A Generic Database Benchmarking Service

Martin Kaufmann #*!, Peter M. Fischer™, Donald Kossmann #*, Norman May **

#Systems Group, ETH Ziirich, Switzerland

'martin.kaufmann@inf.ethz. ch,

3donald.kossmann@inf.ethz.ch

tAlbert-Ludwigs-Universitit Freiburg, Germany
2peter .fischer@informatik.uni-freiburg.de

*SAP AG, Walldorf, Germany

4
norman.may@sap.com

Abstract—Benchmarks are widely applied for the development
and optimization of database systems. Standard benchmarks
such as TPC-C and TPC-H provide a way of comparing the
performance of different systems. In addition, micro benchmarks
can be exploited to test a specific behavior of a system.

Yet, despite all the benefits that can be derived from bench-
mark results, the effort of implementing and executing bench-
marks remains prohibitive: Database systems need to be set up,
a large number of artifacts such as data generators and queries
need to be managed and complex, time-consuming operations
have to be orchestrated. In this demo, we introduce a generic
benchmarking service that combines a rich meta model, low
marginal cost and ease of use, which drastically reduces the time
and cost to define, adapt and run a benchmark.

I. INTRODUCTION

The benchmarks defined by the TPC consortium [1] and
their derivatives [2], [3] provide the de-facto standard in eval-
vating and comparing the performance of database systems.

Yet, running these benchmarks incurs a significant effort:
A range of tools need to be co-ordinated to run the actual
workloads, to modify the workloads according to specific dis-
tributions, and to visualize the results. A considerable amount
of state (e.g., input data) needs to be generated and managed.
Judging from our own experience in the database development
team at SAP, typically a large number of scripts written in
different languages are applied to implement benchmarks.

The problem of defining and running benchmarks has been
recognized by both the research community and commercial
vendors, and has lead to a wide range of tools. Most of
these, however, are frameworks that focus solely on the ad-
hoc execution of a particular kind of benchmark. Examples of
such frameworks include SIMS [4] (local resources), OLTP-
Benchmark [5] (OLTP), YCSB [6] (cloud) and PolePosition
[7]1 (OR mapping). Quest Benchmark Factory [8] is a com-
mercial product which supports the definition of benchmarks
by means of a rich-client program. Yet, its scripting ap-
proach leads to a rather limited reusability and extendibility
beyond predefined components. Lately, there have been two
approaches to offer benchmarking as a service: XQBench [9],
based on XCheck [10] and Liquid Benchmarking [11]. Both
approaches, however, aim at non-relational data (XML, RDF)
and provide limited meta models and execution flexibility.

In order to consolidate and unify various benchmarks and to
simplify the development of new benchmarks, we developed a

generic benchmarking service, which is demonstrated here for
the first time. Deploying a long-running service instead of an
ad-hoc script collection or program has numerous advantages:
e Collection of benchmark artifacts (such as workload
generators and queries), benchmark definitions and results
o Analysis of collected data for comparison with reference
results or performance regression tests
e Automation of common tasks such as running experi-
ments, regression analysis or detecting performance bugs
e Small incremental costs to define individual benchmark
artifacts and to add a new database server or users
Our demo also provides a number of technical contributions:
o A rich meta model to express all aspects of benchmarking
e A complete end-to-end solution with default implemen-
tations for most of the common functionality
e An extensible architecture to include custom components
e An easy-to-use web-based Ul, fully supporting bench-
mark definition and result analysis
The service can easily be deployed in the cloud. Due to
the sensitive nature of benchmarking (limitations on result
publishing, license fees, data privacy, etc.), however, we expect
it to be used in rather restricted settings and private clouds.
In this demonstration, users will be able to interact with
the system, register database servers, define new benchmarks,
adjust data generators or SQL statements and understand the
effects using various graphical representations.

II. CONCEPTS

The goals we have defined for the benchmarking service
require several aspects of conceptual underpinning. First we
describe how a benchmark is modeled in our service. Next, we
sketch the architecture of the system. We continue with a de-
scription of the web-based user interface of the benchmarking
service and explain how a benchmark can be executed.

A. Modeling a Benchmark

Since our benchmarking service aims to combine flexibility
with rich data operations and user guidance, a comprehensive
and expressive model is required. The key benefit of this meta
model is that artifacts (i.e., components of a benchmark) can
be parameterized, stored and reused. The intuitive definition
of these artifacts is achieved by a web-based UI, which also
supports archiving and comparing results.

Parameter

Benchmark Definition Binding

Execution Order \®
Measurements \QD
Schema DDL Generator DB Server Query
Instance Instance Instance Instance Instance

Schema DDL Generator DB Server Query
Type Type Type Type Type

SESOSOSSOSSS

Parameter Definition

Versioned Results II

Service Controller

Fig. 1. Data Model

As visualized by the abstract data model (Figure 1), a
benchmark definition is a combination of several artifact types:
Schema Definition, DDL Tuning, Data Generators, Database
Servers, Query Set, Execution Order. A simplified example
of such a benchmark definition is (“TPC-H schema”, “Index
on L_SHIPDATE”, “TPC-H dbgen: Scale 100", “SAP HANA,
PostgreSQL”, “Q1,Q5”, “uniform mix”). In addition to general
artifact selection, most of these artifacts can be parameterized.

Generally speaking, a benchmark can be seen as a subset
of the cross-product of all the artifact types and parameters.
Given the possibly large design space, we introduced two
means of structuring: 1) Templates define the type of a bench-
mark. Examples of such templates include “a parameterized
query on a server (one curve per parameter)” or ‘“‘several
grouped generator runs (one curve per server and query)”.
2) Measurements are a grouping of artifacts along particular
aspects (yielding, for instance, a line in a graph for a query,
scaled over the database size). The known set of artifacts,
possible parameters and templates provide information to the
GUI to let the user intuitively design and run benchmarks.

The artifacts of a benchmark are described as follows:

Schema Definition. The aim of the schema meta model is to
provide abstract information on the data model of individual
benchmarks (such as TPC-H), in particular on tables, columns,
data types and constraints. This information can be exploited
in various ways, among them: 1) Generating DDL statements
for creating tables (with metadata specific for a database server
type) 2) Generating consistent data-preserving constraints and
relationships. In terms of parameterization, we allow the user
to choose which columns are being used for each experiment.

DDL Tuning. Beside the schema, there are many aspects in
DDLs which can affect performance. We separate them from
the schema, so as to provide more flexibility in benchmark
design and execution. Typical “tuning” DDL aspects include
index creation, materialized views and partitioning. Given the
abstract modeling of the schema and the tuning, the system
can create both combined and incremental DDL statements at
different states within a running experiment.

Data Generator. A data generator can be applied before
the execution of an SQL statement in order to populate the
database instance with an experimental data set. Different
types of data generators are supported and may be combined:

1) Predefined generators for common benchmarks (e.g., all
the TPC benchmarks), supporting the parameters given
in the benchmark specification.

2) Generic user-defined generators: a built-in generator
using information from data definition and database
server information, covering common aspects such as
size, value distribution and correlation between the ta-
bles. Furthermore, referential integrity constraints and
arbitrary join paths with a chosen selectivity can be
defined. All these aspects are exposed as parameters.

3) Custom generators: Specific requirements can be ex-
pressed in the service as custom classes or by calling an
external tool (such as [12]). Parameters of these tools
need to be specified for the integration into the service.

Database Servers. Since our benchmarking service aims
at supporting a multitude of different database servers, the
meta model needs to cover three aspects: 1) Capabilities
of the database systems involved such as data types, DML
expressions, etc. This information can be utilized to tailor
DDL and DML statements. 2) Operational information on how
to perform operations on the actual server instances using
standard call-level interfaces like JDBC, e.g., establishing a
connection, executing a query, interpreting the results, all of
which will be relevant when running a benchmark. 3) Tunable
parameters that are not reachable via normal DDL statements,
such as the “merge interval” of SAP HANA or memory/disk
settings of Oracle. Besides custom call-level statements, this
may involve a collection of scripts at OS-level access.

Query Set. The set of queries to be executed in an experiment
can consist of arbitrary DML statements in their textual form.
This includes standard SQL statements like queries, insert, up-
date and delete operations, but also stored procedures or scripts
in languages such as PL/SQL or T-SQL. Each statement has a
possibly empty set of parameters (including type information)
for input and output values, allowing for parameterized queries
and reusing the output of one query as input for another.
Depending on the specification, these parameters may be
applied by text replacement or as invocation-time arguments.

Execution Order. Many benchmarks do not consider in-
dividual queries in isolation; instead, queries are combined
at varying levels of complexity. The meta model of the
benchmarking service provides two means to express such
interactions: 1) For workloads that consider state changes
explicitly, an ordering of the query set may be given. 2) For
workloads which combine multiple queries with different cost
or characteristics, a query mix can be specified. Once more, a
built-in model and driver provide the means to define common
aspects like the distribution of query types or their timing.

Meta Model i i

@ DB Instance . DB Instance
Execution

Benchmark Description
—>
Nodes
Versioned Results II j Web Front-End

Fig. 2.

Coordinator

Job Queue

System Architecture of the Benchmarking Service

Custom query mix drivers may be included to manage those
requirements which are not expressible by standard settings.

The entire meta model (artifacts and benchmark specifica-
tions) as well as results are stored in a versioned database.
With this versioning we can track how interactions among
artifacts have developed. Furthermore, artifacts can have vari-
ants, e.g., custom queries for specific DBMSs if automatic
tailoring from meta model data is not sufficient.

B. System Architecture

A distributed architecture, as shown in Figure 2, was chosen
for the service: A central Service Controller keeps track of
the meta model instances, which includes both the actual
artifacts and the results. The process of running an experiment
is controlled by a Coordinator Node, which contains a queue
of benchmarks that are about to be executed, distributes jobs
and detects node failures. The benchmarks are run on several
Execution Nodes in parallel to simulate a multi-user workload
or speed up measurements. Each execution node in turn may
distribute the measurements over several database servers.
Database servers can be accessed at different levels, mainly
using call-level interfaces such as JDBC with queries and
statements derived from workloads and DBMS metadata. And,
when necessary, at the OS level using scripts to start/stop
databases and perform external tuning. Clearly, more access
rights provide more precise control of the execution.

The usage model assumes a benchmark cluster or a “pri-
vate” cloud setting. Using it in a public cloud is possible,
but problematic due to the legal and financial constraints
of benchmarking (commercial) DBMS: Benchmarking results
must not be published without explicit permissions by the ven-
dors. Running DBMS instances in the cloud incurs additional
licensing fees, while running DBMSs on customer premises
and accessing them from the cloud is often prohibited for
security reasons.

C. Web-Based User Interface

The service controller provides a web front-end (Figure 3)
for the definition of artifacts and visualization of results. This
GUI leverages the powerful meta model introduced in Section
II-A by exposing the various kinds of artifact types.

For the definition of a benchmark, the web front-end allows
the user to combine artifacts and specify parameters. For
instance, in the TPC-H data definition, the configuration of
a benchmark is done in multiple steps. It includes the known
DDL tuning options, the parameters for generating input data

and the queries with their parameters. Once an experiment has
finished, its results can be compared to similar experiments.

The web front-end provides a comprehensive access to
features, models and results of the experiments. Yet, the
system supports including custom code and classes for special
problems such as specific parameter distributions or complex
and state-dependent conditional execution orders.

D. Running Benchmarks

Benchmarking is inherently expensive, as it involves
computation- and data-intensive tasks like running input data
generators and loading the generated data into databases.
Furthermore, our definition of a benchmark as a cross-product
of its contributing artifacts and their parameters, provides great
flexibility, but can possibly entail high cost. The benchmarking
service contains several strategies to cope with these costs:
Users can specify directly or implicitly (using a template)
which execution flow to follow. We apply a number of
optimizations: The sequence of steps can be modified to
reuse previous, costly stages (like dataset creation or DB
loading). In addition, the data generator performs caching and
pipelining (depending on the setting) to reduce memory and/or
CPU costs. Whenever possible, the controller distributes and
parallelizes steps as to take advantage of available nodes. A
typical flow of such an execution flow is shown in Figure 4.
Correctness of the results and precision of measurements
can be ensured. Within an experiment, measurements are
performed on a “hot” database and repeated several times
to achieve stable results. Users may specify reference results
against which the output values of queries are to be compared.

III. DEMONSTRATION

Our demonstration will consist of three parts: 1) introduc-
tion, 2) benchmark definition 3) running the experiment.

A few words on the benchmark setup: While the bench-
marking service is inherently designed for distribution, we
will make our demonstration more tangible by using two local
machines — one running the GUI and service controller, the

List of Benchmarks |+ | New Benchmark |+

New Benchmark

Enter the information of the new benchmark.

Create new benchmark
Benchmark name:* TPC-H
Benchmark type:* grouped bar charts: single result per server and query [=]
Schema:* TPC-H =]
Metric:* Execution time [x]
Number of repeats:* [13
Number of discards:” [1
Prepopulate generator: [TPC-H dbgen]
Scaling factor: * 100.0
Save values:* no
Create tables:* yes[~]
Execution frequency:* | once [~]
Timeout (seconds) 1000
Is public:* ves[~]
1Is active:* yes[+]
E-Mail notification: * yes[~]
* Required field
[Nex |
Fig. 3. Screenshot of the Web Front-End

other hosting execution nodes and DB Server installations. If
possible, we will also include nodes from our lab.

A. Part 1: Introduction and Motivation

We will begin the demonstration by illustrating some scripts
that were deployed at SAP to run standard benchmarks such
as TPC-C and TPC-H before our benchmarking service was
introduced. By trying to tune some benchmark parameters in
the script, we will show how inconvenient and error-prone
defining a benchmark was in the past. Based on a standard
benchmark, we will demonstrate how easily the configuration
can be adapted using the new system.

B. Part 2: Defining a Benchmark and Adding DBMSs

In the second part of the demonstration we will show how
the web-interface can be used to create a new benchmark from
scratch in only a few minutes and run on different DBMSs.
The example use-case will be the evaluation of join queries.

First, the audience will see how several different database
servers can be registered with the system. We will continue
by creating a new database schema related to the synthetic
data used to micro-benchmark the join queries. This schema,
in this instance, will include two tables with attributes of
different types and a foreign-key constraint. In the following
step we will create a user defined data generator for this
schema together with the audience. We will agree on different
types of distributions for each field of the tables (e.g., uniform
distribution, Zipf distribution and sequences) to assess how the
joins are to be processed on skewed data. The generator will
populate the database with values fulfilling the constraints and
distribution. The demonstration will continue with the creation
of SQL join queries with parameters influencing aspects
such as the selectivity of the join predicate. Next, servers,
a schema, a generator and queries will be combined and a
new benchmark will be defined. We will add a measurement
to the benchmark for each configuration of the join queries,
each DBMS, and we will choose a suitable visualization.

C. Part 3: Running the Experiment and Results

In the final part of the demonstration the benchmark will
be executed. The progress of the running experiment will be
monitored using the web-interface. When the experiment is
finished, an e-mail with the link to the result page will be sent.
Next, together with the audience, we will examine the plot and
interpret the result. We will find out that it is necessary to adapt
the data type and the selectivity of the join attributes, and we
will rerun the experiment. In addition, one of the database
servers will need to be tuned by adding an index. The effect
of this modification can be visualized by comparing the new
result with the previous one in a single diagram.

A most relevant aspect of the demonstration is that we will
create a new benchmark from scratch, taking into account the
feedback and suggestions from the audience. It will become
evident that these measurements can be defined within the
benchmarking service in only a few minutes as opposed to
several hours for the manual implementation of the benchmark

Create
Measurement

Run Data
Generator

Execute
Query

Create
Tables

DDL Tuning

(" save

Measurement

Pre-Populate
Data

Fig. 4. Steps for Running an Experiment
in a traditional scripting language. All reoccurring tasks, such
as plot generation, storing, archiving and comparing results can
be configured and are handled by the application automatically.

IV. CONCLUSION

This demonstration presents a generic benchmarking service
and its benefits over previous benchmarking frameworks: An
expressive meta model supports defining and reusing artifacts
and benchmark definitions by capturing the relevant properties
and “powering” a user-friendly, yet effective web GUI. Fur-
thermore, the service incurs only a small cost when adding
new resources and provides automation of common tasks. Rich
visualization and analysis capabilities complete the picture.

A previous version of this service is used extensively by the
database engineering group at SAP. We noticed developers
now run significantly more experiments than before since
benchmarks are much easier to define, leading to the discovery
and correction of regressions and correctness bugs. The tool
has also been applied to non-relational workloads, in particular
XML and XQuery. In terms of scalability, we have so far
reached a scaling factor of 100 for TPC-H. We plan to release
an open-source version [13] of the benchmarking service soon.

REFERENCES

[1] “TPC transaction processing performance council,” Website, 2012,
http://www.tpc.org/.

[2] F. Funke, A. Kemper, and T. Neumann, “Benchmarking Hybrid
OLTP&OLAP Database Systems,” in BTW, 2011.

[3] P. O’Neil, E. O’Neil, and X. Chen, “The star schema benchmark,”
University of Massachusetts, Boston, Tech. Rep., 2007.

[4] H.J. Jeong and S. H. Lee, “An integrated benchmark suite for database
systems,” in ISDB, 2002, pp. 74-79.

[5] “OLTP-Benchmark,” Website, 2012, http://www.oltpbenchmark.com/.

[6] B. F. Cooper et al., “Benchmarking cloud serving systems with YCSB,”
in SoCC, 2010.

[7]1 “PolePosition,” Website, 2012, http://www.polepos.org/.

[8] “Quest Benchmark Factory,” Website,
http://www.quest.com/benchmark-factory/.

[9]1 P. M. Fischer, “XQBench - A XQuery Benchmarking Service,” in XML

Prague, 2011, pp. 341-355.

L. Afanasiev et al., “XCheck: A Platform for Benchmarking XQuery

Engines,” in VLDB, 2006.

S. Sakr and F. Casati, “Liquid Benchmarks: Benchmarking-as-a-

Service,” in JCDL, 2011.

J. Gray et al., “Quickly generating billion-record synthetic databases,”

in SIGMOD Conference, 1994.

“A Generic Database Benchmarking Service,” Project Website, 2013,

http://www.benchmarking-service.org/.

2012,

[10]
(1]
[12]

[13]

