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ABSTRACT

In order to assess the trustworthiness of information on social
media, a consumer needs to understand where this information
comes from, and which processes were involved in its creation.
The entities, agents and activities involved in the creation of a
piece of information are referred to as its provenance, which was
standardized by W3C PROV. However, current social media APIs
cannot always capture the full lineage of every message, leaving
the consumer with incomplete or missing provenance, which is
crucial for judging the trust it carries. Therefore in this paper, we
propose an approach to reconstruct the provenance of messages on
social media on multiple levels. To obtain a fine-grained level of
provenance, we use an approach from prior work to reconstruct
information cascades with high certainty, and map them to PROV
using the PROV-SAID extension for social media. To obtain a
coarse-grained level of provenance, we adapt our similarity-based,
fuzzy provenance reconstruction approach — previously applied on
news. We illustrate the power of the combination by providing the
reconstructed provenance of a limited social media dataset gathered
during the 2012 Olympics, for which we were able to reconstruct a
significant amount of previously unidentified connections.

1. INTRODUCTION

Nowadays, information from social media is frequently analysed
and processed for professional use. Examples include online jour-
nalism, rumor detection, and viral marketing [10]. In all these
cases, it is important for the consumer to know the level of trust
and relevance that the information carries. An important step in the
process of determining trust of information is to expose its prove-
nance [4]. To model provenance for information diffusion on social
media, we specified PROV-SAID [14], an extension to the W3C
PROV model. Using this model, the social and influence graphs
can be represented in an interoperable way. However, automatically
reconstructing the aforementioned graphs based on the APIs that
most social media provide poses a challenge. Most current methods
are designed to only model direct, high certainty influence edges,
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caused by explicit re-emission of messages (e.g., retweets) and
combined with connections between users (social graph), in order
to unveil who was influenced by whom. This approach does not
consider the potentially large amount of inexplicit influences that
are less certain, and thus more difficult to detect automatically (e.g.,
a user adapting another user’s message, without explicitly referring
to it). In this case, the provenance must be reconstructed somehow,
unravelling the unobserved references that users are using but not
giving credit to, and revealing their influencers.

In this paper, we combine a fine-grained, high-certainty ap-
proach, with a coarse-grained, less certain approach for provenance
reconstruction. By doing this, we propose a multi-level approach
for provenance reconstruction of information diffusion on social
media. Our contributions in this paper are: 1) an approach for
creation and integration of multi-level provenance; 2) a real-world
application and evaluation of the PROV-SAID model; 3) a mapping
in order to convert input data from social media into RDF; 4) a
novel application of our previous work on similarity-based prove-
nance reconstruction in the context of social media.

2. RELATED WORK

While information diffusion in social media has received a lot
of attention, in particular its modeling [7], there is limited work
on the reverse procedure, i.e. information provenance, which is
the focus of this paper. We divide the state-of-the-art in this area in
the following categories: (i) provenance through content similarity;
(ii) provenance through social graph connections; (iii) provenance
through user profile metadata.

(i) The work of [11] focuses on tracing news and quotes (referred
to as memes) on the Web over time. The focus is on temporal
patterns, mutations (alterations) that online phrases undergo and
properties of the news’ life cycle. A subsequent work using the
same datasets and methods [13] shifts the focus on fine-grained
content alterations. In [3], we reconstructed provenance of news
articles automatically using semantic similarity. In this paper, we
adapt this approach for social media and the PROV-SAID model.

(ii) Traditional information diffusion research includes tracing
a piece of information back to its sources through social con-
nections, revealing the concepts of influence and trust among the
users involved. The work of [6] recovers information recipients
sub-graphs given a small fraction of known recipients. In [8]
unknown recipients are identified under the assumptions of degree
and closeness propensity: nodes with a higher degree and closer to
the sources are more likely to propagate information. [2] provides
a provenance reconstruction method through social connections
based on well established information diffusion models. Finally,



in [15], we automatically reconstruct information cascades that
show which paths information took, given a piece of information
that propagates over a social graph. Information cascades are
graphs that model how information is being diffused from user to
user; in other words, our approach in [15] reconstructs the paths
of users who propagate information back to the sources by finding
intermediate influencers.

(iii) Lastly, provenance can be derived through user profile
metadata, attributing relevance and trust to the information emit-
ted according to the characteristics of the contributor. The work
of [9] implements a tool for collecting such user information from
different media sites, while not providing any information on the
provenance paths and sources.

The work in this paper combines concepts from (i) and (ii)
in order to reveal provenance paths, by extending and adapting
the solutions proposed in [15] and [3]. Finally, the results are
modeled and combined in an interoperable way using the PROV-
SAID model [14], which extends the W3C PROV model [12].
PROV-SAID provides a rich description of provenance with regard
to information diffusion concepts such as: direct and indirect
derivations, copied and modified messages, and influence types
such as follow relationships and interaction influences.

3. METHOD

As highlighted in the related work and illustrated in Figure 1,
we reveal provenance paths on two levels: (1) low-level (fine-
grained), based on structure as in [15] and (2) high-level (coarse-
grained), based on content similarity as in [3]. These methods
are then combined using PROV-SAID [14]. In order to convert the
XML-based influence graph of [15] into PROV-SAID, we use the
RML mapping language [5]. RML is used in combination with a
processor to convert proprietary data — such as XML — to RDF. In
our case the data is converted to PROV-O, which is the ontology
that expresses the PROV Data Model. Note that by using RML, we
ensure that any input can be converted to PROV-O, rendering our
method interoperable and reusable in many applications.

3.1 Low-level, fine-grained provenance

To obtain low-level provenance, we build upon on our previous
work [15], that reconstructs the so-called information cascades
found in social media. Diffusion paths are reconstructed according
to who is influenced by whom given messages that propagate over
a social graph, with the assumption that users propagate identical
messages (e.g., by retweeting) and identify possible influencers.
When applied to the Twitter dataset described in Section 4, the
reconstructed information cascades comprise of retweets, where
users give credit only to the initial source of a message, not the
intermediate source that exposes the message to them. In other
words, it remains unclear which paths information took from the
sources to the recipients. Therefore, the algorithm as described
in [15] leverages the social graph in order to reconstruct the in-
termediate diffusion paths and find influencers, given the assump-
tions that information flows over the social graph and users are
influenced by their connections in order to propagate a piece of
information.

The algorithm outputs edges, directed from a tweet A to a tweet
B. For each tweet, we have access to the rweet-id, timestamp and
userid. When we map this to PROV-SAID using RML, we obtain
the following PROV-O sub-graph for each edge:

status:tweetA_id a prov-said:Message ;
prov:wasAttributedTo user:tweetA_userid ;
prov:wasGeneratedBy _:emit-tweetA_id ;
prov:generatedAtTime tweetA_time

status:tweetB_id a prov-said:CopiedMessage;
prov:wasAttributedTo wuser:tweetB_userid ;
prov:wasQuotedFrom status:tweetA_id ;
prov:wasGeneratedBy _:emit-tweetB_id ;
prov:generatedAtTime tweetB_time

user:tweetA_userid a prov:Agent
user:tweetB_userid a prov:Agent ;
prov:wasInfluencedBy user:tweetA_userid ;
prov:qualifiedInfluence [
a prov-said:FollowRelationship ;
prov:agent user:tweetA_userid . ] ;
prov:qualifiedInfluence [
a prov-said:InteractionInfluenceRelationship;
prov:agent user:tweetA_userid . ] ;

_ctemit-tweetA_id a prov-said:EmitMessage
_ctemit-tweetB_id a prov-said:EmitMessage ;
prov:used status:tweetA_id .

Note that the prefixes status: and user: referto https://
twitter.com/statuses/ and https://twitter.com/
intent/user?user_id=, respectively, and that the prefixes
prov: and prov-said: refer to their respective namespaces.
This representation of the information cascades as provenance is
now suitable to be merged with other interoperable provenance,
such as the high-level provenance described in Section 3.2.

3.2 High-level, coarse-grained provenance

To obtain high-level provenance, we consider what is missing
from the dataset generated in Section 3.1. Since the approach
in [15] only relies on relationships exposed through a social media
API, it does not consider all messages that were copied or revised
without this being tracked by the social media software (e.g., when
a user copy-pastes a message instead of retweeting it). To recon-
struct this kind of information diffusion, we adapt our approach
introduced in [3] to be usable with social media content. The core
assumption of this approach is: “if two messages are highly similar,
there is a high probability that they share some provenance”. The
adapted approach consists of the following steps:

1. remove all tracked copied messages from every information
cascade as generated in Section 3.1, keeping only the root
messages;

2. index this reduced dataset using a feature model and seman-
tic similarity function (e.g., TF-IDF and the cosine similar-
ity), and compute the full similarity matrix of all messages;

3. apply a similarity-based clustering algorithm such as Sim-
Clus [1] to divide the dataset into (possibly overlapping)
clusters of messages that all have a similarity to each other
higher than a predetermined threshold;

4. for each cluster:

o identify the oldest message as the root message of that
cluster;
e connect all other messages to the root message:
— if the message is identical to the root message,
using a prov:wasQuotedFrom relationship;
— if the message is not identical to the root message,
using a prov:wasRevisionOf relationship.

The expected result of this approach is that the vast majority
of messages will be clustered as a singleton, meaning that no
new relationships are introduced. Nonetheless, for those messages
that do get clustered together, we know that they exhibit a high
similarity. We use their temporal information to estimate their
provenance relationship, thereby enriching the dataset and expos-
ing previously hidden knowledge about the information diffusion.



Coarse-grained, High-level Provenance
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Figure 1: Overview of the integrated, multi-level provenance. The arrows for the low-level refer to prov:wasQuotedFrom for all
copied messages (retweets); for the high-level they refer to prov:wasRevisionOf for all modified messages.

When we integrate this result in the next step, we are effectively re-
connecting entire information cascades, whose connection was lost
to the social media API. Note that due to the calculation of the full
similarity matrix, this approach will have an quadratic complexity
w.r.t. the number of messages considered, so it should always be
applied on a pre-filtered dataset (e.g., a search result).

3.3 Integration of Multi-level Provenance

Because both algorithms output interoperable PROV, the inte-
gration of the two aforementioned levels of provenance consists of
simply merging the two sets of RDF statements. However, it is
important to understand the new structure this will give to the data.
We clarify how the data is enriched by the combination of the two
reconstructed provenance sets using Figure 1.

Each level of provenance differs in precision and granularity.
The fine-grained, low-level provenance is very detailed, and was
constructed with high certainty, since it consists solely of copied
messages exposed by a social media API (in our case: the Twitter
API). The coarse-grained, high-level provenance, however, was
constructed in a much less certain way, relying on semantic sim-
ilarity to reconstruct connections that were lost to the social me-
dia APIL. The two levels enrich each other, providing previously
unidentifiable connections between messages for data consumers
(e.g., social media analysts) to explore.

4. EVALUATION AND DISCUSSION

As a preliminary evaluation, we tested our approach on a dataset

gathered using the Twitter Streaming API during the 2012 Olympics.

We chose Twitter because it provides trace information for copied
messages (retweets). The dataset was collected by following the
keywords ’Olympics2012’ and ’London2012’. We limited the
dataset by only considering tweets with a certain keyword, in our
case: ’arrest’. This simulates a realistic scenario where a social
media analyst first searches for a broad keyword (e.g., a trend-
ing topic), and then investigates the information diffusion paths
among the results. Complementary, we desired to avoid messages
carrying not important information, for example: "I am watching
the Olympics". This way, we include relevant events that attract
attention both by individual users and mass media, while yielding
information cascades by being retweeted. The final dataset consists
of 9047 tweets, of which 5174 are copied messages (retweets), and
3873 are original messages according to the Twitter API.

4.1 Low-level Provenance Reconstruction

We identified 31 cascades using the low-level reconstruction
approach from Section 3.1, resulting in a skewed distribution from
5 to 1771 recorded retweets with the root tweet contained in the
dataset (out of the total of 5174 retweets). This approach has
already been thoroughly evaluated in [15], so we can safely assume
that the identified cascades are correct.

4.2 High-level Provenance Reconstruction

Using the approach described in Section 3.2, we clustered the
3873 original messages from the dataset based on their semantic
similarity. More specifically, we used the TF-IDF approach from
traditional information retrieval to model all messages as vectors,
and computed their similarity using the cosine similarity. We
then executed the SimClus algorithm described in [1]. Essentially,
SimClus divides the set of messages into clusters of messages
that all exhibit a similarity higher than a predefined threshold to
their respective cluster centre. To use the clusters to reconstruct
provenance as described in Section 3.2, the major challenge lies
in identifying the optimal similarity threshold. The threshold must
be high enough to ensure that only messages that actually share
provenance get clustered together, while it must also be low enough
to avoid that too many messages are clustered as singletons, which
would result in missed connections. Ideally, the optimal threshold
would be found empirically by analysing the precision and recall
of the provenance reconstruction approach, as it was done for news
in [3]. For this paper we do not have access to a ground truth as the
authors of [3] did. However, we can investigate the influence of the
similarity threshold on the number of clusters and their size, which
at least gives us an idea of its behaviour.

As illustrated by Figure 2, the total number of clusters is approx-
imately proportionate to the similarity threshold. This means that
if we use a low threshold, we will have a small number of relatively
large clusters. On the other hand, if we use a high threshold, we can
expect a high number of smaller clusters. When the threshold is set
to 1, only identical messages will be clustered together, and there-
fore only retweets — no modified tweets — missed by the Twitter API
will be identified. This is further confirmed by our observations of
the number of clusters per cluster size, as illustrated by Figure 3.
Here, we see that for the lower thresholds (0.3 and 0.5), the cluster
size varies highly, whereas there are less different cluster sizes for
the threshold 0.7. These observations are an indication that for the
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Figure 3: Distribution of the number of clusters per cluster size.

lower thresholds, many clusters are incorrectly merged, which will
affect the precision of the reconstruction. On the other hand, we
see that if the threshold is set too high (e.g., 0.9), that the larger
clusters are split, resulting in missed provenance relationships —
and thus affecting the recall. In all cases above 0.3, we see that
the number of singletons does not vary significantly, which means
that messages that do not belong together will most likely not be
clustered together, regardless of the similarity threshold. While
it is too early to make a definite decision regarding the optimal
threshold without a content-based evaluation, these results lead us
to expect that the optimum will be somewhere in the vicinity of
0.7. Using this threshold (0.7), we generated a set of 3094 clusters,
and used the 206 non-singletons to reconstruct 879 provenance
relationships (32 quotations and 847 revisions).

In other words, when we integrate this high-level provenance
with the 31 cascades discovered by the low-level provenance re-
construction, we effectively introduce 879 new connections that
were previously unidentified. This creates much larger graphs for
the consumers of the provenance data to analyse, and provides an
enriched view on the information diffusion process. The entire
reconstructed provenance graph can be downloaded at http:
//semweb.mmlab.be/ns/prov-said/cikm2015.ttl

S. CONCLUSION AND FUTURE WORK

We proposed a method to reconstruct and integrate provenance
on two levels of granularity: low-level through information cas-
cades, and high-level through similarity-based clustering. This
method augments the provenance of messages on social media,
especially when there is external influence not deriving from one

single source (in our case: Twitter) or for copied messages that
do not give credit to their initial contributors. In these cases,
an obvious influencer is not exposed by the social media APIL
Such messages do not produce large cascades resulting in low-level
provenance, but are clustered together in the high-level provenance
reconstruction of our approach.

For future work, we will extensively evaluate our approach on
diverse datasets and combined data from different social media.
Additionally, we will improve our method by applying more suit-
able metrics of message similarity for micropost text.
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