn+1 Un+1

Traversal/Iteration Identifier Set Containment Test

Stream of
messages

Prefix Iteration User Iteration

Figure 2: Reconstruction with Prefix and User Iteration

there can be massive skew (such as the outdegree of a very popular
user). The repeated access to connection sets at the beginning of
a prefix might lend itself to bulk transfer of the entire set, but
this skew might also be very costly. In other words, we need to
repetitively probe possibly large sets, while the return set is very
small. Due to the number of accesses a typical request/response
approach will incur significant additional latency, while transfer-
ring full adjacency lists can be rarely amortized.

There is not much work that combines classical streams with
large graphs; typical graph processing systems like GraphLab [7]
are efficient in iterative graph computations, but do not cater for
streams. Complementary, such a problem is not a classical stream
processing problem where a single pass over the data is desired: it
is an iterative stream processing problem where we need repetitive
access to the stream prefix (set of messages or user connections).
The only known approach is Naiad [8] which allows for iterative
computation over data streams using timed dataflows. As such,
Naiad provides strong coordination means, something that is one
of the next issues to tackle. It does, To the best of our knowledge, it
does not provide the fine-grained control over algorithm and state
distribution we are trying to achieve here.

3. DISTRIBUTED PROCESSING
Given these challenges, we aim for a distributed approach that

minimizes the access latency on the social graph, and keeps the
computational cost and number of messages to transfer low.

We follow a number of design ideas to express this distribution
efficiently: The first is to partition the set of adjacency lists in a
non-overlapping way to achieve a good scalability in terms of the
massive graph sizes. The second is to perform all iterative accesses
to an adjacency list and checking of set containment locally to avoid

{uid->
partition}

Connection Request
(cid,msgid,uid)

(cid,msgid,uid,...)

Connection Request
(cid,msgid,uid)

Connections
(cid,msgid,uid*)

Connections
(cid,msgid,uid*)

Routing

Graph
Partition

Graph
Partition

Graph Partition of
Cascade Starter

Reconstruction Result
(cid,msgid,uid)

Incoming Message
(cid,msgid,uid, ...)

Cascade
Prefixes

Cascade
Prefixes

Cascade
Prefixes

S1

S2

S3

Figure 3: Distribution of Graph Data and Processing

the latency penalties of such accesses. Taken together, these two
ideas mean that we may need to distribute the iteration over the
messages over multiple nodes. To reduce the latency and amount
of data to transfer when processing different messages at different
nodes, we take in turn three steps: a) We collect all results (and
perform the related computation) at the site of the cascade starter,
minimizing distributed operations altogether. b) We combine the
low selectivity of lookups with an adapted partitioning strategy to
minimize the amount of result data and the time to transfer. c) We
utilize stateful processing and parallel sending to reduce the size
and time of messages’ requests at the different nodes. Lastly, we
perform parallel processing to reduce the overall response times.

All theses ideas translate into the following architecture that
builds on the infrastructure we developed for the centralized algo-
rithm, as shown in Figure 3. We assign the adjacency lists of the
social graph to the processing nodes according to the partitioning;
we centrally retain information on the locations of this assignment.
Utilizing the cascade in Figure 1, let us (as an example) assign user
U2 to S1, U1 as well as U5 to S2 U3 as well as U4 to S3.

For newly arriving information in the cascade, we send a triple
of identifiers (cascade, message, user) in parallel to the relevant
partitions to perform partial computation. This partial computation
provides the part of the connections for this user that can be derived
at this partition. To gain a full reconstruction of the cascade
(containing all edges in the correct order), the partial results are
combined at the partition containing the user who started the cas-
cade. This decision is driven by the insight (also confirmed by our
previous work [9]) that such users often have significant influence
(and thus many outgoing edges) in the cascade.

The partial prefix information and the computation at each site
as well as the information to send to a site depend on the iteration
of the reconstruction algorithm: For prefix iteration, each partition
will be used to iterate over the intersection of the users in the
cascade so far and the user set present at the site. Using the
running example cascade and the allocation described before, the
connections of message M(U5) will have to be checked against
site S1,S2 and S3, since each of these sites contains users from the
prefix of the cascade (U2, U1 and U3/U4, respectively). In order

to avoid sending the (growing) prefix to the affected sites over and
over again when probing, we keep the partial prefix (intersection)
for each active cascade at each site (e.g., U3/U4 at S3). Generating
this prefix can be piggy-backed with connection checking: when
we probe for the connectedness of a user, this user is added to
the prefix at the site where its own connections reside. This way,
messages of (small) constant size are sent to the subset of set
of sites that contain users in the prefix of the cascade. For user
iteration, all potential connections of a new message can be found
at a single site, yet the full set of users active in the cascade needs to
be accessed (see Figure 3, right). We therefore collect the complete
prefix at each site involved in the cascade, and transfer the existing
prefix in bulk when a so -far inactive- site is accessed.

In both cases, each partition keeps a partial state of the compu-
tation so that the cascade can be processed in parallel. Overall,
both approaches will converge to sending all messages to all active
sites. Since these requests are performed in parallel to regular
processing, they do not significantly affect the overall latency.
Since the selectivity of these requests is very low, the response
counts (and sizes) are significantly lower, providing even less of
a bottleneck. We currently synchronize the reassembly (including
reordering and result generation) at the end of a cascade, but we
are working on more fine-grained synchronization which may also
tie into batching. Investigating the best sizes for such batching
as well as understanding the tradeoff between minimizing cost
and achieving load balancing are some of the challenges we plan
to investigate. We also need to understand for how long such a
distribution stays stable and to which extent adaptive, fine-grained
migration of connections might be needed.

Despite these significant optimizations in processing the cost, a
suitable partitioning will still make a significant difference in the
overall performance. Our problem differs from both the traditional
graph partitioning as well as as social graph partitioning for high
variance in out-degree [2]: 1) The graph partition needs to exploit
skew to ensure that interactions of users remain local. 2) The size
of a partition is not determined by the number of nodes or intra-
partition edges, but by the overall edges outgoing from users.

We aim to solve this problem using a key observation and derived
hypothesis to perform the partitioning: Past interactions [4] (also
past influence) are an important factor to assess the strength of links
in the social graph: Users who interacted in the past are more likely
to interact in the future. To exploit this idea, we have partitioned the
interaction graph of users [10] which reveals who interacted with
whom, and use this partitioning to allocate the social graph. In
our workload, these graphs are actually a byproduct of computing
influence, so we can easily collect the results and learn over time.

4. PRELIMINARY EVALUATION
So far, we have performed a set of preliminary experiments,

determining the cost increase of a single-site reconstruction. For
a deeper understanding of the cost increase and the efficiency of
our partitioning, we also investigate how many remote requests are
being issued and how many remote responses are being generated.
Since the exact time needed for requests and responses is hard to be
measured reliably, we compare the total time of performing the re-
constructing at a single site (with just the subset of the social graph
needed) against the time to perform distributed reconstruction.

The evaluation was performed on selected cascades from the
dataset we used for [9] that represent a typical diffusion workload.
We collected messages from the Twitter Streaming API from Au-
gust 3rd to September 24th 2012, using the filter terms "Olympics"
and "London2012". In total the data set contains almost 11 million
tweets, in particular 1.1 million separate retweet cascades. The
largest cascade has more than 60K retweets, around 150 have more
than 1K retweets, approximately 5000 cascades have more 100
retweets and around 45000 cascades contain 10 or more retweets.
We also used the REST API to retrieve the social graph connections
(follower information) for those users present in the cascades.
Overall, the social graph we are using contains around 4.5 million
follower lists with more than 4.8 billion edges and requires around
45GB of storage on disk.

Out of this dataset, we selected a number of cascades with dif-
ferent properties: a) individual cascades with 60K, 29K, 15K, 7K
and 3K messages. b) several collections of cascades with around
60K messages in total: i) 500 cascades at around 120msg ii) 100
cascades at around 600msg iii) 10 cascades at around 6000msg.

The experiments were performed on a Cluster of 9 machines,
each with an Xeon E5-2420 (1,9 Ghz, 6 cores) and 32 GB of
RAM. This cluster ran Storm 0.9.6 on top of OpenJDK 7 and
Ubuntu Linux 12.04 LTS (each in the 64 bit version). The Storm
topology was configured to use 1,2,4 or 8 nodes for graph partition
and reconstruction sites and one additional node to perform the
event stream loading, routing etc. All involved bolts were pinned
to specific machines using a custom scheduler. The social graph
fragments at each site are loaded when deploying the topology,
and run a single bolt with around 30 GB JVM heap at each of
the reconstruction sites. The allocation was performed using the
interaction network of this data (utilizing knowledge on the link
strength) and partitioning it using the METIS [6] framework. Given
that the dataset only contains follower information, we performed
all evaluations using prefix iteration.

Comparing individual cascades (a) clearly shows the overall use-
fulness of our approach. With one exception, the runtime overhead
was less than 5 percent of the total time when using a single site.
In the cascade with 15K messages, the main influencer is not the
starter of the cascade, but a more popular “downstream” user. In
this case, the reconstruction time increases less than a factor of two
- which is still quite usable in practice. The number of remote
responses gives a clear indication on these effects: for all cascades
except the one with 15K messages, the number of edges that are

delivered remotely is between 1.5 and 12 percent of the cascade
size. For the outlier cascade with 15K, this number even exceeds
the cascade, as a) most users are not in the starter’s partition and
b) many nodes have multiple ingoing influence edges. Expressing
the computation in a stateful manner saves a significant amount of
time and message size over repeated prefix requests, cutting the
overhead between 20 and 90 percent.

When running sets of cascades in an interleaved manner, we
compared the total completion times with the sum of the individual
reconstruction times to understand the competing effects of par-
allelism and resource contention. Generally speaking, we see a
speedup for all of these cascades when comparing against a single-
site reconstruction. This effect becomes more pronounced with
fewer and larger cascades where the total time is significantly less
that the sum of all individual reconstruction times.

Overall, the results show that the overheads of distributions are
significantly lower than those of approaches based on request/re-
sponse patterns over distributed storage or stateless computation.
Future evaluations will include a comparison against a direct im-
plementation in Naiad and further investigation on balancing com-
putation and communication.

5. CONCLUSION
Analyzing information diffusion provides important insights into

the relevance and trustworthiness of social media. Yet, very little
of the existing work has tackled the challenges of performing
information diffusion reconstruction at the scale and speed of con-
temporary social media. In this poster, we present a system and
distributed algorithm to combine high-rate message streams and
massive social graphs to infer such influence in realtime. Both
social graph information and the computation are distributed so
that communication cost is minimized and parallel computation
is increased. The preliminary performance results reveal that the
system shows great promise to address those challenges.

6. REFERENCES
[1] P. Cogan et al. Reconstruction and Analysis of Twitter

Conversation Graphs. In HotSocial ’12, 2012.
[2] J. E. Gonzalez et al. PowerGraph: Distributed Graph-Parallel

Computation on Natural Graphs. In OSDI, volume 12, 2012.
[3] A. Guille et al. Information Diffusion in Online Social

Networks: A Survey. SIGMOD Record, 42(2), 2013.
[4] B. Huberman et al. Social Networks that Matter: Twitter

Under the Microscope. First Monday, 14(1), 2008.
[5] C. Hui et al. Information Cascades in Social Media in

Response to a Crisis: A Preliminary Model and a Case
Study. In WWW (Companion Volume), 2012.

[6] G. Karypis and V. Kumar. A Fast and Highly Quality
Multilevel Scheme for Partitioning Irregular Graphs. SIAM,
20(1):359–392, 1999.

[7] Y. Low et al. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. VLDB
Endowment, 5(8), 2012.

[8] D. G. Murray et al. Naiad: A Timely Dataflow System. In
SOSP, 2013.

[9] I. Taxidou and P. M. Fischer. Online Analysis of Information
Diffusion in Twitter. In WWW (Companion Volume), 2014.

[10] C. Wilson et al. Beyond Social Graphs: User Interactions in
Online Social Networks and Their Implications. TWEB, 6(4),
2012.

[11] Z. Zhou et al. Information Resonance on Twitter: Watching
Iran. In Social Media Analytics, 2010.

