Efficient Stream Provenance via Operator Instrumentation

BORIS GLAVIC, 1ilinois Institute of Technology

KYUMARS SHEYKH ESMAI L|, Technicolor

PETER M. FISCHER, University of Freiburg

NESIME TATBUL, Intel Labs and Massachusetts Institute of Technology

Managing fine-grained provenance is a critical requirement for data stream management systems (DSMS), not only to address
complex applications that require diagnostic capabilities and assurance, but also for providing advanced functionality such
as revision processing or query debugging. This paper introduces a novel approach that uses operator instrumentation, i.e.,
modifying the behavior of operators, to generate and propagate fine-grained provenance through several operators of a query
network. In addition to applying this technique to compute provenance eagerly during query execution, we also study how
to decouple provenance computation from query processing to reduce run-time overhead and avoid unnecessary provenance
retrieval. Our proposals include computing a concise superset of the provenance (to allow lazily replaying a query and
reconstruct its provenance) as well as lazy retrieval (to avoid unnecessary reconstruction of provenance). We develop stream-
specific compression methods to reduce the computational and storage overhead of provenance generation and retrieval.
Ariadne, our provenance-aware extension of the Borealis DSMS implements these techniques. Our experiments confirm that
Ariadne manages provenance with minor overhead and clearly outperforms query rewrite, the current state-of-the-art.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query Processing
Additional Key Words and Phrases: Data Streams, Provenance, Annotation, Experiments

ACM Reference Format:

Glavic, B., Esmaili, K. S., Fischer, P., and Tatbul, N., 2014. Efficient Stream Provenance via Operator Instrumentation. ACM
Trans. Inter. Tech. V, N, Article A (January YYYY), 22 pages.

DOI : http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Detecting events on streaming data is a common task in areas like environmental monitoring, smart
manufacturing, compliance and security checking as well as social media [Alvanaki et al. 2012].
Similar to other applications on data streams, event detection requires diagnostic capabilities and
support for human observation [Ali et al. 2009; Glavic et al. 2011]. These requirements lead to
the common need to provide “fine-grained provenance” information (i.e., at the same level as in
database provenance [Cheney et al. 2009]), to trace an output event back to the input events con-
tributing to its existence. There is a significant overlap in concepts, methods and implementations
between event detection on streaming data and generic stream processing. Thus, it is often possi-
ble to rely on the same foundations for provenance. In this paper, we propose efficient fine-grained
stream provenance management techniques that are generally applicable to streaming applications
including real-time event detection.

1.1. Motivating Applications
We now provide a short overview on applications and technical means for streaming event detection.

Author’s addresses: B. Glavic, Computer Science Department, Illinois Institute of Technology, Chicago, Illinois, USA; K.
Sheykh Esmaili, Technicolor R&I Lab, Paris, France; P. M. Fischer, Computer Science Institute, University of Freiburg,
Germany; N. Tatbul, Intel Labs and MIT, Cambridge, Massachusetts, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions @acm.org.

© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOT : http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 B. Glavic et al.

Clin(1).min(ri

o | - _

— ‘count _distinct (min_l)
[U] 15, '1'|-C>-|0' 1>90 |—<:)— ’ o, S

5 Clin(1) min(ri), | _® O P13 minsi o val(2,1,min_1i) O Geount 11
G 9 ’

0O e #6.1)

Fig. 1: Running Example

Trend and Story Detection in Social Media: Social media like Twitter or Facebook, that have
reached a significant coverage of population, act as social sensors [Sakaki et al. 2010], providing in-
sights into emerging and ongoing events that have not yet been noticed by traditional media. Given
the ever-increasing volume of interactions on such social media (500 million Twitter messages per
day') and the required short response times for event detection, scalable streaming approaches are
required. The community is addressing these challenges with a large number of algorithms and sys-
tems, e.g., EnBlogue [Alvanaki et al. 2012]. Assessing correctness, reliability and trustworthiness
of such detected events is of utmost concern for the general public, news media as well as decision
makers such as politicians. Therefore, an ability to trace back events to their influencing factors
is of great benefit. Since many of these approaches utilize common stream processing techniques,
provenance for them can easily be mapped onto generic stream provenance techniques.

Sequence Pattern Matching: Many types of complex, higher-level events can be modeled as a
sequence of lower-level events, additionally correlated on their values or times. Examples for such
sequence-based event detection are fraud detection or financial market analysis [Lerner and Shasha
2003]. Models and implementations for such complex event processing systems (aka CEP) found
great interest in both academia and industry. We observe two common implementation approaches
which both provide expressiveness and performance: 1) In systems like ZStream [Mei and Madden
2009], the sequencing operations can be expressed using standard streaming operators. 2) In systems
like SASE [Agrawal et al. 2008] the correlations are expressed as an automaton. Since these CEP
systems work on sensitive applications, deal with high volumes and rates and express complex
correlations, there is also significant need for tracing, assurance and explanation. Provenance for
CEP systems based on standard streaming operators can directly be expressed with the Ariadne
approach. Adaptations of our models can also be used for automata-based approaches. However,
we would have to adapt provenance computation to this type of execution model.

Environmental Monitoring and Sensor Data Management: Sensor systems have become small
and cheap enough to be routinely deployed in many environment monitoring scenarios and in pro-
cess monitoring. The means to transfer and process data from these sensors are also affordable and
reliable enough to permit continuous monitoring. Sensor readings are processed by a DSMS in or-
der to detect critical situations such as quality deviations, overheating of equipment, or fires. These
detected events are then used for automatic corrections as well as for notifying human supervisors.
Human supervisors need to understand why and how such events were triggered to be able to as-
sess their relevance and react appropriately. In addition, these observations may be used to compute
higher-level indicators and compliance with service-level agreements.

As a concrete example from this domain, Figure 1 shows a simplified continuous query that
detects overheating. Two sensors feed timestamped temperature readings to the query. Each sensor
stream is filtered to remove outliers (i.e., temperature ¢ above 350°C). The stream is aggregated by
averaging the temperature over a sliding window of 3 temperature readings to further reduce the
impact of sudden spikes. These data cleaning steps are applied to each sensor stream individually.
Afterwards, readings from multiple sensors are combined for cross-validation (i.e., a union followed
by a sort operator to globally order on time). The final aggregation and selection ensure that a fire
alert will only be raised if at least three different sensors show average temperatures above 90°C
within 2 time units. In this example, the user would want to understand which sensor readings

1 https://blog.twitter.com/2013/new-tweets-per-second-record-and-how

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:3

caused an “overheating” event, i.e., determine the tuples that belong to the fine-grained provenance
of this event. We will use this example as our running example throughout the paper.

1.2. Challenges and Opportunities

Tracking provenance to explore the reasons that led to a given query result has proven to be an
important functionality in many domains such as scientific workflow systems [Davidson et al. 2007]
and relational databases [Cheney et al. 2009]. However, providing fine-grained provenance support
over data streams introduces a number of unique challenges that are not well addressed by traditional
provenance management techniques:

— Online and Infinite Data Arrival: Data streams can potentially be infinite; therefore, no global
view on all items is possible. As a result, traditional methods that reconstruct provenance from the
query and input data on request are not applicable.

— Ordered Data Model: In contrast to relational data, data streams are typically modeled as ordered
sequences. This ordering can be exploited to provide optimized representations of provenance.
— Window-based Processing: In DSMSs, operators like aggregation and join are typically pro-
cessed by grouping tuples from a stream into windows. Stream provenance must deal with win-
dowing behavior in order to trace the outputs of such operators back to their sources correctly and

efficiently. The prevalence of aggregations leads to enormous amounts of provenance per result.

— Low-latency Results: Performance requirements in most streaming applications are strict; in par-
ticular low latency should be maintained. Provenance generation has to be efficient enough to not
violate the application’s latency constraints.

— Non-determinism: Mechanisms for coping with high input rates (e.g., load shedding [Reiss and
Hellerstein 2005; Tatbul et al. 2003]) and certain operator definitions such as windowing on system
time result in outputs that are not determined solely by the inputs. Provenance tracking should be
able to cope with these types of non-determinism that are specific to stream processing.

Conventional provenance techniques (e.g., query rewrite [Glavic and Alonso 2009]) and naive
solutions (e.g., taking advantage of fast storage by dumping all inputs and inferring provenance
from the complete stream data) are not sufficient to address all of the challenges outlined above.

1.3. Contributions and Outline

In this paper, we propose a novel propagation-based approach for provenance generation, called
operator instrumentation. We use a simple definition of fine-grained provenance that is similar to
Lineage in relational databases [Cheney et al. 2009]. Our approach annotates regular data tuples with
their provenance while they are being processed by a network of streaming operators. Propagation
of these provenance annotations is realized by replacing the operators of the query network with
operators that create and propagate annotations in addition to producing regular data tuples (we
refer to this transformation as operator instrumentation). Previously, De Pauw et al. [De Pauw et al.
2010] have proposed an annotation propagation approach for tracking fine-grained provenance to be
used in visual debugging of stream processing applications. Since the main focus is on debugging,
only single-step provenance is computed and multi-step provenance is generated offline if requested.
Our approach is more general and flexible as it allows a) both eager or lazy provenance generation
and b) direct provenance propagation for partial as well as complete query networks. We represent
provenance as sets of tuple identifiers during provenance generation. A number of optimizations
enable us to decouple provenance management (generation and retrieval) from query processing.
Our work makes the following contributions:

— We introduce a novel provenance generation technique for DSMS based on annotating and prop-
agating provenance information through operator instrumentation, which allows generating prov-
enance for networks and subnetworks without the need to materialize data at each operator.

— We propose optimizations that decouple provenance computation from query processing

— We present Ariadne, the first DSMS providing support for fine-grained multi-step provenance.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 B. Glavic et al.

— We provide an experimental evaluation of the proposed techniques using Ariadne. The results
demonstrate that providing fine-grained provenance via optimized operator instrumentation has
minor overhead and clearly outperforms query rewrite, the current state-of-the-art.

This paper is an extension of our conference paper [Glavic et al. 2013] adding (i) an analysis
of streaming event detection cases and their provenance requirements, (ii) a formalization of our
provenance model, (iii) a description of provenance propagation through query rewrite, and (iv)
new experimental results. We refer interested readers to the conference paper for a more thorough
description of the implementation and optimizations.

The remainder of this paper is organized as follows: Section 2 gives an overview of our approach
for adding provenance generation and retrieval to a DSMS. We introduce the stream, provenance,
and annotation models underlying our approach as well as the instrumentation mechanism in Section
3. Building upon this model, we present its implementation in the Ariadne prototype in Section 4
and optimizations in Section 5. We present experimental results in Section 6, discuss related work
in Section 7, and conclude in Section 8.

2. OVERVIEW OF OUR APPROACH

We generate and propagate provenance annotations by replacing query operators with provenance-
aware operators (we call this Operator Instrumentation). Our approach can be used to compute
either the provenance of a whole query network or just parts of the network. Provenance is modeled
as a set of tuples from the input streams that are sufficient to produce a result tuple. Output tuples
are annotated with sets of tuple identifiers representing their provenance.

2.1. Why Operator Instrumentation?

There are two well-known provenance gener- Method Applicable to | Runtime Retrieval
ation techniques in the literature that we con- , , Oyerheadi MOvechead)
idered 1 . t tor inst Inversion | Invertible None High
sidered as alternatives to operator instrumen- TR W e I None
tation for generating DSMS provenance: (1) Operator Instr. | All Low Medium

computing inverses and (2) rewriting the query
network to propagate provenance annotations
using the existing operators of the DSMS. Figure 2 shows a summary of the tradeoffs. Inversion
(e.g., in [Woodruff and Stonebraker 1997]) generates provenance by applying the inverse (in the
mathematical sense) of an operator. For example, a join (without projection) is invertible, because
the inputs can be reconstructed from an output tuple. Inversion has very limited applicability to
DSMSs, because no real inverse exists for most non-trivial operators. Query Rewrite, established
in relational systems such as Perm [Glavic and Alonso 2009], DBNotes [Bhagwat et al. 2004], or
Orchestra [Ives et al. 2008], generates provenance by rewriting a query network Q into a network
that generates the provenance of Q in addition to the original network outputs. Query Rewrite leads
to significant additional run-time overhead and incorrect provenance for non-deterministic opera-
tors. Rewrite techniques have to duplicate parts of the query network to compute the provenance
of operators such as windowed aggregation (see Section 6.1). Assume a subnetwork ¢ that contains
non-deterministic operators is duplicated as ¢’. Networks ¢ and ¢’ may produce different results,
leading to missing or incorrect provenance.

In summary, we believe that Operator Instrumentation is the best approach, as it is applicable to
a large class of queries while maintaining low overhead for provenance computation and retrieval.

Fig. 2: Provenance Generation Methods

2.2. The Operator Instrumentation Approach

The key idea behind our operator instrumentation approach is to extend each operator implementa-
tion so that the operator is able to annotate its output with provenance information based on prov-
enance annotations of its inputs. Under operator instrumentation, provenance annotations are pro-
cessed in line with the regular data. In other words, the structure of the original query network is
kept intact, because operators are simply replaced with their instrumented counterparts. Provenance

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:5

il
IS
j
gl

N S

2 1 846

E 3 1 85.3
5:3 1 1 93.6

TID || min_ti | min | avg t
5:1 2

5:2

5

90| 00| 00| 06| 00| 00| 00| M|

TID || min i | minl | avgt TID || min ti [mind | avat
2 | 086 i 2 |

85.3 TID | min_ti [min | min_t
93.6 91 T 2 986 | {
i 1003 | {7

1053 | {
567 {7
{

2
2 105.3
2

=

R Y Y Y

I =N S D S

S 5% V4 O Y

7

2 9:5 2
Fig. 3: Query Network Evaluation with Provenance-aware Operators and Provenance Annotations

106.3

can be traced for a single operator at a time, through a whole subnetwork, or for a complete network
by instrumenting only some or all operators of the network.

For example, consider an execution of the network from Figure 1 shown in Figure 3. Here we
have instrumented some operators, i.e., the ones marked with PG or PP (will be explained later),
to compute the provenance of the last aggregation according to the input of the b-sort operator. By
propagating annotations (shown as sets on the right of each tuple), we have annotated each output
tuple of the aggregation with the identifiers of tuples from stream 5 that are in its provenance.

Most issues caused by non-determinism are dealt with in a natural way if operator instrumentation
is applied, because the execution of the original query network is traced. However, the overhead
introduced by provenance generation may affect temporal conditions (e.g., system time windows).
In general, this effect cannot be avoided when modifying time-sensitive operations, because the
output of such operations may be affected by any modification introducing computational overhead.
The only way to avoid this is to execute the system in a fully simulated environment which is not
practical. In contrast to the query rewrite and inversion alternatives, operator instrumentation does
not modify the structure of the query network. Thus, while the result of non-deterministic operations
such as a random number generator may be affected by the overhead introduced by provenance
computation, the provenance of such an operation will still correctly describe the origin of a tuple
under the given result. As explained in Section 2.1, this is not necessarily the case for query rewrite.
The only drawback of operator instrumentation is the need to extend all operators. However, as we
will demonstrate in Section 4.2, this extension can be implemented with reasonable effort.

With operator instrumenta-

t b Method Applicable to Runtime Overhead Retrieval Overhead
101, proyenance can be g'en- Reduced-Eager All Full Generation (high) Reconstruct (low)
erated either eagerly during Replay-Lazy | Deterministic | Minimal Generation (low) Replay (high)

query execution (our default
approach) or lazily upon re-
quest. We support both types of generation, because their performance characteristics in terms of
storage, runtime, and retrieval overhead are different (see Figure 4). This enables the user to trade
runtime-overhead on the original query network for storage cost and runtime-overhead when re-
trieving provenance. However, for lack of space we will mostly focus on the eager method in the
remainder of this paper.

Fig. 4: Trade-offs for Eager vs. Lazy

Reduced-Eager: Figure 5 shows an example for how we instrument a network for eager provenance
generation. We temporarily store the input tuples for the instrumented parts of the network (e.g., for
input streams S; and S», since we want provenance for the entire query network). The tuples in
the output stream of the instrumented network carry provenance annotations as described above,
i.e., each output is annotated with the set of identifiers of the tuples in its provenance. Using tuple

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 B. Glavic et al.

identifiers as an internal provenance representation reduces the size of provenance annotations in
comparison to full input tuples. However, these identifiers are meaningless to a user and, thus,
have to be replaced with actual tuples before returning the provenance to the user. We reconstruct
provenance for retrieval from the identifier annotations using a new operator called p-join ().
For each output tuple ¢, this operator retrieves all input tuples in the provenance using the set of
identifiers from the provenance annotation and outputs all combinations of ¢ with a tuple from its
provenance. Each of these combinations is emitted as a single tuple to stream P. For example,
consider the first output tuple 7 = (1) of the final aggregation operator in Figure 3. The provenance
annotation of this tuple contains two tuple identifiers 7:4 and 7:5. If we feed this annotated stream
into a p-join operator, the operator would look up the tuples from the cached input stream 5 using
their identifiers. For tuple 7, the p-join would generate two result tuples (1,1,2) and (1,2,2) by
combining ¢ with the tuples (1,2) and (2,2) from stream 5.
We call this approach Reduced-Eager, be- — ceeeeemeeeeeeq L. o

cause we are eagerly propagating a reduced St O_, * Inslzlrumen;ed N
etwork

form of provenance (the tuple identifier sets) @ ——| + = ¥ [===
during query execution and lazily reconstructing @ O—t @--»IEI
provenance independent of the execution of the ~ p--p----f-57777TT

original network. In comparison with using sets EjEj " Temporary | Reconstruct ™,
of full tuples as annotations, this approach pays

a price for storing and reconstructing tuples.
However, because compressed representations
can be used, this cost is offset by a significant reduction in provenance generation cost (in terms
of both runtime and latency). Since reconstruction is separate from generation, we can often
avoid reconstructing complete provenance tuples during provenance retrieval, e.g., if the user only
requests provenance for some results (query over provenance).

Fig. 5: Reduced-Eager Operator Instrumentation

Replay-Lazy: Instead of generating provenance eagerly while the query network is run-

ning, we are also able to generate provenance lazily in order to decouple provenance

generation from the query network execution. Since DSMSs have to deal with high in-

put rates and low latency requirements, the runtime overhead to the critical data process-

ing path incurred by eager provenance computation may be too high for some applications.

Decoupling provenance computation from query pro-

cessing enables us to reduce the run-time overhead on eTTITITII e

the query network and outsource provenance generation ngg:pﬂjﬁ‘:}?::;‘f:

to a separate machine. This improves performance for e e i

both query processing and provenance computation. 1 O” O -~ zgx‘;‘;?ncg 3
For deterministic networks, we can realize lazy gen- " Network

[s1]
eration as shown in Figure 6. We instrument the net- @ O_T A ’
work in a similar fashion as for reduced eager by tem-
porarily storing input streams and propagating annota-
tions. However, instead of using sets of tuple identifiers Ej
we annotate each tuple with intervals of tuple identifiers I P . ‘_____:j: ST
(one per input stream) represented as the minimal and ,&Tg‘gﬁ%e Tf;gfs"fof‘g':;;’;‘ _
maximal identifiers of each interval. These intervals are =~ 7777777 Treessemeeseeeteetes
of constant size, can be computed efficiently, and are Fig. 6: Replay-Lazy
guaranteed to be supersets of the actual provenance. To generate the actual provenance for a tuple
t we retrieve all input tuples contained in the intervals for ¢ and replay them through a copy of the
original query network instrumented for provenance generation (e.g., using the reduced eager instru-
mentation discussed above). We call this approach Replay-Lazy. For example, assume that we want
to compute provenance for the output of the aggregation operator producing stream 3 according to
input stream S from Figure 3. The first output tuple 5:1 of the aggregation is generated based on a
window containing the first three tuples of stream 1. These tuples are produced from tuples 1:2, 1:3,

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A7

and 1:4 of stream 1. For Replay-Lazy we annotate tuple 5:1 with the interval [1:2,1:4] covering its
provenance. To compute the provenance of ¢ we retrieve all tuples in this interval from the tempo-
rary storage of stream 1 and replay them through a provenance generating copy of the subnetwork
containing streams 1 to 3. This will reproduce ¢ annotated with its correct provenance. Replay-Lazy
is only applicable to deterministic networks. Using constant size intervals instead of full provenance
annotations reduces the runtime overhead, but results in higher retrieval costs due to the replay.

3. PROVENANCE PROPAGATION BY OPERATOR INSTRUMENTATION

Based on the stream data and query model of Borealis [Abadi et al. 2005], we now introduce our
stream provenance model and discuss how to instrument queries to annotate their outputs with
provenance information. A thorough formal treatment can be found in [Glavic et al. 2012]. We first
introduce our data and query model and then introduce our definition of provenance. Next, focusing
on a set of core streaming operators, we define instrumented operator versions that produce streams
where each tuple is annotated with its provenance and show that they produce provenance according
to our definition. Finally, we elaborate on how to extend our model for generic operators.

3.1. Data and Query Model

We model a stream S =< ij,is,... > as a possibly infinite sequence of stream items. A stream con-
sists of a fixed type of stream items; either tuples, windows, or join-windows. A tuple t = [ay, . .., a,]
is an ordered list of attribute values (here each a; denotes a value). We assume the existence of
tuple-identifiers (7ID) in the form of stream-id:tuple-id that uniquely identify tuples within a query
network. We use 7(¢) to denote the identifier of tuple 7. A window w =< 11,...,t, > is a sequence
of tuples and a join-window [t,w] is a pair of a tuple and a window. These types of stream items will
be used later in the definition of aggregation and join. For a stream S we use S[i] to denote the i’
stream item in S and S[i, j] to denote the stream containing the i’ up to the j** stream item of S. We
use H(S) (the head) as a shortcut for S[0] and 7'(S) (the tail) as a shortcut for S[1,e0]. We use Sy || S2
to denote the concatenation of two sequences (or an item and a sequence).

A query network is a directed acyclic graph (DAG) in which nodes and edges represent streaming
operators and input/output streams, respectively. Each stream operator in a query network takes one
or more streams as input, and produces one or more streams as output. The query algebra we use
here covers all the streaming operators from [Abadi et al. 2005]. Each operator is defined recursively
using the following notation:

Selection: A selection operator o¢(S) with predicate C filters out tuples from an input stream S that
do not satisfy the predicate C.

_ JH(S) || oc(T(S)) i H(S)EC
oc(S) = {GC(T(S))C else

Projection: A projection operator 74 (S) with a list of projection expressions A (e.g., attributes,
function applications) projects each input tuple from stream S on the expressions from A.

7A(S) = H(S).A || ma(T(S5))

Aggregation: An aggregation operator Cuee o (S) groups its input S into windows using the window
function @ and computes the aggregation functions from list agg = (aggi(a1),...,aggn(an)) over
each window generated by . An aggregation function agg;(a;) computes a single attribute value
from all values of attribute g; in a window w. We denote the application of an aggregation function
agg to a window w as agg(w).

Qagg,0(S) = a(@(S))
a(S) = [agg1(H(S)),...,aggn(H(S))] || a(T(S))

As an example for a typical window operator consider the count-based window function #(c,s)
that groups a consecutive input tuple sequence (length ¢) into a window and slides by a number

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 B. Glavic et al.

of tuples s before opening the next window. The value-based window function val(c,s,a) groups a
consecutive sequence of tuples into a window if their values in attribute a differ less than ¢ from
the attribute value of the first tuple in the window. The slide s determines how far to slide on a
before opening the next window. Note that value-based windows subsume the concept of time-based
windows by using a time attribute as the attribute for determining the window boundaries.

#(c,5)(8) =< 8[0,¢] >|[#(c,5)(S[s,])
val(c,s7a)(S) =< GaSH(S).aJrc(S) >H val(cvs7a>(o-a>H(S).u+s(S))

Join: A join operator ¢ 4 (S1,52) joins two streams S; and S, by applying the join window function
¢ to S1 and 5. A join window function models the buffering behavior of stream joins. For each tuple
t from the left input stream, a join window for ¢ contains all tuples from the right input stream that
were in the buffer during the time tuple 7 was in the buffer. For each join window j = [¢,w], the
join operator outputs all pairs of tuples [£,#'] where ¢’ € w and the join condition C is fulfilled. The
definition of join below first groups the input into join windows (¢(S;,S>)) and then uses WINJOIN
to iterate over all combinations of tuple ¢ with a tuple from window w for each join window j = [r, w].

>c.¢ (S17S2) = JOIN(¢(S1,S2))
JOIN(S) = WINJOIN(H(S)) || JOIN(T'(S))

[t H(jw)] [| WINNOIN([j.6, T (jw)]) - if [j4,H(jw)] = C

WINJOIN(j) = {WINJOIN([j~t7 T(jw)) cle

As an example for join-windowing consider value-based join-windowing (jval(aj,az,s)) that
groups each tuple ¢ from the left stream with all tuples from the right stream that have an a; attribute
value between t.a; and t.a; + .

Jval(ay,az,s)(S1,82) =[H(S1),< 0c(S2) >] || jval(ar,az2,s)(T(S1),S2)
C=ay > H(S)).aiNap <H(S1).a1 +s

Union: A union operator U(S},S>) merges tuples from two input streams S; and S, into a single
stream based on their arrival order. The arrival order of tuples may depend on the input data and op-
erator scheduling policies of the DSMS. There is no clean way to model such behavior in an abstract
and deterministic operator model. We solve this problem by encapsulating the non-deterministic ar-
rival order in a function O that maps a tuple to its arrival timestamp (at the union operator). Using
this function, union is defined as:

U(S1,82) = {Z(S]) 1T ($1),52) if O(H(S1)) < O(H(S2))

(8$2) || U(S1,T(S2)) else

B-Sort: A b-sort operator p; ,(S) with slack s and an order-on attribute a applies a bounded-pass sort
with buffer size s+ 1 on its input, i.e., once the buffer is full the sort emits the smallest tuple in sort
order from the buffer for every new arriving tuple. Thus, it produces an output that is approximately
sorted on a. Let SORT(S, a) denote a function that sorts a sequence S on attribute a.

Ps.a(S) = BSORT(S,a,s,0)
BSORT(S,a,s,i) = SORT(S[0,s+1],a)[i] || BSORT(S,a,s,i+ 1)

EXAMPLE 1. Figure 3 shows an execution of the network introduced in Figure 1 for a given
input. For now ignore the annotations on operators and tuples in streams 6 to 8. Both input streams
(S1 and S») have the same schema with attributes time (ti), location (1), and temperature (t). The left-
most selections drop temperature outliers. The results of this step are grouped into windows of three
tuples using slide one. For each window we compute the minimum of time (to assign each aggregated
tuple a new time value) and location (the location is fixed for one stream, thus, the minimum of the
location is the same as the input location), and average temperature. The aggregated streams are

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:9

merged into one stream (U) and sorted on time. We then filter out tuples with temperature values
below the overheating threshold and compute the number of distinct locations over windows of
two time units. Tuples with fewer than two distinct locations are filtered out in the last step. For
instance, in the example execution shown in Figure 3, the upper left selection filters out the outlier
tuple 1:1(1,1,399). The following aggregation groups the first three result tuples into a window
and outputs the average temperature (84.6), minimum time (2), and location (1).

3.2. Provenance Model and Annotated Streams

We use a simple provenance model that defines the provenance of a tuple ¢ in a stream S of a query
network g as a set of tuples from input (or intermediate) streams of the network. We use P(q,t,I) to
denote the provenance set of a tuple t from one of the streams of network g with respect to inputs
from streams in a set /. For instance, if ¢ is a tuple in stream 3 of the example network shown in
Figure 1, then P(q,t,{S1}) denotes the set of tuples from input stream S; that contributed to 7. We
omit / if we compute the provenance according to the input streams of the query network.

Note that we require / to be chosen such that the paths between streams in 7 and S (the stream of
t) form a proper query network. For instance, assume that 7 is a tuple from stream 5 in the network
shown in Figure 3. P(q,t,{1,2}) denotes the set of tuples from streams 1 and 2 that contributed to
t. P(q,t,{2}) would be undefined, because only one of the inputs of the union is included. For the
remainder of this section we will limit the discussion to query networks with a single output stream
O and provenance of tuples in that output stream. The concepts introduced in this section extend
naturally to networks with multiple output streams.

Formally, our work is based on a declarative characterization of provenance, which is used to de-
termine whether the provenance generated by instrumented networks introduced in the next section
captures intuitive properties of provenance. To simplify the exposition we will limit the discussion
to computing the provenance of an output stream according to the input streams of the query net-
work. This discussion naturally extends to provenance computations for a partial query network.
The declarative characterization of provenance captures two intuitive properties: 1) Sufficiency: the
provenance of tuple ¢ is sufficient for producing ¢. That is if we evaluate the query network over
minimal prefixes of the input streams (a prefix of length 7 is a subsequence S[0, 7] of a stream S, see
Section 3.1) that include the provenance, then the result will contain 7. 2) Distinguishability: if 7 is
the n'" occurrence of a tuple with the same values in a stream O, then replaying a minimal prefix
including the provenance will produce at least n duplicates of z. This guarantees that we actually
capture the provenance of ¢ and not of another tuple from the same stream with the same values.
To be able to formalize these intuitions we need to introduce some preliminary concepts first. The
minimal prefix S 1 .# of an input stream S of a query network ¢ according to a set of tuples ./, is
the shortest prefix of S that includes all items of .# and if g is executed over this prefix only win-
dows that also exist in the original execution of g are produced. The requirement that only original
windows are produced ensures that, e.g., the buffer of a b-sort operator is filled so that the necessary
tuples to produce an output can be emitted. We use the same notation for sets of streams I, i.e.,
11 . . For example, the minimum prefix 7 1 {9:2,9:4 } of tuples 9:2 and 9:4 from stream 7 in the
running example (Figure 3) contains tuples 9:1 to 9:4.

DEFINITION 3.1 (PROVENANCE SET). Let COUNT(S,t) denote the number of tuples in stream
S that are exact copies of t, i.e., that differ from t only in their tuple identifier. Similarly,
DUPPOS(S,t) denotes the number of duplicates of t that are in the smallest prefix of stream S
that includes t. The provenance set P(q,t,I) of a tuple t from a stream S of a query network q is a
subset of tuples from I that fulfills the following conditions:

— Tuple t is in the result of executing q over the minimal prefix of the provenance of t:

t€q(I1P(g,t,1))

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 B. Glavic et al.

— Replaying minimal prefixes of streams in I that include the provenance produces the correct num-
ber of copies of t before producing t:

CouNT(gq(I 1 P(g,t,1)),t) > DUPPOS(S,t)

A possible way to define the provenance for our query operators based on this characterization is
as follows: for selection and projection, the provenance of ¢ consists of the provenance of the corre-
sponding input tuple. The same is true for union and b-sort since only a single tuple is contributing
to ¢. For example, tuple 9:1 in the network shown in Figure 3 was generated by the selection from
tuple 8:1. Thus, the provenance set of this tuple is {7:4 }, the same as the provenance set of tuple
8:1. For join, the union of the provenance sets of the join partners generating ¢ constitutes the prove-
nance. Finally, the provenance set for ¢ in the result of an aggregation is the union of the provenance
sets for all tuples from the window used to compute 7.

Based on the concept of provenance sets we define streams of tuples that are annotated with their
provenance sets. For a query network ¢, the provenance annotated stream (PAS) P(q,0,I) for a
stream O according to a set of streams / is a copy of stream O where each tuple ¢ is annotated with
its corresponding provenance set P(q,z,1). In the following, we will omit the query parameter g
from provenance sets and PAS if it is clear from the context.

EXAMPLE 2. Consider the PAS P(6,{5}) for the output of the b-sort operator according to its
input shown in Figure 3 (provenance sets are shown on the right of tuples). Each output t of the
b-sort is annotated with a singleton set containing the corresponding tuple from the b-sort’s input,
e.g., tuple 8:1 is derived from 7:4. Now consider the PAS for the output of the last aggregation in the
query according to the input of the b-sort (P(8,{5})). Each output is computed using information
from a window containing two tuples with one tuple overlap between the individual provenance sets.
For example, tuple 10:2 is derived from a window with provenance {7:5 } and {7:6 }, and tuple 10:3
is derived from a window with provenance {7:3,7:6 }. The set P(q,10:3,{5}) = {7:3,7:6 } fulfills
the two conditions of Definition 3.1. The minimal prefix of stream 5 containing P(q,10:3,{5})
that does not produce new windows is < 7:1,...,7:6 >. Replaying this prefix through the query
network produces tuples 10:1 to 10:3. Thus, the first condition, 10:3 being in the result of replaying
the prefix, is fulfilled. The second condition is also fulfilled, because 10:3 is the first tuple with
count I =2 in both the original result and the result of replaying the prefix.

3.3. Instrumenting Operators and Networks for Annotation Propagation

We now discuss how to instrument a query network g to generate the PAS for a subset of the streams
in g by replacing all or a subset of the operators with their annotating counterparts. We introduce
three types of instrumented operators that handle streams annotated with provenance information.
Afterwards, we present annotating versions of stream algebra operators.

Provenance Generator (PG): The provenance generator version PG(0) of an operator o annotates
its outputs with provenance according to its inputs. The purpose of a PG operator is to generate a
PAS from input streams without provenance annotations. In an instrumented network we will attach
a provenance generator to each stream in I. For each output stream S of the operator o, PG(0) creates
P(S,input(0)) where input (o) are the input streams of operator o.

Provenance Propagator (PP): The provenance propagator version of each operator consumes an-
notated input streams and produces annotated output streams by combining provenance from its
inputs based on the semantics of the operator. For simplicity, let us explain the concept for an oper-
ator o with a single output O and a single input PAS P(S,I). The PP version PP(0) of o will output
P(0,I), i.e., the output will be annotated with provenance sets of O according to I. This is achieved
by modifying the annotations in the input streams according to the provenance behavior of the op-
erator 0. We use the PP version of operators in an instrumented network P(g,0,I) to propagate
provenance along paths between streams in / and stream O.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:11

Provenance Generators Provenance Propagators
gz 0(S) = a(@(S)) Uty olS) = a(0(S))
a(S) = [agg1(H(S)), ..., aggn(H(S)), P(H(S))] || a(T (S)) a(S) = [agg 1 (H(S)),...aggn(H(S)), |J tP]||a(T(s))
P(w) ={1(t) [t e w} teH(S)

Fig. 7: Provenance Generator and Propagator Versions of the Aggregation Operator

Provenance Dropper (PD): The provenance dropper version PD(0) of an operator o removes an-
notations from the input before applying operator o. Provenance droppers are used to remove anno-
tations from streams in networks with partial provenance generation.

DEFINITION 3.2 (OPERATOR VERSIONS). Figure 7 shows the PG and PP versions of aggre-
gation (the annotating versions of the remaining operators can be found in [Glavic et al. 2012]).
We represent the provenance annotations as an additional attribute P that stores a set of tuple iden-
tifiers. For example, t.P returns the provenance annotation of a tuple t. For convenience, we have
marked the annotation part in bold red. Recall that T(t) denotes the identifier of tuple t.

PG operators create a TID set from the TIDs of all input tuples that contribute to a tuple. All PP
operator versions union the provenance annotations from the inputs that contribute to a tuple ¢. For
example, the PG version of selection generates an annotated output stream where the provenance
set of each output tuple 7 contains the corresponding input tuple, and the PP version outputs the
input tuples with unmodified provenance sets (for tuples that fulfill the selection condition). The PG
operator for aggregation annotates each output tuple ¢ with a provenance set P(w) that consists of
all identifiers for tuples in the input window w that generated ¢, and the PP operator annotates each
output tuple ¢ with the union of the provenance sets of all tuples in the window that generated 2.

Networks with Annotation Propaga-

tion: Using the PG and PP versions of Algorithm 1 InstrumentNetwork Algorithm

operators we have the necessary means to 1: procedure INSTRUMENTNETWORK(g, O,)
generate provenance for a complete (or 2 mixed < ()
parts of a) query network by replacing 3 for all o € gdo > Find operators with mixed usage
all (or some) operators with their anno- 4 if 35,5" € input(0) : S € INS' ¢ I then
tating counterparts. PD versions of oper- > mixed < mixed Jinput (o)
ators are used to remove provenance an- 0 for all S € (mixed NI) do > Add projection wrappers
notations from streams that are further 7 S ¢ ychema(s) ()
processed by the network. We use Algo- 8: for all o € g do > Replace operators
rithm 1 to instrument a network g to com- 9 if 35 € I : HASPATH(S, 0) AHASPATH(0, O) then
pute a PAS P(O,1I). We first normalize the 10 if 35" € input(0) : S’ € I then
network to ensure that the inputs to every 11 0 ¢ PG(o)
operator are either (1) only streams from 12: else

. . 13: 0 < PP(0)
I or (2) contain no streams from /. This .
step is necessary to avoid having opera- 4~ forallocgdo > Drop annotations
tors that read from both streams in and > if O € input (o) then

16: 0 < PD(o0)

not in /, because the annotation propaga-
tion behavior of these operators is neither correctly modeled by their PG nor PP version. We wrap
each stream S in / that is connected to such an operator in a projection on all attributes of the schema
of S. This does not change the results of the network, but guarantees that we can use solely PG and
PP operators to generate a PAS®. We then iterate over all operators in the query network and replace
each operator that reads solely from streams in / with its PG version, and all remaining operators on

2We assume no knowledge about the semantics of aggregation functions. The approach can easily be extended to support
more concise provenance for functions such as min/max where the output only depends on some tuples in the window.

3 Adding operator types to the algebra that deal with a mix of annotated and non-annotated streams does not pose a significant
challenge. However, for simplicity we refrain from using this approach.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 B. Glavic et al.

(a) Query Network with Full Propagation (b) Annotation Propagation for Parts of the Network

Fig. 8: Annotating Query Networks

paths between streams in / and O are replaced with their PP versions. Finally, all non-instrumented
operators reading from O are replaced by their PD version. This step is necessary to guarantee that
non-instrumented operators are not reading from annotated streams.

A query network instrumented to compute a PAS P(O,) generates additional PAS as a side effect.
Each PP operator in the modified network generates one or more PAS (one for each of its outputs)
according to the subset of [it is connected to. Thus, additional PAS are generated for free by our
approach. We use P(q) (called provenance generating network) to denote a network that generates
the PAS for all output streams of network ¢ according to all input streams of g. Such a network is
generated using a straight-forward extension of Algorithm 1 to sets of output streams.

EXAMPLE 3. Two provenance generating versions of the example network are shown in Figure
8 (the operator parameters are omitted to simplify the representation). Figure 8(a) shows P(q), i.e.,
the annotating version of q that generates the PAS P(Sou,{S1, S2}) for output stream S,,,; according
to all input streams (S1 and S3). The left-most selection operators in the network are only attached
to input streams and, thus, are replaced by their PG versions. All other operators in the network
are replaced by PP operators. The query network shown in Figure 8(b) generates the PAS P(8,{5})
(An example execution was shown in Figure 3). The output stream of the right-most aggregation is
annotated with provenance sets containing tuples of the b-sort operator’s input stream. The right-
most selection is replaced with its PD version to drop provenance annotations before applying the
selection. This is necessary to produce the output stream S,,; without annotations.

Having defined the annotating versions of each operator it remains to show that the provenance
produced by these operators complies with our definition of stream provenance (Definition 3.1).

THEOREM 1. A network instrumented to compute P(q,0,I) using Algorithm 1 annotates each
tuple in O with provenance P(q,t,1) that fulfills the conditions of Definition 3.1.

PROOF. Sketch: The proof is by induction over the structure of a query network using the se-
mantics of each operator. Given that we have established that correct provenance is computed by
P(q',0',I') for a subnetwork ¢’ with n operators, we have to prove that the same holds for an exten-
sion of ¢’ with an additional operator o. This operator may either be applied to the output O’ or be
placed on a path between one of the streams in I’ and O'. As an example, consider the case where we
add an additional selection over O'. We then have to show that all the conditions of Definitions 3.1
are fulfilled for each annotation generated by the new selection. We make use of the induction as-
sumption that in O’ each tuple is correctly annotated with its provenance. Thus, for example the
first condition will trivially hold, because each output tuple 7 of the selection will be annotated
with the provenance of the corresponding input tuple . Replaying the minimal prefix including the
provenance will produce ¢’ which in turn will cause ¢ to be in the result of the selection. O

3.4. Extending the Ariadne Model for Generic Operators

The Ariadne model can be easily extended to other common streaming operators. For systems that
implement an operator-based query language we can apply the approach used for the Borealis alge-
bra. For systems that support more generic operators, e.g., user defined stream operators written in a
generic programming language, we can apply techniques similar to [Cui et al. 2000]. This approach
classifies operators according to their input behavior and has introduced generic provenance tracing
procedures for each class. Operators that work on infinite input, but treat each data item individ-

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:13

ually (one-to-one mapping) can be handled like selection or projection. While these classes cover
most of the common built-in expressions and user-defined functions, one challenging case remains:
operators that perform their own state management over infinite sequences, e.g. advanced window
operators, pattern matching, exponential decay, or punctuations. In such a case, explicit modeling
of provenance on the basis of the formalism and the operator semantics is needed. The only way to
avoid that would be to statically or dynamically analyze the data-flow of the code implementing the
operator which is either too expensive (dynamic code analysis) or too imprecise (static code anal-
ysis). Typically, however, such complex operators are system-defined and not provided by users,
so the implementation needs to be done once by the platform designers, not platform users. Un-
derstanding all aspects of such complex operators is part of future research, but given our previous
work on such operators (SECRET [Botan et al. 2010], pattern matching [Fischer et al. 2010]) we do
not foresee any fundamental problems to model and implement provenance.

4. IMPLEMENTATION

In this section, we present the implementation of the Ariadne prototype. Given the overall architec-
ture (outlined in Section 2) and the provenance propagation model (Section 3), three aspects are now
of interest: (1) representation of provenance annotations during the computation, (2) implementation
of PG and PP operators, and (3) storing and retrieving the input tuples for Reduced-Eager.

4.1. Provenance Representation as Annotations

The physical representation of provenance annotations and mechanism for passing them between
operators is a crucial design decision, because it strongly influences the run-time overhead and im-
plementation of operators. It is important to note that while Borealis uses fixed-length tuples, the
provenance annotations consist of TID sets of variable size. To transfer provenance between oper-
ators we can either (i) split TID sets into fix-length chunks and stream these chunks over standard
Borealis queues, (ii) implement a new type of information passing between operators, or (iii) mod-
ify the queuing mechanisms to support variable-length tuples. We chose to split large TID sets into
fixed-length chunks as it is least intrusive alternative (large parts of the code rely on fix-length tu-
ples) and retains the performance benefits of fixed-size tuples (e.g., less indirection when accessing
tuple values). We serialize the provenance (TID set) for a tuple ¢ into a list of tuples that are emitted
directly after . Each of these tuples stores multiple TIDs from the set. The first tuple in the seri-
alization of a TID set has a small header (same size as a TID) that stores the number of TIDs in
the set. Given that the size of a TID in Borealis is 8 bytes (actually sizeof (long)), we are saving
at least an order of magnitude of space (and tuples propagated) compared to using full tuples. We
adapted the TID assignment policy to generate globally unique TIDs that are assigned as contiguous
numbers according to the arrival order at the input streams. If stream-based tuple lookup becomes
necessary, we could reserve several bits of a TID for storing the stream ID.

4.2. Provenance Annotating Operator Modes

We extend the existing Borealis operators with new operational modes to implement PG, PP, and
PD operators. Operators in both PG- and PP-mode need to perform three steps: (1) retrieving ex-
isting provenance-related information from the input tuples, (2) compute the provenance, and (3)
serialize provenance annotations along with data tuples. These steps have a lot of commonalities:
Serialization (step 3) is the same for all operators. Retrieval (step 1) differs only slightly for PG and
PP modes, but is again the same for all operators. We factored out these commonalities into a so-
called provenance wrapper. The operator-specific parts of the provenance-wrapper are fairly small
and straightforward for most operators. The most complicated case is aggregation, in particular with
overlapping windows: each output tuple may depend on several input tuples, and each input tuple
may contribute to several output tuples. This requires fairly elaborate state management, including
merging and sharing TID sets.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 B. Glavic et al.

1
l 10:1 7:4 98.6 R

.
10:1 75 1043 + Reconstruct
10:2
10:2
10:3
10:3
10:4 2 [7a[a 1] 936 o
T 10:4

75 1043 -+ andQuery !
7:6 {05.3 ', Provenance ,
Temporary

93.6
"\ Input Storage ,* l J
...... T

76
73
7.7

mfn [f= =
S
@
alafolsfofofo|«
o= [ro]= [rofrofro|ro

0 Y 2 U
93.6
106.3 D<J

84.6

PP Bl — PP

82

853 74175

2
®

93.6

956 75176

3k
=

104.3

1053 73] 76

NN

|76
4 | 936

z[®
o

106.3

93.6 # [73]

3

7377

I
I
]
1] 846 “
9:2 [2] 2] 1043
1] 863 g 75 (0]
9:3 [3] 2] 1053
I
]
I
[2]
I

4 | 1063

106.3 A77]

Fig. 9: Provenance-enabled Query Network with Retrieval

EXAMPLE 4. Figure 9 shows the provenance computation for the annotating network from Fig-
ure 8(b). Recall that this network generates P(q,8,{5}). Provenance headers are prefixed with #
and TIDs in a provenance tuple are highlighted with shaded background. For instance, the aggre-
gation operator uses the provenance wrapper to merge the TID sets from all tuples in a window and
emit them as the TID set for the result tuple produced for this window.

4.3. Input Storage and Retrieval

As mentioned before, we apply a Reduced-Eager approach which requires preservation of input
tuples at PG operators to be able to reconstruct fully-fledged provenance from TID sets for retrieval.

Input Storage at PG operators: We utilize connection points (CP) [Ryvkina et al. 2006] to provide
temporary storage for tuples that pass through a queue. If a query network g is instrumented to
compute a PAS P(0, 1), then we add a connection point to each stream in /, i.e., the streams that are
inputs of provenance generators. We rely on a time-out (or tuple count) based strategy for removing
old tuples from storage, adapted to the retrieval pattern of the application.

If expiry is desired (i.e., the user is not storing the inputs anyways for other purposes), we can
use the covering intervals in many cases as means to immediately prune non-covered input. The re-
quirement for such pruning is that bounds exists on the arrival order of covering intervals, e.g., later
intervals cannot extend further into the past than already pruned areas. Based on this observation, a
static analysis of the query network can be used to determine safe count-based expiration settings
for many queries. As a counter example, consider the b-sort operator. This operator may keep a tuple
in its buffer for an arbitrarily long interval of time. For this type of operator the provenance of an
output may depend on an arbitrarily “old” tuple from the input streams. In this case we either have
to keep the whole input to guarantee correct provenance, accept that the provenance is not complete
if we set a time-out, or rely on application knowledge to determine when the pruning needs to be
performed. In many scenarios, such a requirement is intuitively understood by developers and users,
and the relevant knowledge is readily available. Using the provenance itself for more data-directed
dynamic expiration as well as utilizing write-optimized, possibly distributed storage technologies
are interesting avenues for future work. For example, we could dynamically inspect provenance to
learn over time what are “safe” boundaries for pruning.

P-join: Similar to the approach in [Glavic and Alonso 2009], we have chosen to represent prove-
nance to the consumer using Borealis’ data model. For each result tuple # with a provenance anno-
tation set P, we create as many duplicates of 7 as there are entries in P and attach one tuple from
the provenance set to each of these duplicates. This functionality is implemented as a new operator

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:15

called p-join. A p-join x(S,CP) joins an annotated stream S with a connection point CP to output
tuples joined with tuples from their provenance.

EXAMPLE 5. The relevant part of the running example network with retrieval is shown in Fig-
ure 9. Recall that this network was instrumented to generate P(q,8,{5}). Hence, a CP (the cylinder)
is used to preserve tuples from stream 5 for provenance retrieval.

5. OPTIMIZATIONS

Certain stream processing challenges call for additional optimizations beyond Reduced-Eager: (1)
Windowed aggregation produces large amounts of provenance. (2) Computing provenance on the
fly to deal with the transient nature of streams increases run-time and latency. We address these
challenges through compressed provenance representations (reduces overhead) and lazy provenance
computation and retrieval techniques (decouples query execution from provenance generation).

Provenance Compression: The methods we developed for TID set compression range between
generic data compression to methods which exploit data model and operator characteristics. Inter-
val encoding compresses contiguous sub-sequences of TIDs by replacing them with intervals, e.g.,
a TID set {1,2,3,4,6,7,8} would be encoded as [1,4],[6,8] reducing its size from 7 to 4. Delta
Encoding exploits overlap between the provenance of tuples by encoding the provenance of a tuple
as a delta over the provenance of a previous tuple. For example, consider the provenance of two
consecutive tuples: {1,3,5,7,9} and {3,5,7,9,11}. The second provenance can be encoded as a
delta “Skip the first element of the previous provenance and append {11}”. This type of encoding
is very effective for sliding windows. Generic Dictionary Compression (we use LZ77) is used if
the size of a TID set exceeds a threshold. Our prototype combines the presented compression tech-
niques using a set of heuristic rules. Generally speaking, we first choose whether to use intervals
or a TID set, then apply delta-encoding on-top if the overlap between consecutive TID sets is high,
and finally apply dictionary compression if the result size still exceeds a threshold.

Replay-Lazy: The Replay-Lazy method introduced in Section 2.2 computes provenance by replay-
ing parts of the input through a provenance generating network, providing several benefits: (1) the
cost of provenance generation is only paid if provenance is actually needed, (2) the overhead on
regular query processing is minimal, enabling provenance for time-critical applications, and (3)
provenance computation is mostly decoupled from query execution. Replay-Lazy is only applicable
to query networks consisting of deterministic and monotone operators. In order to avoid having to
replay a complete prefix of a stream, we compute which parts have to be replayed during query exe-
cution. Specifically, these are all tuples from the interval spanned by the smallest and largest TID in
the provenance of an output tuple (we refer to this set of tuples as the covering interval of a TID set).
The network is instrumented in the same way as
for Reduced-Eager (see Figure 10), except that we ce e P
annotate each tuple with its covering interval (CG

E' Gen
and CP are PG and PP operators that annotate with T’@"@_’@ et

covering intervals). Thftse intervals require con- ¥ Fiter Provenance ! corarain
stant space, thus reducing the overhead of prop- Ej @ i andFetchTuples 1\ “Nework /

. . . . from Input B .
agation significantly. Furthermore, generating and | | N\’ P umimnio T
maintaining them is rather cheap. In order to ac- PG PP
cess the tuples belonging to a covering interval, we @ @»@»El
introduce a new join operator: A c-join ®(S,CP) g
between a stream S and a connection point CP pro-
cesses each tuple ¢ from § by fetching all tuples in-
cluded in the covering interval of ¢ from the connection point and emitting these tuples. These tuples
are then fed into a copy of the query network that is instrumented for provenance generation.

Fig. 10: Example Replay-Lazy Network

Lazy Retrieval: Both reduced-eager and replay-lazy reduce the runtime overhead of provenance
generation at the cost of additional computation for tuple reconstruction during provenance retrieval.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 B. Glavic et al.

@ » @" (a) Basic (b) Basic - Rewrite

E-()-& » e - -0~

[F@—~@—@)-fs (c) Basic - Instrumentation
@“@l‘ CPG C;‘P)" C;P)‘* """"""" -

O-@O-E—-Fsusn] = 1=

Fig. 11: Query Rewrite Rules And Example Fig. 12: Experiment Queries

If interactive retrieval is used, we only need to reconstruct provenance for tuples when explicitly
requested. If the reconstructed provenance is used as an input to a query over provenance, then we
have the opportunity to avoid the cost of reconstruction through a p-join operator by determining
upfront which parts of the provenance are not needed in the retrieval part of the query.

6. EXPERIMENTS

The goal of our experimental evaluation is to investigate the overhead of provenance management
with Ariadne, compare with competing approaches (Rewrite), investigate the impact of varying the
provenance generation and retrieval methods (eager vs. lazy), and study the effectiveness of the
optimizations proposed in Section 5.

6.1. Provenance Propagation by Query Rewrite

To be able to compare against Query Rewrite, we have implemented this technique following the
approach pioneered in the Perm project [Glavic and Alonso 2009]. More specifically, let S and S,
be input streams of operators and S,,, denote an operator output stream. Given a PAS P(0, 1) for a
query network g, we have to transform ¢ into a network that computes the PAS P(O,I) using solely
the standard operators of the DSMS. The rewrite process is straightforward for most operators.
Figure 11 shows rewrite rules for selection and aggregation, and an example query and its rewritten
counterpart (bottom). Aggregations are rewritten by joining their outputs with PAS for their inputs.
Note that this rewrite is only possible for window operators where we can express a join condition
which guarantees that each tuple from a certain window only joins with the aggregated output
produced for that particular window. For instance, for a value-based window function val(c, s,a), we
add two additional aggregation functions to compute the minimum and maximum values of attribute
a for the window. These values are used in the join condition as follows: min(a) > a Aa < max(a).

6.2. Setup

Figure 12 shows the query network (called Basic) used in most experiments in its original (a),
rewritten (b) and instrumented (c) versions. The Replay-Lazy version closely resembles Figure 10.
This query covers the most critical operator for provenance management (aggregation) and is sim-
ple enough to study individual cost drivers. In experiments that focus on the cost of provenance
generation, we leave out parts of these networks that implement retrieval (the dashed boxes).

Setup and Methodology: Since the overhead of unused provenance code turned out to be negligi-
ble, we used Ariadne also for experiments without provenance generation. All experiments were run
on a system with four Intel Xeon L5520 2.26 Ghz quad-core CPUs, 24GB RAM, running Ubuntu
Linux 10.04 64 bit. Client (load generator) and server are placed on the same machine. The input
data consists of tuples with a small number of numeric columns (in total around 40 bytes), to make
the overhead of provenance more visible. The values of these columns are uniformly distributed.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:17

All input data is generated beforehand. Each experiment was repeated 10 times to minimize the
impact of random effects. We show the standard deviation where possible in the graphs. Our study
focuses on the time overhead introduced by adding provenance management to continuous queries,
as this is the most discriminative factor between competing approaches. We are interested in two
cost measures: (1) computational cost, which we determine by sending a large input batch of 100K
tuples over the network at maximum load and measuring the Completion Time; (2) tuple latency
determined by running the network with sufficient available computational capacity.

6.3. Fundamental Tradeoffs

In the first set of experiments, we study the computational overhead of managing provenance (split
into generation and retrieval) using the Basic query with maximum load. We show results for our
reduced-eager and replay-lazy approaches without provenance compression (called Single from
now on), and compare them with the cost of the network with No Provenance as well as Rewrite.

End to End Cost: The first experiment (shown in Figure 13) compares the end-to-end cost
when changing the amount of provenance that is being produced per result tuple. This is
achieved by changing the window size (WS) of the aggregation operator from 10 to 100 tu-
ples (while keeping a constant slide SL = 1 and selectivity 25% for the first selection in the
network). Provenance is retrieved for all result tuples. The results demonstrate that the gen-
eral overhead of provenance management is moderate for all methods: an order of magni-
tude more provenance tuples than data tuples (WS=10) roughly doubles the cost, two orders
of magnitude (WS=100) lead to an increase by a factor 5 (Instrumentation) to 12 (Rewrite).
Analyzing the individual methods, we

see that the cost of Instrumentation *° W No Provenance
is strongly influenced by Retrieval: o *° Instrumentation (Generation)
around 40% at WS=10, and around § Instrumentation (Retrieval)
65% at WS=100. This cost is rough- & 30| ™ Replay-Lazy (Covering Interval)
ly linear to the amount of provenance = 25| M Replay-Lazy (Retrieval)
produced. The overhead of prove- § 20| Rewrite
nance generation through Instrumen- 3 15
tation is between 20% (WS=10) and § 10 I I
113% (WS=100). Using Replay-Lazy © 5| gl |
the overhead on the original query o LHE L L i = A | =

. . . Z5A0A0 Z500 Z500 Z500 Z500 Z50X
network (generation of covering in- 22828 9288 JE8% 2238 S&52 D288
tervals) is further reduced to 3% 9535 3335 333 3535 3335 3338@
(WS=10) and 16% (WS=100), re- 558 888 358 358 858 588
spectively. The price to pay for this re- 88 8s 88 88 83 83
duction is the additional cost of prov- 10 20 40 60 8 100

Window Size

enance Replay, where the cost is simi-
lar to the combination of Instrumenta- Fig. 13: End to End - Vary Provenance Amount

tion Generation and Retrieval, as this

method is now applied on all covering intervals to compute the actual provenance. Even for this be-
nign workload, Rewrite shows much worse scaling than Instrumentation with full Retrieval: while
roughly on par for WS=10, it requires twice as much time for WS=100.

Nested AggregatlonS: We Il(.)W n- Method Number of Aggregations
crease the number of aggregations to 1 2 3

: : No Provenance 3.1 3.9 4.8 57
exponentially increase the amount of o i ot 55 R e
provenance per result tuple. We start nstrumentation | getrieval 30 | 129 | 1030 | 2047.0
off with the Basic network (WS=10and | Replay-Lazy povering Interval || 300 r o | e
SL=1) and gradually add more aggre- | Rewrite 72 | 6250 | orash | crash

gation operators. The increase of cost

for Instrumentation is (slightly) sublin- Fig. 14: Aggregations: Completion Time (Sec)

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

>
o

B. Glavic et al.

]
a
S

'S . | B No Provenance 5 8 T ' No Provenance
2 300) 3 7 i)
© 250 & Single T 2 6l I Single
€ I Optimized 2 5l I Optimized]
= 2001 gy Covering Interval = B @ Covering Interval
c 4+
& 150 , 5
2 100 & 1 33
E— S 2r
5 50 4 E 4L J
° o oo TR ° o
50 100 200 500 1000 2000 5000 10000 15000 20000 1 2 5 10 20 50 70 90 100
Window Size Window Slide
Fig. 15: Window Size (SL=1, S=25%) Fig. 16: Window Slide (WS=100, S=25%)
2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ :
3 B No Provenance ﬁ ¢ | ™ No Provenance
2 20| m Single s & & Single
2 15| @ Optimized 1 2 5 ; gptlm!zedl terval
'; & Covering Interval ;; [overing Interva g
210 S 3
|5} -
g 5l Sat
s} 1+
© 0
5 10 25 50 75 920 95 100 0
Selectivity (%) 10 25 50 75 100
Batch Size
Fig. 17: TID Contiguity (WS=100, SL=1) Fig. 18: Latency

ear in the provenance size. Most of the overhead can be attributed to retrieval, while provenance
generation increases moderately due to the TID set representation. The overhead of generating Cov-
ering Intervals for Replay-Lazy is around 10% over the baseline (NoProvenance), while the effort
spent for replaying shows the same behavior as the total cost of Instrumentation. Finally, the results
(Figure 14) indicate that Rewrite does not scale in the number of aggregations as demonstrated by
an increase in overhead in comparison to instrumentation from 20% (one aggregation) to 3300%
(two aggregations). At three aggregations, the execution exhausts the available memory.

6.4. Cost of Provenance Generation

We now focus on window-based aggregation, since it is not used in traditional, non-streaming
workloads and produces large amounts of provenance. In addition to the methods shown before,
we enable the adaptive compression technique (denoted as Optimized). Furthermore, we will no
longer consider the Rewrite method (its drawbacks are obvious) and Retrieval cost (as it is linear
with respect to the provenance size). We study the impact of Window Size (provenance amount
per result), Window Overlap (commonality in provenance) and pre-selection Selectivity (TID
contiguity). These experiments use the Basic network.

Window Size: Figure 15 shows Completion Time for varying WS from 50 to 20000. A front se-
lection selectivity of 25% ensures that there are very few contiguous TID sequences, limiting the
potential of Interval Compression. Furthermore, the overlap introduced by the small slide and large
windows is detrimental for covering intervals, since a significant amount of interval merging needs
to be performed. Completion time is higher for larger window sizes, but compression mitigates
this effect: the completion time overhead for Single grows significantly, starting from 75 % at WS
100 and reaching around 550 % at WS 5000. After this point, the overhead became so high that
the system did not stay stable. Despite the challenging workload, adaptive compression reduces
the overhead to 50% and 130%, respectively. Covering Intervals further reduce the overhead, al-
beit with diminishing returns at larger window sizes due to ever-increasing number of intervals to
merge. The amount of memory needed to maintain provenance information in the window operator
follows a similar pattern: Single uses a naive approach that keeps provenance for every output win-
dow separately, utilizing 35 KB at WS 100 and 163 MB at WS 5000. Adaptive compression uses
an improved approach that shares provenance information whenever possible, reducing the cost to
114 KB at WS 5000 and 384 KB at WS 20000. These values come very close to the space needed

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:19

'S
o

’g 1201 | Nd Proveﬁance ‘ -~ Qosp M ‘InstrL‘Jmeﬁtatio‘n wifh Re‘trieve‘ll (O‘ptimi‘zed)‘

< 100 | =2 Single 2 25, | M Replay-Lazy with Retrieval (Optimized)

£ B Optimized e § -

= 80 m Covering Interval §89

S 60 E%_?: 13

2 gg EE

§ 20t 838% &

© 0 1

2 5 10 20 40 60 80 100 0.05 0.10 025 050 0.75 1 2 5 10 25 50 100
Front Window Size Retrieval Frequency (%)
Fig. 19: Complex Network Fig. 20: Retrieval Frequency

for the TIDs of all open windows, showing that provenance management is not a bottleneck when
scaling the workload. Covering intervals do not need any additional space beyond their extended
headers, since intervals are merged as soon as possible. Likewise, the amount of data transferred be-
tween operators increases sharply when using Single, from 39 MB (WS 100) to 440 MB (WS 5000)
against a baseline of 15 MB. Adaptive compression, on the other hand, sees a moderate increase:
22 MB at WS 100 and 40 MB at WS 20000. For covering intervals, there is only limited overhead,
less than an additional MB regardless of the window size.

We then altered our workload in three ways to study the consequences of extremely large win-
dows: (i) instead of sending a batch of 100K tuples and measuring the completion time (which
would limit the window size), we sent a large number of consecutive batches of size 10K tuples, (ii)
we set the slide size to be one tenth of the window size, and (iii) we increased the selectivity of the
front filter to 50 %, to allow formation of a reliable number of very large windows. We also skipped
Single, since it is clearly not competitive for very large windows. With this setup, we could scale
up our measurements to windows containing S00K tuples while observing only moderate overhead:
The memory needed to maintain provenance state in the window operator was less than 9 MB at
WS 500K for adaptive compression. The computational overhead leveled off at large window sizes,
staying at around 100 % for adaptive compression and 60 % for covering intervals.

Window Slide: Reducing the overlap between windows (increasing SL from 1 to 100, WS=100)
decreases the overall cost, since far fewer result tuples need to be generated (Figure 16). The log-
arithmic decline can be explained by the fact that the low load makes the impact of provenance
generation negligible for slides bigger than 10. Large slide values result in small overlap between
open windows. Hence, they demonstrate the worst-case scenario for the adaptive compression, be-
cause maintaining the complex data structures of these techniques does not pay off anymore. Yet,
compression performs only slightly worse than the Single approach.

TID: Besides the specific window parameters such as WS or SL, the performance for window-based
aggregates is also influenced by upstream operators affecting the distribution of TID values. We
investigate these factors by varying the selectivity of the first selection operator in the Basic network
between 5% and 100% (Figure 17). Without TID compression, the Completion Time is linear to
selectivity, because the number of generated output tuples also grows linearly and generation is not
affected by TID distribution. Interval compression used by Optimized becomes more efficient when
selectivity is increased, as more and more contiguous TID ranges are created. We therefore see no
further increase in cost for selectivities over 75%.

6.5. Influence of Network Load on Latency

In reality, a query network is rarely run at maximum load. Thus, performance metrics such as La-
tency play an important role. We run the Basic network (Generation and Retrieval, WS=100, SL=1,
S=25%) and vary the load by changing the size of the batches being sent from the client between 10
and 100 tuples while keeping the frequency of sending batches fixed. Smaller batches are avoided,
because they result in very unpredictable performance. For sizes larger than 100 the slowest method
(Single) would not be able to always process input instantly. As shown in Figure 18, provenance

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 B. Glavic et al.

generation does indeed increase the latency, but this increase is very moderate and stays at the same
ratio over an increasing load. Single results in about 75% additional latency, Optimized reduces this
overhead to around 60%, while Covering Intervals is the cheapest with around 20% overhead.

6.6. Complex Query Networks

We now investigate whether our understanding of the cost of individual operators translates to real-
life query networks using the complete running example introduced in Figure 1. We use this network
(called Complex) to study how our approach translates to a more complex query network with mul-
tiple paths and a broad selection of operators. This query does not lend itself easily to straightfor-
ward optimizations (limited TID contiguity) and stresses intermediate operators with large amounts
of provenance. We vary the amount of provenance created by the network by varying the win-
dow size for the aggregations applied before the union operator (“front” windows). As Figure 19
shows, the overhead of Reduced-Eager instrumentation without compression (Single) is higher than
in previous experiments. The Optimized method (adaptive compression) shows its benefits: while
more expensive for very small WS values (100% overhead at WS=2), it becomes more effective for
larger window sizes. Covering Intervals is again very effective with 40% overhead independent of
the increase in provenance. Memory measurements support these observations, since the additional
provenance does not increase the cost significantly when using compression or covering intervals.

6.7. Varying Retrieval Frequency

Many real-world scenarios do not need provenance for the entire result stream. We therefore study
the effect of retrieval frequency (as a simple form of partial provenance retrieval) on the trade-
off between Reduced-Eager and Replay-Lazy. Using the Nested Aggregation network with four
aggregations (WS=10 and SL=3) and 2 million input tuples we vary the rate of retrieval from 0.05%
to 100% (by inserting an additional selection before reconstruction). The results are shown in Figure
20 (overhead w.r.t. completion time of No Provenance). For low retrieval frequencies (less than 1%)
the cost of retrieval is insignificant. Reduced-Eager generates provenance for all outputs and, thus,
the overall cost is dominated by provenance generation. Computing covering intervals for Replay-
Lazy results in a relative overhead of about 13% over the completion time for No Provenance (which
is constant in the retrieval frequency). Replay-Lazy has to compute only few replay requests at low
retrieval rates, but in turn pays a higher overhead for higher retrieval rates. Replay-Lazy is the better
choice for the given workload if the retrieval frequency is 10% or less.

Summary: Our experiments demonstrate the feasibility of fine-grained end-to-end provenance in
DSMS. Operator Instrumentation clearly outperforms Rewrite. Furthermore, Reduced-Eager allows
us to separate generation and retrieval. Replay-Lazy based on covering intervals reduces the over-
head on the “normal” query network and enables us to scale-out. The optimizations for provenance
compression are effective in both small-scale, synthetic as well as large-scale, real-life workloads.

7. RELATED WORK
Our work is related to provenance on workflow systems, databases, and stream processing systems.

Workflow Systems. Workflow provenance approaches that handle tasks as black-boxes are not suit-
able for managing stream provenance [Davidson et al. 2007]. More recently, finer-grained workflow
provenance models have been proposed (e.g., allowing explicit declarations of data dependencies
[Anand et al. 2009] or applying database provenance models to Pig Latin workflows [Amsterdamer
et al. 2011a]). These systems only support non-stream processing models and require explicit dec-
larations. Ariadne’s compression techniques resemble efficient provenance storage and retrieval
techniques in workflow systems (e.g., subsequence compression technique [Anand et al. 2009] or
node factorization [Chapman et al. 2008]). However, due to the transient and incremental nature of
streaming settings, we use compression mainly for optimizing provenance generation.

Database Systems. There are several different notions of database provenance [Cheney et al. 2009]
supported by different systems (e.g., Trio [Benjelloun et al. 2006], DBNotes [Bhagwat et al. 2004],

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Efficient Fine-grained Stream Provenance via Operator Instrumentation A:21

Perm [Glavic and Alonso 2009]). Like lineage in relational databases, Ariadne represents the prov-
enance of an output tuple as a set of input tuples that contributed to its generation. In principle,
our operator instrumentation techniques can be extended to support more informative provenance
models similar to database provenance models such as provenance polynomials [Green et al. 2007]
and graph-based models [Acar et al. 2010]. However, it is unclear if their benefits in terms of equiv-
alences will hold for streaming operators. Given the fundamental differences in the data and query
models for streams, investigating whether these existing provenance models or minimization tech-
niques [Amsterdamer et al. 2011b] can be adapted to stream provenance is promising future work.

Stream Processing Systems. There is only a handful of related work on managing stream prove-
nance. Vijayakumar et al. have proposed coarse-grained provenance collection techniques for low-
overhead scientific stream processing [Vijayakumar and Plale 2006]. Wang et al. have proposed a
rule-based provenance model for sensor streams, where the rules have to be manually defined for
each operation [Wang et al. 2007]. More recently, Huq et al. have proposed to achieve fine-grained
stream provenance by augmenting coarse-grained provenance with timestamp-based data version-
ing [Huq et al. 2011]. In his work, provenance generation is based on inversion, as opposed to
Ariadne’s propagation-based approach, hence it is more restricted. A common use case for stream
provenance data is query debugging. Microsoft CEP server [Ali et al. 2009] exposes coarse-grained
state of the system through snapshots and streams of manageability events. The visual debugger
proposed in [De Pauw et al. 2010] supports fine-grained provenance computation based on iden-
tifier annotation and operator instrumentation, where per-operator provenance is stored and multi-
operator provenance is generated from it on an on-demand basis.

8. CONCLUSIONS

We present Ariadne, a system addressing the challenges of computing fine-grained provenance for
data stream processing, which provides an important building block for provenance on event detec-
tion. Reduced-Eager operator instrumentation provides a novel method to compute provenance for
an infinite stream of data that adds only a moderate amount of latency and computational cost and
correctly handles non-deterministic operators. Replay-Lazy and Lazy-Retrieval provide additional
optimizations to decouple provenance computation from stream processing. The effectiveness of our
techniques is successfully validated in the experimental evaluation over various performance param-
eters and workloads. Interesting avenues for future work include: (i) studying provenance retrieval
patterns to exploit additional knowledge for storage decisions and in optimizing computations, (ii)
investigating distributed architectures and integration of our system with scalable distributed stor-
age, and (iii) extending our provenance semantics to model the inherent order of streams.

REFERENCES

Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang
Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, and others. 2005. The Design of the Borealis Stream Processing
Engine. In Conference on Innovative Data Systems Research (CIDR). 277-289.

Umut Acar, Peter Buneman, James Cheney, Jan van den Bussche, Natalia Kwasnikowska, and Stijn Vansummeren. 2010. A
Graph Model of Data and Workflow Provenance. In Workshop on the Theory and Practice of Provenance (TaPP). 8-8.

Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. 2008. Efficient Pattern Matching over Event Streams.
In International Conference on Management of Data (SIGMOD). 147-160.

Mohamed H Ali, Ciprian Gerea, Balan Sethu Raman, Beysim Sezgin, Tiho Tarnavski, Tomer Verona, Ping Wang, Peter
Zabback, A Ananthanarayan, A Kirilov, and others. 2009. Microsoft CEP Server and Online Behavioral Targeting. In
International Conference on Very Large Data Bases (VLDB). 1558—1561.

Foteini Alvanaki and others. 2012. See What’s enBlogue: Real-time Emergent Topic Identification in Social Media. In
International Conference on Extending Database Technology (EDBT). 336-347.

Yael Amsterdamer, Susan B Davidson, Daniel Deutch, Tova Milo, Julia Stoyanovich, and Val Tannen. 201 1a. Putting Lipstick
on Pig: Enabling Database-style Workflow Provenance. Proceedings of the VLDB Endowment (PVLDB) 5, 4 (2011),
346-357.

Yael Amsterdamer, Daniel Deutch, Tova Milo, and Val Tannen. 2011b. On Provenance Minimization. In Symposium on
Principles of Database Systems (PODS). 1-36.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 B. Glavic et al.

Manish Kumar Anand, Shawn Bowers, Timothy McPhillips, and Bertram Ludascher. 2009. Efficient Provenance Storage
over Nested Data Collections. In International Conference on Extending Database Technology (EDBT). 958-969.
Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom. 2006. ULDBs: Databases with Uncertainty and

Lineage. In International Conference on Very Large Data Bases (VLDB). 953-964.

Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. 2004. An Annotation Management Sys-
tem for Relational Databases. In International Conference on Very Large Data Bases (VLDB). 900-911.

Irina Botan, Roozbeh Derakhshan, Nihal Dindar, Laura Haas, Renée J Miller, and Nesime Tatbul. 2010. SECRET: A Model
for Analysis of the Execution Semantics of Stream Processing Systems. In International Conference on Very Large
Data Bases (VLDB). 232-243.

Adriane P Chapman, Hosagrahar V Jagadish, and Prakash Ramanan. 2008. Efficient Provenance Storage. In International
Conference on Management of Data (SIGMOD). 993-1006.

James Cheney, Laura Chiticariu, and Wang-Chiew Tan. 2009. Provenance in Databases: Why, How, and Where. Foundations
and Trends in Databases 1, 4 (2009), 379-474.

Yingwei Cui, Jennifer Widom, and Janet L Wiener. 2000. Tracing the Lineage of View Data in a Warehousing Environment.
Transactions on Database Systems (TODS) 25, 2 (2000), 179-227.

Susan B Davidson, Sarah Cohen Boulakia, Anat Eyal, Bertram Ludéscher, Timothy M McPhillips, Shawn Bowers, Man-
ish Kumar Anand, and Juliana Freire. 2007. Provenance in Scientific Workflow Systems. IEEE Data Engineering Bul-
letin 32, 4 (2007), 44-50.

Wim De Pauw, Mihai Letia, Bugra Gedik, Henrique Andrade, Andy Frenkiel, Michael Pfeifer, and Daby Sow. 2010. Visual
Debugging for Stream Processing Applications. In International Conference on Runtime Verification (RV). 18-35.
Peter M Fischer, Aayush Garg, and Kyumars Sheykh Esmaili. 2010. Extending XQuery with a Pattern Matching Facility. In

International XML Database Symposium (XSym). 48-57.

Boris Glavic and Gustavo Alonso. 2009. Perm: Processing Provenance and Data on the same Data Model through Query
Rewriting. In International Conference on Data Engineering (ICDE). 174-185.

Boris Glavic, Kyumars Sheykh Esmaili, Peter M Fischer, and Nesime Tatbul. 2011. The Case for Fine-Grained Stream
Provenance. In BTW Workshop on Data Streams and Event Processing (DSEP). 58-61.

Boris Glavic, Kyumars Sheykh Esmaili, Peter M Fischer, and Nesime Tatbul. 2012. Ariadne: Managing Fine-Grained Prov-
enance on Data Streams. Technical Report 771. ETH Zurich.

Boris Glavic, Kyumars Sheykh Esmaili, Peter M Fischer, and Nesime Tatbul. 2013. Ariadne: Managing Fine-Grained Prov-
enance on Data Streams. In International Conference on Distributed Event-Based Systems (DEBS). 39-50.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semirings. In Symposium on Principles of
Database Systems (PODS). 31-40.

Mohammad Rezwanul Huq, Andreas Wombacher, and Peter MG Apers. 2011. Adaptive Inference of Fine-grained Data
Provenance to Achieve High Accuracy at Lower Storage Costs. In IEEE International Conference on E-Science (e-
Science). 202-209.

Zachary G Ives, Todd J Green, Grigoris Karvounarakis, Nicholas E Taylor, Val Tannen, Partha Pratim Talukdar, Marie Jacob,
and Fernando Pereira. 2008. The ORCHESTRA Collaborative Data Sharing System. SIGMOD Record 37, 2 (2008),
26-32.

Alberto Lerner and Dennis Shasha. 2003. The Virtues and Challenges of Ad Hoc + Streams Querying in Finance. IEEE Data
Engineering Bulletin 26, 1 (2003), 49-56.

Yuan Mei and Samuel Madden. 2009. ZStream: A Cost-based Query Processor for Adaptively Detecting Composite Events.
In International Conference on Management of Data (SIGMOD). 193-206.

Frederick Reiss and Joseph M Hellerstein. 2005. Data Triage: An adaptive Architecture for Load Shedding in TelegraphCQ.
In International Conference on Data Engineering (ICDE). 155-156.

Esther Ryvkina, Anurag S Maskey, Mitch Cherniack, and Stan Zdonik. 2006. Revision Processing in a Stream Processing
Engine: A High-Level Design. In International Conference on Data Engineering (ICDE). 141-141.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo. 2010. Earthquake Shakes Twitter Users: Real-time Event Detection
by Social Sensors. In International World Wide Web Conferences (WWW). 851-860.

Nesime Tatbul, Ugur Cetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stonebraker. 2003. Load Shedding in a Data
Stream Manager. In International Conference on Very Large Data Bases (VLDB). 309-320.

Nithya N. Vijayakumar and Beth Plale. 2006. Towards Low Overhead Provenance Tracking in Near Real-time Stream Fil-
tering. In International Provenance and Annotation Workshop (IPAW). 46-54.

Min Wang, Marion Blount, John Davis, Archan Misra, and Daby Sow. 2007. A Time-and-Value Centric Provenance Model
and Architecture for Medical Event Streams. In ACM HealthNet Workshop. 95-100.

Allison Woodruff and Michael Stonebraker. 1997. Supporting Fine-grained Data Lineage in a Database Visualization Envi-
ronment. In International Conference on Data Engineering (ICDE). 91-102.

ACM Transactions on Internet Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

