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ABSTRACT

The advent of social media has facilitated the study of information
diffusion, user interaction and user influence over social networks.
The research on analyzing information spreading focuses mostly
on modeling, while analyses of real-life data have been limited
to small, carefully cleaned datasets that are analyzed in an offline
fashion. In this paper, we present an approach for online analysis of
information diffusion in Twitter. We reconstruct so-called informa-
tion cascades that model how information is being propagated from
user to user from the stream of messages and the social graph. The
results show that such an inference is feasible even on noisy, large-
scale, rapidly produced data. We provide insights into the impact
of incomplete data and the effect of different influence models on
the cascades. The observed cascades show a significant amount of
variety in scale and structure.

1. INTRODUCTION

Social media such as online social networks (Facebook), mi-
cromessaging services (Twitter) or sharing sites (Instagram) pro-
vide the space in which a significant part of social interactions takes
place. Many real-life situations like elections are reflected by social
media and in turn social media shapes them by forming opinions or
strengthening trends. In addition to providing a large audience,
social media has changed the speed of interaction: Information
spreads within minutes or hours, triggering equally fast reactions.
This often overwhelms all participants: Companies as well as
politicians are struggling to keep up with the onslaught of (mostly
negative) reactions which come suddenly and with high speed.

As a result, monitoring social media in real time has attracted a
lot of interest both by academia and industry, with a strong focus
on sentiment analysis [15] and trend detection [2, 14]. More thor-
ough analysis like an in-depth understanding of how information is
being spread or what are the particular user roles, has been so far
performed in an offline fashion, typically targeting only academic
research. Yet, in many situations, such deep understanding is
needed; companies, celebrities or politicians need to react quickly
to a massive amount of opinions, determining who is reacting to
certain information and who is influencing others. Similar analysis
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may be useful for online journalism, helping to detect events,
assessing their source, predicting virality as well as determining
the impact of own publications. Furthermore, online marketing
will benefit from such real-time analysis to rate the effectiveness
of its methods and, if necessary, to adapt the means to reach the
appropriate users.

An important area of analysis - both on its own and as an
underpinning for more complex analysis is the study of information
diffusion, i.e. tracing, understanding and predicting how a piece of
information is spreading. In this paper, we present methods and
results of how information diffusion can be studied in real-time,
using retweets on Twitter as a starting point. We tackle the problem
of determining influence paths that express the relationship of "who
was influenced by whom". The set of influence paths form a social
graph, that share a common root (a single user who first seeded a
tweet) is referred as "information cascade" in the literature [13].
Nodes of the cascade represent nodes (users) of the social network
that got “influenced” by the root or another user. Edges of the
cascade represent edges of the social graph over which influence
actually spread. An “influencer” in the case of Twitter is the so
called “friend” that exposes information to his/her followers and
exerts influence on them in such a way that they forward this piece
of information.

Our online method relies on an algorithm and supporting sys-
tem to infer possible influence paths from the stream of mes-
sages (tweets) and the underlying social graph (follower and friend
network). To our knowledge, no work exists on reconstructing
information cascades and inferring influence paths online while
investigating the impact of incomplete and not cleaned datasets
on such evaluations. Such incomplete datasets derive from API
limitations or lack of explicitly observable user influence. Our
method can be used as a general model of inferring influence paths,
not only restricted to retweets, but also of any kind of information
that propagates over a social network, e.g. URLs or hashtags.

In detail, we provide insights in the follows areas:

e Social connections as carriers of information: Is information
propagated mostly over explicit links (like friends or follow-
ers) in social media or do other means play an important
role? If the latter is the case, tracing and attributing influence
becomes challenging. The results show that a large amount
of influence can indeed be attributed to explicit social links.

e Feasibility and quality of inference: When working with
online datasets, we encounter problems such as missing
messages and missing social graph information. We show
that we can reconstruct such cascades and the results are
meaningful under the constraints of online analysis.

e Properties of information spreading: We provide evaluation
of our datasets with the following insights; how influential is



the root user? Cascades tend to be wide or deep? To what
extend users are exposed to multiple influencers and what are
the effects of various influence models?

The remainder of the paper is structured as followed: Section 2
provides more background information on relevant existing re-
search. In turn, Section 3 describes our model and algorithm. Our
dataset is explained in Section 4, while the results of our evaluation
are presented in Section 5. The paper concludes in Section 6.

2. RELATED WORK

Information diffusion and information cascades have been stud-
ied in the past in an offline way with relatively small datasets.
A summary of models and methods of information diffusion is
described in [9]. Two baseline approaches presented there are the
Independent Cascades (IC) and the Linear Threshold (LT) model.
The IC model [7] includes a diffusion probability that is associated
with each edge while the LT model [8] defines an influence degree
on each edge and an influence threshold for each node. The
statistical, structural and content aspects of information cascades
have been studied in [16, 12, 10]. In [16] authors investigated
the size, shape and decay factors of cascades; the biggest cascade
in the evaluations dataset contained 1K messages. In [12] shape
and temporal analysis of retweet cascades were analyzed with the
biggest retweet cascade containing 4K messages. The authors
of [10] investigated human interactions on a crisis constructing
the corresponding cascades, using a tiny dataset containing 168
retweets.

Relevant to our research is the work by Cogan et al. [5] that
studied user interactions on Twitter, designing an algorithm to
reconstruct the conversational graphs (mentions, retweets, replies).
Their dataset contained 33K retweets while the largest retweet
cascade had a size of 170 retweets. An offline straightforward
Map-Reduce algorithm for reconstruction of retweet cascades is
described in a Stanford class project [6].

Evaluating information diffusion with missing data has seen
some interest. In [11] the effects of missing data in social networks
are studied, by building a model to estimate the overall properties of
information cascades given only a sample of nodes and edges. [17]
aims to infer missing nodes by incorporating temporal information,
but the cost of such inference is quite significant, depending on the
size of the entire social graph. However, we tackle a different prob-
lem, proving that even with limited data it is possible to reconstruct
cascades.

As far as real time analysis on social media is concerned, re-
search is restricted to the domain of trend detection and event iden-
tification [2, 14]. These methods focus mainly on topic extraction
and not on user interactions, as a result they are not directly com-
parable to our real-time approach for studying user interactions.

Overall, the existing methods and models for information cas-
cades are implemented offline in relatively small datasets. More-
over, these models are restricted to specific conventions for re-
construction (e.g. '@’ for retweet) while our algorithm can be
extended to any information that propagates over a social graph.
To the best of our knowledge, no work exists on reconstructing
information cascades and inferring influence paths on real-time
while investigating the impact of missing information.

3. MODELS AND ALGORITHMS

In order to track information diffusion on real-time, we need to
extract information cascades out of the message stream. A cascade
is formed when users forward the same original message from a
user that we call the roor user. The exact influence path, that
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Figure 1: Impact of Influence Models

shows how forwarding occurs, is not available from the message
stream. Under the assumption that the social graph connections
(e.g. followers and friends) serve as means of information diffusion
and influence, we can derive these influence paths from these social
connections among users.

A core aspect of modeling information diffusion is the assign-
ment of influence: users might be exposed and influenced by a
piece of information by in multiple users, hence forming multiple
influence paths [3]. When a message arrives that is a retweet,
every friend that has (re)tweeted at an earlier point in time has to
be considered as a potential influencer, if no constraints are made
on the influence model. Specific influence models, however, may
include only a subset of these influencers, as in reality users are
not influenced equally by all their friends that forwarded the same
message.

In order to investigate the mechanism of influence and avoid
exhaustive search to all follower data that drives complexity, we
employ different influence assignment models. We have considered
the following models for influence assignment [3, 4]:

o Least recent influencer: Users are influenced by the first
exposure even if they do not act immediately.

e Most recent influencer: Users are influenced by the last
exposure.

e Most followered influencer: Users with the most followers
tend to be more popular and it is assumed that they can
trigger more retweets.

o Most retweeted influencer: Users whose messages are for-
warded the most, emit interesting content and are considered
to be authorities, thus exerting more influence on others.

We present an example in Figure 1 in order to better understand
the aforementioned models and their impact on influence paths.
Nodes represent users who propagate the same tweet while the
arrow direction indicates the relationship "is followed by". We ap-
ply three of the aforementioned influence models and construct the
cascade accordingly. For each user there are two values attached:
the first one indicates the temporal order of sending retweets and
the second the number of followers. The influence paths in each
case are highlighted in red. Note here that influence paths in red
form a subset of the influence paths in the cascade, since these
models trim the redundant influence paths. We can observe that
each model (least recent/most recent/most followers influencer)
leads to different structural and conceptual results thus exerting a
big impact on the paths that information/influence flows.

In order to provide a clear understanding on the interaction of
social network connections and messages streams with information
cascades, we provide a lightweight formalization: The social graph
SG = (V, F) is a directed graph of follower/friend relationships,
showing for each user (node) from V' who follows this user (F).
For simplicity we assume that during the reconstruction this social
graph remains static. The message stream is expressed as sequence
of messages M ™ in temporal order. Each message M contains



several attributes, out of which we just list the ones most relevant
for our work: (1) timestamp ¢ (2) user v € V (3) information
item identifier ¢, e.g. a retweet ID or a hashtag. We say that two
messages m1 and mg belong to the same cascade iff m1.2 = mo.1.
This model is flexible enough to express many kind of information
diffusion, not just retweets.

Based on foundations, we define a cascade graph C (U, E) with
U C V as directed graph of influence paths among users. This
graph is a subset of SG annotated with (at least) the influence time
on the edges. C' contains only nodes of those users who actually
(re)tweeted, but not those that were exposed to the information, but
did not react. This way, we can use a smaller graph that focuses
on the influence paths. If needed, a full reach computation can
easily be achieved by incorporating these passive users that are
followers of (re)tweeters. Among the users in this cascade that
tweeted, we designate u,, € U as the “root”, i.e. the user who
initially distributes the information item.

The influence paths (edges) need to fulfill the following con-
dition: an edge (u;,Um,t) € E,u;,um € U may only exist if
Im € M* : mau; = um A (ul,u2) € FA(u; = ur V(In €
M* : nou = ul An.t < m.t)). In other words, a user u,, who
spreads information using a message m is possibly influenced by
an user u; if there is a social network connection from u; to um,
and w; is either the root or was exposed to this information by a
message n which happened before m.

We design the baseline version of our reconstruction algorithm
to exhaustively search theses edges in F for all messages in M ™,
regardless of the used influence model. As our goal is to perform
this reconstruction in an online fashion, these edges shall be added
to C' in an incremental manner whenever a message arrives. Our
algorithm therefore checks at every arrival of a message m if a
SG connection from m.u to the user of any message n € M*
which arrived before m exists. If such a connection holds, it is
a possible influence path and will be added to C. This leads to
O(|M*|?) cost for the reconstruction of the entire cascade, if we
assume a constant cost for checking the existence of an edge in
SG. For specific influence models, we can utilize a refined version
of this algorithm: only a limited amount of influence paths needs
to be determined, so possibly only a few of the messages in M™
need to be checked. This may lead to lower average cost, but the
specific reconstruction cost will depend on the influence model, the
properties of the cascade and the representation of M ™ .

When reconstructing information cascades from real data, we
encounter either missing messages (nodes) or social graph connec-
tions (edges). In turn, this means that we have missing user nodes
in C' as well as missing influence edges, as these are being derived
by the algorithm above. Furthermore, not all influence paths will
actually be over explicit social network links. Instead, external
influences or overviews on trending topics provide connections that
are not captured by our approach. When the algorithm encounters
a message that cannot be assigned to a previous influencer, this
message becomes the root of a new fragment. As a result, we
will not generate a single graph, but multiple fragments that are
not connected to the main graph.

In order to implement evaluation in disconnected information
cascades and compute metrics on them there are three ways to deal
with the problem of disconnected fragments: (1) Considering only
the large connected component or root component. (2) Evaluating
the entire forest of all fragments in evaluation, but not joining
them. (3) Inferring connections between fragments (nodes). In
this case, we need to infer influence edges, which is discussed
in the literature [11, 17], but no scalable methods exist. For our
evaluations, we generally chose the second approach. For metrics

that require a connected component (e.g. paths) we consider the
largest connected component. In the future, we will consider and
implement more elaborate models to connect cascade fragments.

For assessing the connectivity of information cascades, we in-
troduced two metrics. Let C' = (U, E) be an information cascade
graph with U being the nodes and E the edges, u, the root and
M™ a sequence of messages. To evaluate the connectivity of
a diffusion graph the two formulas Connectivity-Rate (CR) and
Root-Fragment-Rate (RFR) have been used.

cr = HulWw) € BV (u, ) € B}
U]
|[{u; € U|iff exists a path ur, .., u; in C}|
U]

&)

RFR = 2)

The Connectivity-Rate assesses whether there is a connection
between two users (nodes) in the cascade. It returns the percentage
of users that have at least one connection, and are thus influenced
by another user. The Root-Fragment-Rate assess whether there
is a path to the root user from every other user. It returns the
percentage of nodes that are connected with the root directly or via
an influence path over multiple users. CR provides a very basic and
loose indicator, whereas RFR utilizes a very strict notion. Taken
together, they provide sensible bounds for many more advanced
metrics.

We implemented this model and algorithms on top of Storm
[1], a scalable, distributed data stream processing platform which
provides the necessary low-level primitives for distributed stream
processing. Since we need to reconstruct with low latency and high
efficiency, there is the requirement to store snapshots of the graph
in distributed, main-memory storage components that support the
required access patterns. To exploit locality and keep communi-
cation cost low, the social graph snapshots should be distributed
to the expected computation distribution. Partitioning the social
graph snapshots accordingly and investigating suitable systems to
store the graphs are work in progress.

4. DATASET
4.1 Retrieval Approach

Performing an online analysis of information diffusion requires
access to the relevant messages while they occur as well as an
up-to-date instance of the social graph. For both goals, we need
to overcome a number of challenges, requiring particular retrieval
strategies. Among the popular online social media services, Twitter
is the only one that provides an API to access messages and
social graph information on the fly, but this API bears significant
restrictions.

Messages.

For messages, Twitters’ Streaming API' grants access to a subset
of the current stream of messages. This subset can be defined
on the basis of user names, keywords (including hashtags) and
geocoordinates. There are, however, two kinds of restrictions on
this API: On the one hand, the number of user names, keywords
and coordinates that can be followed by an account are limited (cur-
rently to 5000 each). On the other hand, the number of messages
per time produced by such a subscription must not exceed 1% of
the total number of messages processed by Twitter at the same time.
In cases of heavy traffic - such as a very popular topic at a certain
instance - this threshold is exceeded, so we are missing messages
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(and retweets). Furthermore, Twitter provides only limited means
to retrieve messages after their occurrence.

These limitations have another consequence: we cannot observe
all possible retweet cascades, but need to settle for specific subsets
before we start to record. Generally speaking, we would need
to perform some kind of event or virality detection on the fly in
order to determine this subset, which is a research problem on
its own. For the time being, we settled for two simple, but still
promising approaches to achieve this goal: If we are aware of
events that are likely to generate a considerable amount of tweets
and retweets (such as Olympics 2012 or US elections 2012), we use
specific keywords to track cascades referring to such events. This
approach bears the drawback that we can request only messages of
events known in advance. To overcome this problem and catch also
emergent or unpredictable events, we observe the Twitter "sample"
stream, containing a small randomly sampled subset of the full
message stream. We detect relevant cascades that demonstrate a
bursty behaviour in their beginning without knowing the specific
topic of them. The beginning of the cascade is then immediately
fetched using the Twitter REST APL

Social Graph.

For the social graph, Twitter offers methods to retrieve con-
nections for every user, both the list of users who follow this
user (followers) and the list of users this particular user follows
(friends). Even compared to the limits on message subscriptions,
the limits on the social graph are very strict: at most 60 users
or 300K follower entries (whatever is smaller) can be retrieved
per hour and account. Since we need to deal with high message
rates in cascades, on-demand retrieval of current social network
information during the reconstruction is not feasible. Instead, we
have to retrieve the social graph over time, cache it and refresh
it in order to reflect the graph evolution due to following and
unfollowing of users over time. Given the sheer size of the social
graph (100s of millions of users with their connections), we crawl
the social by fetching information of those users that are active in
retweets, with an emphasis on those users that are retweeted most
and/or have the most followers, in order to capture possible popular
users that exert influence on others [4]. When necessary, we can
augment this collection by explicit requests on specific users. Since
retrieving follower and friend information would provide redundant
information, we chose to retrieve only the follower information.
This is motivated by the fact that followers information provides a
better expression of influence and gives a quick way to retrieve all
connection information for the starter of a cascade.

4.2 Properties

Since our focus is to study realtime influence computation thor-
oughly in a reproducible manner, we still had to record a certain
amount of data for evaluations that could be replayed. As a starting
point (which we present here), we settled for a dataset that was
recorded from August 3rd to September 24th 2012, covering most
of the Olympics and the Paralympics 2012. Our analysis of other
datasets is currently ongoing. We used the Twitter streaming API
to subscribe to the filter terms "Olympics" and "London2012". In
total the data set contains almost 11 million tweets, in particular
1.1 million separate retweet cascades - both values are significantly
larger than any of datasets studied in the literature [16, 12, 10].We
performed an initial analysis to understand some of the overall
properties of this dataset, encountering a skewed distribution: the
largest cascade has more than 60000 retweets, around 150 have
more than 1000 retweets, approximately 5000 cascades have more
100 retweets and around 45000 cascades contain 10 or more

retweets. Twitter includes a retweet_count field in every retweeted
tweet, so we could compare the number of recorded retweets with
the number of reported retweets for every cascade. For most
of the cascades we recorded, these numbers showed only minor
differences (around 15% on average). For 50% of the cascades
we get 90% completeness or more, while for only 15% of the
cascades we get completeness less than 80%. That means that our
recording policy of tweets through the Twitter API works well.
The only major exception happened during the “peak hours” of
the Olympics, where the aggregate number of tweets from this
subscription exceeded the 1% rate limit of Twitter, and matching
tweets were dropped from the system. Our analysis also showed
that messages were received in temporal order, so that we can
process the message straight away without buffering and sorting.

In order to ensure a good coverage of the social graph, we
ensured that the follower information of all the 1.2M users present
in these cascades had been retrieved. There were two very distinct
subsets of users present: For around 300K users, no follower
information was accessible since these users have been blocked by
Twitter or made their accounts private. For the remaining users,
we fetched their followers, while the number of followers reported
in the retweet message at the time of the recording have a close
correlation. Since we fetched the followers after the recording of
messages the number of users retrieved is slightly greater. This
means that users follow more often than unfollow.

5. EVALUATION

In this section we evaluate our algorithm and models for recon-
structing information cascades. The focus of this analysis is on
data quality, feasibility and cascade properties, determining how
interesting such analyses are and to which extend they yield useful
results. For the real-time reconstruction performance, we present
some initial insights: From an execution speed point of view, even
a non-optimized implementation of the complete influence model
finishes the reconstruction of large cascades in a few seconds (e.g.
around 4 second for a cascade with 9000 users), if the social graph
information is available in main memory on the same machine.
Given the sheer size of the social graph, storing it in a single
machine is not a very workable solution, so we are currently
working on suitable models on how to compress the social graph
and distribute it together with the computation.

The results we present on the cascade data cover four aspects,
using the complete model for all but the last aspect: First, we
confirm our assumption that social links are carriers of information.
As a second step, we show how the quality of input data affects
the reconstruction influence paths. Then, on top of reconstructed
cascades we perform a preliminary analysis and compare it with
previous studies on Twitter. As a fourth step, we investigate how
different influence models described in Section 3 exert an influence
on reconstruction of cascades.

5.1 Assignment of Influence

First, we evaluate our assumption that information flows through
social links. We use a subset of our dataset which contains cascades
with more than 100 messages (we call it ”full dataset”), due to
the fact that the impact of incomplete data in small cascades has
more unpredictable results in reconstruction rates. For testing
reconstruction rates we used (1) a dataset containing more than
100 full dataset and (2) a cleaned subset of it. The cleaned dataset
contains cascades with more than 90% of their messages acquired
and having available more than 80% of follower lists. For the
cleaned dataset, we get median connectivity rate 85% and root
fragment rate 80%. When we extend our evaluations to the full



Connectivity rate for clean dataset 6
Root Fragment Rate for clean dataset .
0.8/ — Root Fragment Rate for full dataset ! 7
= = = Connectivity Rate for full dataset 0

CDF

% 20 40 60 80 100
Connectivity rate and Root fragment rate

Figure 2: Reconstruction rates

dataset (that is dirty and incomplete) these rates drop. However,
we show that it is possible under data limitations to reconstruct
cascades and to obtain meaningful and decent results. For 20% of
the cascades we get more than 80% connectivity rate and 70% root
fragment rate (Figure 2). In ideal cases of message completeness
99% and follower lists 95% we get CR=93% and RFR=90%. As a
result, we can conclude that social links are indeed the predominant
carriers of information. However, there are still 10% messages that
cannot be assigned using social graph information. That means,
either the user has no social connections available (deleted or
private account), or the user forwarded a message without having
a direct link to any of the previous (re)tweeters (forwarded it from
the public Timeline where messages of non followers are depicted).

5.2 Impact of incomplete data

Next, we investigate explicitly the impact of different incom-
pleteness parameters on the connectivity rate. Since we target
online analysis, either messages are missing or social graph infor-
mation might be absent or outdated. We take two cascades of size
1000, one star and one with a complex structure, with very good
connectivity rates in the presence of full social network data and
messages. In order to investigate the impact of incomplete data
we removed gradually (1) follower lists, (2) messages. Due to
space limitations, we are presenting only these two representative
cascades, since results on other cascades are very similar.

For case (1) shown in the upper part of Table 1, we gradually
removed follower lists apart from the root’s, keeping the ones with
the greater number of followers. Star cascades are expected to
undergo lower degradation since most of the users (retweeters) are
connected with the root. We can observe that by degrading the
follower lists to just 5% of the original data, the connectivity rate
drops for the star cascade only 2% and for the complex cascade
by 20%. The reason for this is that most users actually don’t exert
much influence, while multiple diffusion paths compensate for the
lost social connections in complex structures.

For case (2), we removed randomly chosen messages in order
to investigate the impact on the reconstruction rates. According
to the lower part of Table 1 connectivity rate drops significantly
when removing random retweets: we encounter a decrease of more
than 20% for star cascades and 30% for complex cascade when
keeping 75% of messages. That means that connections missing
due to absent messages cannot be compensated.

Overall, missing messages due to rate limiting results in worse
results than missing social graph data. As a result, retrieval of
messages is more important in keeping the cascade connected than
social links, which also supports our crawling approach focusing
on users with high activity or a large amount of followers.
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5.3 Cascade Properties

A preliminary analysis of properties of information cascades is
presented in this section.

In a first step, we studied basic properties of cascades. We
consider cascades with more than 10 retweets since we can find
more complex structures on them while small cascades have been
already studied [10, 3]. We can observe a skewed distribution for
retweet counts with the biggest cascade containing more than 60K
retweets (Figure 3 a). The diameter shows that cascades tend to be
deep, with a mean value of diameter 4 (Figure 3 b), contradicting
previous studies even for the big cascades [16, 12]. Diameter
values up to 18 are observed, indicating that information is being
propagated to a large audience much beyond the root’s followers.
This has an impact on cascades’ shapes, that demonstrate complex
structures more often than star structures. Another observation is
that cascades with diameter 1 are observed with the same frequency
as the ones with diameter 5. That confirms again our observations
that cascades are more deep than swallow, paving the way for
complex analyses.

Since we unravel big and complex cascades with long paths, we
studied the role of the root in originating such cascades. Is the
root highly influential or cascades tend to be big and deep due to
users who forward the tweet of root? Figure 3 c) and d) show that
cascade size is correlated both with the direct followers of the root
who retweeted (root out-degree) and with the non followers who
retweeted. As a result, both the influence of the root and users who
forward further the message in combination yield big cascades. On
the contrary, there is no correlation (Correlation Coefficient = 0.14)
between the size of the cascade and the number of followers of root.
Number of followers of a user is not informative of his influence.
In this case, results are consistent with previous results in [16, 4]

5.4 Impact of Different Influence Models

Since we get very good reconstruction results in cases of grad-
ually removing influence edges, we concluded and observed that
there exist multiple influence paths, hence a large number of possi-
ble influences. We study (1) how many of the cascades are actually
affected by different influence models, and (2) how cascades met-
rics and properties are affected, based on a concrete example.

For 10% of the nodes we can observe on average more than 3
influencers, while 20% of the cascades maintain an average number
of influencers greater than one. As a result, different influence
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models described in Section 2 do matter for 20% of the cascades.
This may underestimate the real results, since the datasets are
incomplete, in particular possible influence edges may be missing.

Different influence models have a big impact on cascade metrics
and properties. First, paths lengths are affected. Since we simplify
multiple influence paths to one according to a specific model, the
number of edges is decreasing while path lengths are increasing.
Also, the temporal distribution of edges changes according to the
model: the earlier influencer model produces edges closer to the
root’s timestamp, while latest influencer favors a more stretched
distribution of late retweets. In addition, the out-degree of users in
the cascade changes according to different model.

In Figure 4 three models were used to reconstruct the same
cascade with size 124 nodes. In the complete case, all influence
paths were considered, while in the earlier and latest influencer
models only one edge was selected according to models in Section
3. Node colour signifies temporal behaviour: the more red, the
smaller the temporal distance from root, the more grey-blue the
greater the temporal distance from root. Node size varies in log
scale according to the number of followers a user has, showing
how big is the audience that this user can potentially influence. We
can observe that the structure and paths change dramatically for
different models. For the complete reconstruction and the earliest-
retweet model, the diameter is 3 while for the latest-retweet model,
the diameter becomes 11. This can be explained by the fact that
since we keep the latest influencer on time, we choose the longest
path. Moreover, that explains the greater number of grey-blue
nodes in the last model (greater temporal distance from root).

6. CONCLUSION AND FUTURE WORK

In this paper, we present the first steps towards the real-time
analysis of information diffusion and user interaction in social
media. We introduce models and methods to reconstruct informa-
tion cascades over real-life Twitter data. We showed that such a
reconstruction is feasible and social links play predominant role
in information diffusion. Noisy data does have an impact, but we
understand which aspects are most critical and we work on ways
to overcome these limitations. A preliminary analysis of these
cascades shows that they exhibit significantly more complexity as
previous studies indicated, paving the way for richer studies. In
the future, we plan to cover a much broader range of datasets and

extend our evaluations to other kinds of information propagation
other than retweets. Also, we plan to build lightweight models in
order to infer missing messages and social links. Lastly, we will

target many engineering parts of the system, since we cannot yet
sustain the scale and performance requirements needed for a full
social network.
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