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ABSTRACT
The advent of social media has facilitated the study of information
diffusion, expressing information spreading and influence among
users on social graphs. In this demo paper, we present a system for
real-time analysis of information diffusion on Twitter; it constructs
the so-called information cascades that capture how information
is being propagated from user to user. We face the challenge
of managing and presenting large and fast-evolving graph data.
For this purpose, we have developed methods for computing and
visualizing information flow dynamically, offering rich structural
and temporal information. The interface offers the possibility to
interact with the dynamic, evolving cascades and gives valuable
insights in terms of how information propagates on real-time and
how users are influenced from each other.

1. INTRODUCTION
Social media provides rich means of interactions among people

in which they create, share, and exchange information. The advent
of social platforms and the constant engagement of users on them
provides a treasure of information for analysis. A crucial area that
has recently gained attention [3] in the data management com-
munity is the study of information diffusion, i.e. tracing, under-
standing and predicting how a piece of information is spreading in
social networks. Studying information flow yields valuable insights
in the interaction patterns of users and provides opportunities to
identify user roles like e.g., opinion leaders or spammers. These
interactions are represented as information cascades which are
temporal sub-graphs of the underlying social graph. They provide
a model of information diffusion, where the nodes correspond to
users and edges reveal "who was influenced by whom". Real-time
analysis of information diffusion has particular interest for many,
currently not well-supported use cases: Online journalists need to
understand timely how to evaluate the sources of their information,
while celebrities and politicians need to react quickly to public
opinion, rumor spreading and the "echo" on their own publications.

A valuable source for studying information diffusion is Twitter
which maintains a social graph of friends and followers. The act
of retweeting, which is forwarding another user’s tweet by giving
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credit to it, facilitates explicit information diffusion from user to
user. In many countries, Twitter provides a relevant and repre-
sentative coverage of the population, making it a social sensor.
Finally, the fact that messages and social graph is open to some
extent makes such analysis viable in practice.

In this demo, we present a system that reconstructs and visualizes
information cascades in Twitter with the following contributions:
(1) We provide an infrastructure for our algorithm [4] that recon-
structs information cascades on real-time. (2) We develop methods
to visualize large cascades with collapsing techniques in order to
understand their structure and properties. (3) We visualize temporal
and geographical distribution of the cascades, as they grow in time.

There is only limited work on this kind of problem: reconstruct-
ing large information cascades on real-time is not a trivial task un-
der data limitations and lack of observable diffusion paths [4]. Ad-
ditionally, visualizing cascades of thousands of nodes in a dynamic
way, that is assigning edges of user interactions while they are
happening, is an equally challenging problem. Closest to our work
is an online application called "Whisper" [2] which expresses the
diffusion process in a coarse-grained manner. It contains temporal
and spatial characteristics with lightweight sentiment analysis, but
does not provide the accuary and level of detail that we aim for.

In Section 2 we provide an overview of the cascade reconstruc-
tion algorithm, followed by the techniques for visualizing large
cascades in Section 3. We describe the components of the sys-
tem infrastructure in Section 4 and provide a short demo tour in
Section 3. Lastly, Section 6 concludes and gives future directions.

2. ALGORITHM AND MODELS
In order to facilitate the understanding of challenges for com-

puting information cascades, we briefly discuss the algorithm pre-
sented in [4]. Since diffusion paths are almost never explicitly
available, the algorithm takes the occurrence of specific informa-
tion propagated in messages as well as the social graph connections
into account. Based on this information, it derives possible likely
influencers and thus the diffusion paths. For the specific case of
Twitter retweets, only a reference to the initiator of the retweet cas-
cade is provided, but no information on intermediate influencers.

The core part of this algorithm is the influence assignment mech-
anism, expressing the models proposed in [1]: In the naive case,
when a user retweets a message, we assume that was influenced by
all of his friends who (re)tweeted the same message in the past. For
that, we need to access all follower data of predecessor users that
have retweeted, which leads to a quadratic complexity with regard
to the cascade size. Yet, identifying all possible edges (influencers)
is not needed. The algorithm therefore currently supports four
different influence models in order to trim influence edges. We can
assume that every user who retweets is influenced by only one of



Figure 1: Visualized Information Cascade

his friends: (1) the one with the most followers or (2) most retweets
or (3) the most recent influencer or (4) the least recent influencer.
According to the influence model the semantics of influence change
which has an impact on the structure of the cascade.

3. VIZUALIZATIONS
The cascade visualization interface is depicted in Figure 1. Our

goal is to show the high level structure of the cascades as they
grow dynamically on time. The visualization includes nodes and
edges only, since any other additional information on the cascades
would be obscured for large sized ones. The interface provides
four complementary aspects: (1) dynamic representation of the
structure of large, evolving information cascades, (2) real-time cas-
cade distributions, like temporal activity and geographical spread
(3) relevant information for users participating in the cascade,
when the corresponding node is pointed with the mouse, like user
name, number of followers and location and (4) information for the
original tweet, like text and number of retweets.

While there are many solutions to visualize static graphs, very
few solutions exist for dynamic, large-scale graphs. Large cascades
can grow up to hundred of thousands of interactions, which obscure
the overall structure and dynamic behavior when visualized. The
dynamic behavior of cascade graphs demands that updates are inte-
grated instantaneously and properties are recalculated at the same
time. To address these issues, we developed our own web-based
visualization techniques for dynamic, large-scale cascade graphs
which perform adaptive collapsing of node groups. The key idea of
collapsing is based on the following observation: There is a skewed
distribution in the number of social media users who influence
their friends to react further to their messages; the majority of
users fail to influence their friends, while very few users trigger
many reactions. This creates many "leaf" nodes that stop the in-
formation flow, e.g., retweeters that trigger no additional reactions.
Combining/collapsing these leaf nodes with their "parent" into a
"supernode" provides a first step to significantly reduce the number
of visible nodes while not losing relevant graph structure.

Given the complex structure of information cascades, we devel-
oped two more aggressive collapsing strategies that gradually shed
the structure, but retain most relevant information in the nodes: Two
level collapsing aggregates the leave nodes of the cascade in their
direct parent node iteratively, while the depth of the collapsed sub-
tree should not exceed two levels. This method takes as a parameter
the number of possible collapsed nodes in every parent node. The
multilevel collapsing works iteratively as the two-level collapsing,
without any sub-tree depth restriction. It is parametrized only by
the number of possible collapsed nodes.

Figure 3: Architecture

The size and the color of the nodes carries additional information
as illustrated in Figure 2: The size of each node is proportional to
the number of the collapsed nodes it carries. The number in the
core of nodes shows the depth of the sub-tree that is collapsed.
The red node in the middle is the root, while the green outlined
nodes are leaves and yellow ones are bridges that connect two sub-
graphs. Grey nodes have one child collapsed while blue nodes
have more than one child collapsed. Since real-time reconstruc-
tion works on possibly incomplete data, nodes with no observable
parent are assigned to the root and highlighted in black. Figure 2
shows a cascade of 34.221 nodes without any collapsing, with two
level collapsing where 1.095 visible nodes remain and multilevel
collapsing with 212 visible nodes. For the last case, the parameter
of sub-tree size is set to 5. We can achieve even more aggressive
collapsing if we increase this parameter. We can observe that the
high level structure, for example the two big components connected
by a bridge, is not being lost.

These strategies were implemented on top of the D3 Javascript
graph visualization library1, supporting all major browsers. We
can successfully represent cascades with up to 60K nodes. The
selected cascade for dynamic reconstruction is streamed using Web
Sockets in the form of edges, containing the incoming node and
the parent node. The influence model described in Section 2
is selected and used accordingly during the reconstruction. The
nodes that are going to be collapsed according to the collapsing
strategy are integrated directly into their parent nodes. Newly
visible nodes take dynamically their place and the cascade graph is
being reorganized. While the nodes are arriving, their geographic
location is pinpointed into a map. At any time during the dynamic
reconstruction, the user can decollapse and collapse again nodes
by clicking at them or change the collapsing strategy dynamically.
Selecting a collapsed node will show the location of all collasped
leafs in addition to the parent, so that possible locality of influence
can be seen. When the reconstruction is finished, the cascade can
be replayed back and forth, stopped and paused while the temporal
distribution is depicted.

4. SYSTEM
The system we present in this demo is based on the architecture

shown in Figure 3. The dynamic nature of visualization and
reconstruction require matching dynamic data for messages and
social graph. We therefore need to perform (1) data collection
and filtering and (2) historic data storage and retrieval. Based on
this data, we can perform (3) computations for streaming cascade
reconstruction using the algorithm presented in Section 2. This

1http://d3js.org
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Figure 2: Collapsing Techniques

algorithm is implemented on top of Storm2, a scalable, distributed
data stream processing platform suitable for real-time computa-
tions. The results are then streamed to the (4) front-end visual-
ization, which was described in Section 3. We therefore briefly
present components (1) and (2) in this Section.

(1) Input Subscription Stream and Social Graph Manager: We
used Twitter as a source for messages and social graph information.
The input subscription stream manager serves as an interface to the
different streams provided by Twitter, like the sample stream that
is 1% of the public stream or filter subscriptions for terms/hashtags
and users. Specific cascades can addressed by a combination of
these means. The subscription management delivers the (filtered)
tweet steams to the downstream processing components and stores
it into an archive for offline evaluation.

The input subscription social graph manager retrieves the so-
cial graph data in the form of followers or friend lists needed
for reconstruction. We implemented a crawling facility and we
maintain a cache of crawled social graph parts. An updating facility
is also used in order to keep the social graph updated and in
synchronization with the current cascades. Given its sheer size
(100s of millions of users with their connections), we have to
judiciously perform retrieval to have access to relevant and up-to-
date information based on observed relevant activity.

(2) Social Graph management and maintenance: In order to
reconstruct with with low latency, the algorithm presented in Sec-
tion 2 needs efficient access to the huge social graph. To provide
these means, we are working on distributing of the graph which
exploits the locality of social interactions. For the purpose of
the demo, in which we have a limited amount of users, we pre-
load relevant part of the social graph for reconstruction into main
memory and load the remainder on demand.

5. DEMO TOUR
For the demo, we plan to show our cascade reconstruction infras-

tructure on a single machine, with offline-pre-recorded and online-
live social media streams.

In the offline scenario, we will provide the ability to select pre-
recorded cascades, load the corresponding social graph fragment
and perform the reconstruction. In the online scenario, we will
choose among the currently most active running cascades and trace
messages while they are arriving. Since we cannot pre-determine
2http://storm.incubator.apache.org/

the part of the social graph needed for reconstruction, it will be
loaded on demand and access will be slower in this case. We
are currently working on distributing computation and social graph
storage in such a way that real-time reconstruction is achieved for
a full social graph by exploting interaction locality.

In both cases, we will visualize the reconstructed cascades with
different collapsing strategies as described in Section 3. These
visualizations will provide a static and a dynamic mode. Static vi-
sualizations show the complete cascade, as to provide an overview
on the complete structure. Dynamic visualizations show how the
cascades evolve over time with the option of dynamic collapsing. In
addition to the structure, the temporal and geographical distribution
are visualized on a map.

For both demonstration scenarios, cascades are going to be
reconstructed using different influence assignment models as de-
scribed in Section 2. We can observe how the topology of the
cascade changes by selecting a different influence model.

6. CONCLUSION AND FUTURE WORK
We present an innovative system for real-time analysis and visu-

alization of information cascades in Twitter, providing immediate
insights on how information is spreading in social media. The front
end provides rich structural, temporal and user-oriented informa-
tion while cascades are unfolding dynamically. We devise visual-
ization techniques in order to present big cascades by preserving
relevant information and the underlying structure. Information
cascades are reconstructed with different influence models while
the demo tour supports both offline and online modes. Currently
we are working on distribution of the social graph for faster access
on the online scenario, where data is not known in advance.
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