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Abstract—Following the adoption of basic temporal features
in the SQL:2011 standard, there has been a tremendous interest
within the database industry in supporting bi-temporal features,
as a significant number of real-life workloads would greatly
benefit from efficient temporal operations. However, current
implementations of bi-temporal storage systems and operators
are far from optimal. In this paper, we present the Bi-temporal
Timeline Index, which supports a broad range of temporal oper-
ators and exploits the special properties of an in-memory column
store database system. Comprehensive performance experiments
with the TPC-BiH benchmark show that algorithms based on
the Bi-temporal Timeline Index outperform significantly both
existing commercial database systems and state-of-the-art data
structures from research.

I. INTRODUCTION

Many database applications include two distinct time di-
mensions: The application time refers to the time when a fact
was valid in the real world, such as duration of a contract.
In addition, the system time represents the time when a fact
was stored in the database system in order to preserve this
information for audits and legal aspects. These dimensions
can also evaluated in combination, such as computing the
estimated total value of all contracts valid for December 2014
based on the knowledge stored in the database in June 2014.

Applications utilizing these time dimensions (bi-temporal)
are not a fringe area, but there is actually much demand for
effective and efficient support, as shown in a survey that we
performed on SAP’s application stack [1]. Given that this soft-
ware covers a broad range of business tools (ERP, SCM, Data
Warehousing) in many different domains (Banking, Logistics,
Manufacturing), this survey covers a representative space of
applications, not just SAP-specific cases. The majority of
use cases require at least one application time dimension in
addition to system time; some of them need up to five different
application time dimensions. Access to this data ranges from
conceptually simple timeslice operations to complex analytical
queries, tracing the evolution of data and supporting domain
specific tasks such as liquidity risk management.

However, many temporal operations are currently imple-
mented within the application code (which is both inefficient
and error-prone [2]), since there is no comprehensive and ef-
ficient support of bi-temporal data in today’s DBMSs. Several
big database vendors (Oracle, IBM [2], Teradata [3] and also
SAP) have recently begun adding bi-temporal features to their
products, following the inclusion of basic bi-temporal opera-
tions in SQL:2011 [4]. Yet, as our recent in-depth study of
these systems shows [5], [6], the implementations are mostly
concerned with the syntax and overall temporal semantics and
fall short for efficiency by relying on non-temporal storage,
indexing and query execution methods.

A likely reason for this problem is that managing bi-
temporal data is a difficult task, for which the research com-
munity has not yet provided a convincing answer. Covering
the various dimensions of time and possibly (key) values
shares some common traits with multidimensional indexing,
but many temporal operations require efficient support on a
temporal order of the data [7]. The time dimensions are not
symmetric, since application times may see updates to “past”
data items, while system time has an append-only update
behavior. Different degrees of active and outdated data items,
as well as varying validity intervals, render typical space-
minimizing partitioning strategies ineffective and require com-
plex data layouts and algorithms [8], [9], [10]. Several data
structures for one-dimensional temporal workloads provide
strong theoretical guarantees [11], but applying them to the
more general bi-temporal case has not yielded strong results.

Furthermore, given the time frame in which that research
was performed (mostly 1990s), the focus was on disk-based
structures optimization for I/O behavior. The system landscape
is currently changing dramatically towards main memory
databases due to their significant performance benefits [12]
and the affordability of large amounts of RAM. In a recent
work [13], we showed that even for the fairly well-studied
system time dimension, a temporal index structure (called
Timeline Index) specifically designed for modern hardware



with copious amount of main memory beats the existing work
by a significant margin. Not being bound by I/O optimizations
permits a drastic simplification in the index design as well as
better support for modern hardware. In this paper we focus on
in-memory column stores, even though the concepts are also
applicable for disk based row stores with different trade-offs.

We apply these lessons to the more general and challenging
case of bi-temporal data and tackle the set of problems
stemming from the additional dimensions. The design is driven
by a number of key insights: (1) Effective access to the tem-
poral order(s) is crucial for many analytical applications (e.g.,
temporal aggregation), while selectivity over many dimensions
is a much less relevant concern. Often, even expressions
that are fairly selective in the temporal domain still yield
a large number of results, limiting the benefit of indexes.
Likewise, access to the history of individual tuples is rather
rare. (2) Most temporal operations have a dominant dimension,
while correlations over all temporal dimensions are fairly
rare. We therefore rely on an index design that uses one-
dimensional temporal indexes for each dimension instead of a
multi-dimensional index. More specifically, we use Timeline
Indexes for each dimension, in which a single system time
index is maintained, while complete application time indexes
are only kept at selected snapshots. Queries requesting values
between snapshots use the most recent snapshot and the delta
between those snapshots to reconstruct the state for all relevant
time dimensions. As our results show, computing these deltas
is possible at moderate overhead, but additionally the index is
much more compact than any other competing approach.

In summary, this work makes the following contributions:
• a novel main memory index capable of supporting a wide

range of temporal operations on bi-temporal data,
• index maintenance algorithms that can trade off space

consumption, update cost and query performance,
• uniform implementations for temporal operations, regard-

less of the time dimension, and
• a performance analysis of the index and operators, show-

ing their performance and comparing them to existing
methods and systems for bi-temporal and spatial data.

This paper is structured as follows: Section II provides a
general overview of the state-of-the-art of (bi-)temporal data
management with a special focus on indexing approaches
and systems. Section III introduces the Bi-temporal Timeline
Index, the index maintenance and the query processing. Sec-
tion IV gives details on the implementation of the temporal
operators. Our approach is evaluated experimentally in Sec-
tion V showing the high performance and low maintenance
cost of the index. Section VI concludes the paper and provides
some insights into future work.

II. RELATED WORK

Storage methods for temporal data have been studied for
several decades now and were described in a number of
surveys in the late 1990s [8], [14]. Out of this large set, we
cover methods that specifically provide indexes for a single

temporal dimension as well as bi-temporal indexes. We first
survey current commercial database systems.

A. Commercial Database Systems
Several commercial database systems have recently begun

adding bi-temporal features, driven by – but not necessarily
fully supporting – the SQL:2011 standard. Yet, as confirmed
by the publicly available documentation and our recent analy-
sis [6], the implementations are at an early stage, building on
standard database storage and query processing and therefore
achieving only limited performance: Teradata implements the
Temporal Statement Modifier approach presented in [15] by
Böhlen et al., which describes an extension of an existing
query language with temporal features. However, the im-
plementation is entirely based on query rewrites [3] which
convert a bi-temporal query into a semantically equivalent
non-temporal counterpart. IBM DB2 [2], Oracle as well as
the production version of SAP HANA use a fixed horizontal
partitioning between tuples that are currently valid in system
time and those that have been invalidated in the past. DB2
and HANA perform all temporal operations directly on these
tables, while Oracle uses a background process to move invali-
dated tuples from the undo to the Flashback Data Archive [16].
None of these systems has any specialized temporal indexes.
In the production version SAP HANA only a limited set of
temporal operators on system time are implemented.

B. Indexes for a single time dimension
The majority of research focused on indexing a single

time dimension, either application or system time. Generally
speaking, there are two main classes of index data structures
for temporal data: 1) tree structures and 2) log sequences.

Given their general availability and maturity, B-trees are a
promising basis for temporal indexes, yet their limitation on
totally ordered domains for keys poses a significant challenge.
Therefore, a large number of approaches to organize the keys
for temporal data has been proposed, many stemming from in-
terval storage: Time points for the boundaries of intervals [17]
or composites of values and time (e.g., MAP21 [18]).

R-trees [19] were originally designed to index spatial data,
but can naturally be used to store (time) intervals or combi-
nations of keys and time. Some R-tree variants are optimized
to meet the requirements specific for temporal indexing: The
Historical R-tree [20] maintains an R-tree for each timestamp
to efficiently answer time point queries.

Multi-version techniques can be applied where trees are
built for different versions in time such as the multi-version
B-tree (MVBT) [11] and the multi-version 3D R-tree [21].
In principle, it is feasible to use a single dimension data
structure to index the full state of the application time for the
current system time. However, many data structures such as
MVBT [11] exploit the append-only semantics of the system
time and therefore cannot be applied for the application time.

C. Bi-temporal Indexes
Significantly less research has been done so far for in-

dexing bi-temporal data. One straightforward way to index



Name City Balance SysStart SysEnd
1 John Smallville $50 100 102
2 John Largevill $40 102 105
3 John Largevill $30 105
4 Max Newtown $80 109

Fig. 1: Temporal Customer Table

bi-temporal data is applying a spatial index structure over
rectangles which are bounded by application and system time
intervals. Such spatial indexes include the TP-Index [22], the
GR-tree [23] and the 4R-tree [24]. Whereas this approach is
very intuitive and most useful for simple selections, it does
not allow for exploiting individual temporal orders and more
complex temporal operations.

An approach to compensate for this issue is to decouple the
application time and system time dimension. In theory, any
two unitemporal index structures introduced in Section II-B
can be combined to support bi-temporal indexing. A highly
refined variant is the Multiple Incremental Valid Time Tree
(M-IVTT) [10]. The M-IVTT follows a pattern of two-level bi-
temporal indexing trees (2LBIT) [25], which use a B+-tree to
index system time at the top level, whereas each leaf contains
a pointer to an application/valid time tree (VTT) for each
point in system time. This concept can further be improved
by utilizing partial persistence [8], which takes into account
that only tuples at the latest system time can be updated,
whereas older versions are read-only. The bi-temporal interval
tree (BIT) and bi-temporal R-tree (BRT) introduced in [8]
exploit this partial-persistence methodology. The Bib+-tree [9]
replaces the R*-tree in BRT with a R+-tree and manages the
application time dimension based on a R*-tree.

In summary, there are only a few dedicated indexes for bi-
temporal data which –like their one-dimensional counterparts–
often do not exploit the properties of modern hardware.

D. System Timeline Index

The Timeline Index [13] is a data structure for the system
time dimension. As it is the closest match to the Bi-temporal
Timeline Index, we describe it in a separate section.

1) Index Data Structure: Figure 1 shows an example of a
customer table that contains system time information. In this
table the visibility intervals of temporal data is represented in
a pair of additional columns SysStart and SysEnd. The idea of
the Timeline Index is to keep track of all the visible rows of the
temporal table at every point in time. Figure 2a illustrates this
idea: For each system time where changes (i.e., Events) were
applied to the table, an entry is appended to the Event Map:
For inserted rows (called activation) we record the Row ID
and for deleted rows (called invalidation) we use the negated
Row ID. Updates are implemented by a deletion followed by
an insertion. In the example of Figure 2, we see that at system
time 102 the row for customer John was updated, i.e., row 1
was deleted and row 2 was inserted.

By scanning this index, operators can determine the changes
between versions as well as compute the set of active tuples
for a specific version. For example, to keep track of the set of

SysTime Events
100 +1
102 -1 +2
105 -2  +3
109 +4

(a) System Time Event Map

SysTime
102
109

4 3 2 1
Visibility Bitmap

0 0 1 0

1 1 0 0

(b) Checkpoints

Fig. 2: Timeline Index for the Customer Table

SysTime Event ID
100 1
102 3
105 5
109 7

Event List
Row ID +
1 1
1 0
2 1
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3 1
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Version Map
Visible Rows

1
2
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2, 4

Fig. 3: Event Map Memory Layout

visible rows at every point in time, we can maintain a bit vector
(called Visibility Bitmap) for which each element indicates that
the row is visible (bit is set) or not. As the temporal table may
grow large, we would like to avoid the full scan of the Event
Map. Therefore, the idea is to materialize the Visibility Bitmap
generated during the full scan for specific versions (i.e., system
time). We call such a materialized bit vector a Checkpoint. As
shown in Figure 2b, a Checkpoint includes a Visibility Bitmap
which represents the visible rows of the temporal table at a
certain version. By controlling the number of Checkpoints, an
administrator can perform a tradeoff between query cost and
storage overhead. As we show in [13], the space overhead of
this index is linear with very small constants.

2) Implementation: Figure 3 provides implementation de-
tails of the Timeline Index, which is optimized for scan-
oriented access patterns, which are favorable for modern
hardware. The Event Map is implemented by two main com-
ponents: 1) The Version Map keeps track of the sequence of
events produced by database transactions by mapping a system
time to a set of events generated at a certain time. 2) The
Event List is a chronological list of events, where each event
is represented by a Row ID and the indicator for activation (1)
and invalidation (0). The reference from the Version Map to
the Event List is represented by the accumulated number of
events that happened before a certain point in time. This design
decouples the storage of the temporal table from the temporal
order, so that the values in the temporal tables can be stored
in any order, enabling better compression and partitioning. On
the left-hand side of Figure 3 the visible rows for each system
time are shown in red. The two data structures are append-
only, i.e., once an entry has been inserted into the Version
Map or Event List, none of its fields will ever be updated
again. This restriction is sufficient for indexing system time
but not acceptable for application time (see Section III).

3) Index Construction: The index maintenance algorithms
have linear complexity with respect to the number of events,
since every tuple needs to be touched exactly twice. In
addition, the Checkpoints can be generated during the index
construction. For efficient look-up of the relevant Checkpoint,



Name City Balance StartApp EndApp StartSys EndSys
1 John Smallville 50 10 100 102
2 John Smallville 50 10 11 102
3 John Largevill 40 11 102 105
4 John Largevill 30 11 13 105 110
5 John Costtown 100 13 14 105 110
6 John Largevill 30 14 105 106
7 John Largevill 30 14 16 106 110
8 Max Newtown 80 15 109

Fig. 4: Bi-temporal Table
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Fig. 5: Bi-temporal Timeline Index Architecture

the system time is stored at which the Checkpoint was
taken together with the position within the Event List. New
Checkpoints can be computed incrementally.

III. BI-TEMPORAL TIMELINE INDEX

In this section we introduce the Bi-temporal Timeline Index
which generalizes the Timeline Index towards the full bi-
temporal data model of the SQL:2011 standard.

As outlined in Section I, the key design driver is the obser-
vation that the majority of bi-temporal queries are dominated
by one dimension, ignoring the others or constraining them to
a single point in time. Typical examples are complex temporal
analytics over application time at the current system time
or some specific past system time. We therefore prefer to
use dedicated single-dimension temporal indexes over multi-
dimensional indexes. Updates to application time indexes may
change the application time past, but can only be performed on
the most recent application time index, simplifying the update
requirements over a pure application time index. Finally, we
will not store application indexes for all system time points to
minimize storage requirements.

Similar design principles have also been applied for the
M-IVTT [10], but the log-based design of Timeline yields
a much simpler design with lower space utilization, cheaper
index maintenance cost and higher query performance.

A. Index Data Structure

Figure 4 shows the example data used in Figure 1, but now
extended with a single application time dimension, referred to
as StartApp and EndApp. In this example, the application time
refers to the time when people actually lived in a certain city,
whereas the system time (denoted as StartSys, EndSys) refers
to the time when changes were recorded in the database. We

AppTime 2 …
AppTime 1

SysTime Events
100 +1

102 -1 +2 +3

105 -3  +4 +5 +6

106 -6 +7

109 +8

110 -4 -5 -7

SysTime Event Map

AppTime 10 11 15

Events +2 -2 +8

AppTime Event Maps for Given System Times 

SysTime 105

SysTime 110

AppTime 10 11 13 14

Events +2 -2 +4 -4 +5 -5 +6

Fig. 6: Bi-temporal Timeline Index for the Table in Figure 4

will use this example to illustrate the additional complexity
introduced by a bi-temporal workload.

First, updates of the application time require a new version
of the database. That is, a modification in application time
implies a new version in system time. The opposite is not
necessarily true. Second, application time updates may change
values that were considered “past”, e.g., by changing the city
where John lived from application time 10 to 11 at a later
point in system time.

As shown in Figure 5, the Bi-temporal Timeline Index
extends the Timeline Index by maintaining an application time
Event Map and a set of Visibility Bitmaps for every application
time dimension in every Checkpoint. This application time
Event Map and Visibility Bitmaps can directly be used to slice
(or join or aggregate) in application time, if the query matches
the Checkpoint in system time. Otherwise, we need to consider
the system time Event Map in order to pick up all events that
may have changed the application time after the Checkpoint.

The Bi-temporal Timeline Index for our running example
is given in Figure 6 (for simplicity we omit application time
Visibility Bitmaps). For instance, to find out where John lived
at application time 11 according to the state of the database at
system time 105, we consult the application time Event Map
denoted “SysTime 105” in the top left corner of Figure 6. The
application time Event Map tells us that row 4 is visible for
application time 11. The concrete change is only stored in the
table, i.e., that John lived in Largevill.

A single Bi-temporal Timeline Index is sufficient for each
temporal table. The frequency of Checkpoints and the choice
for which application time dimensions to create an application
time Event Map is tunable based on the workload.

B. Index Construction

The construction of a Bi-temporal Timeline Index is similar
as for system time only. Yet, for each application time dimen-
sion, at each Checkpoint we create an (application time) Event
Map and a set of Visibility Bitmaps, considering all tuples that
are visible at the system time of this Checkpoint.

Again, we build the index incrementally starting from a
previous Checkpoint in order to limit the scope of this scan
through the temporal table. The process of how to construct
a new (updated) application time Event Map from a previous
Checkpoint incrementally is depicted in Figure 7, which shows
the changes to the underlying data, either as additions (tuple 8)
or as system time invalidations (EndSys of tuples 6-7). The
starting point is the application time Event Map from the
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Fig. 7: Incremental Construction of one Application Time Event Map

previous Checkpoint, taken at system time 105 in this example
and denoted as (A) in Figure 7. Furthermore, we compute
a Delta (denoted as (D)) against this application Event Map
using the system time Event Map (B) and the temporal table
(C). This Delta contains insertions and deletions (denoted as
“()”) of events that occurred after the Checkpoint (i.e., from
system times 106 to 109 in this example). For instance, at
system time 109, Tuple 8 is added, which affects an event at
application time 15 so that the Delta records a “+8” event at
application time 15. As another example, the deletion of Tuple
6 at system time 106, invokes a deletion event in the Delta:
In order to express that Tuple 6 should be removed from the
Event Map, we encode this deletion event as “(-6)”.

As a final step to construct the new application time Event
Map at system time 109, the Event Map from system time
105 (A) is merged with the Delta (D): insertions in (D) (e.g.,
+8 at Time 15) are added to (A); invalidations in (D) (e.g., -7
at Time 16) are also added to (A); deletions in (D) (e.g., (+6)
at Time 14) result in deleting the entries from (A). A linear
merge is performed, as (A) and (D) are sorted equally.

Once an application time Event Map has been created it is
immutable because it is valid for a fixed version in system
time. As a result, the index can be stored in a read-optimized
form. Creating the delta explicitly instead of applying the
changes directly allows us to decouple the application time
index computation and cache these deltas for later use.

Given the space constraints of the paper and the (relative)
simplicity of the Timeline Index, we will provide just a sketch
of the time and space complexity of the data structure and its
maintenance operations. Without Visibility Bitmaps, the space
complexity is O(k∗N), where k is the number of checkpoints
and N the size of the temporal table, as an application time
Event Map may contain all events in the worst case. Visibility
Bitmaps increase the cost to O(k2 ∗N), since each Visibility
Bitmap contains N bits and we have k bitmaps for each
application time and for the system time dimension. The index
is indeed linear to the number of events, and the quadratic
impact of checkpoints is typically offset by (1) their small
number, (2) the small constants of bitmap sets with additional
compression potential and (3) the fact that users can control
the overheads as a tradeoff between storage space and query
response times. We will investigate the general time-space
tradeoff as part of the experiments in Section V-H. Creating

deltas and merging them is linear to the number of events
involved, again possibly dominated by the cost accessing every
element in the Visibility Bitmaps.

IV. INDEX USAGE

In this section, we explain how the Bi-temporal Timeline
Index supports a wide range of access patterns and operators.

A. Index Access Patterns

The Bi-temporal Timeline Index supports temporal queries
on system and multiple application time dimensions. In this
section, we will first describe all combinations of system and a
single application time and then consider multiple application
times. We express all these access patterns as range queries
on a temporal range [s, e], where ⊥ denotes an unspecified
point in time. A query may access each time dimension in 3
different ways, generalizing the concepts of current, sequenced
and non-sequenced, as defined by Snodgrass [26]:

• Point in Time [s, s]. All tuples are selected which are
visible at a particular point in time s.

• Range [s, e]. A range [s, e], s < e means we look at a
(closed) time interval. All tuples are added to the result
whose visibility interval overlaps.

• Agnostic [⊥,⊥]. There is no restriction for this time
domain, all tuples are selected.

Table I gives an overview how we can use the Bi-temporal
Timeline Index for different combinations of these access
patterns. Let us consider the case where both dimensions are
constrained to a point ([Ts, Ts]/[Ta, Ta]), which may be used
for timeslice in both dimensions. We already used this case as
an example in Section III-A by showing how the Bi-temporal
Timeline Index of Figure 6 can be used to find out where John
lived at application time 13 for a database at system time 108.

We start from latest previous Checkpoint (i.e., at system
time 105 in this example), which gives us access to 1) the
set of all tuples that are active at that system time and 2)
an application time Event Map and Visibility Bitmaps at this
point. We search for the nearest previous (application time)
Visibility Bitmap, which provides us with the information on
the tuples that are active in application time. We then traverse
the application time Event Map to retrieve the event in the
application time domain until we reach the desired point in
application time. If the requested system time corresponds to
the system time of the Checkpoint, we are done. If not, we



SysTime AppTime Index Usage

[Ts, Ts] [Ta, Ta] • Search latest previous Checkpoint based
on SysTime Ts

• Search latest previous AppTime Visibility
Bitmap for Ta

• Follow AppTime Event Map until Ta is
reached (toggle bits)

• Follow SysTime Event Map until Ts is
reached (toggle bits, apply events only for
tuples visible for Ta)

[Ts, Ts] [Ta, T b] • Like [Ts, Ts]/[Ta, Ta], but continue
following AppTime Event Map until Tb
(set bits to true for all activated tuples in
[Ta, T b] to implement a union operation)

• Follow SysTime Event Map until Ts is
reached (toggle bits, apply events only for
tuples visible for [Ta, T b])

[Ts, Ts] [⊥,⊥] • Like [Ts, Ts]/[Ta, Ta], but only use
System Timeline Index

[Ts, T t] [Ta, Ta] • Like [Ts, Ts]/[Ta, Ta], but continue
following Event Map until Tt

• Set bits for all activated tuples in [Ts, T t]

[Ts, T t] [Ta, T b] • Like [Ts, Ts]/[Ta, T b], but continue fol-
lowing Event Map until Tt is reached (set
bits, apply events only for tuples visible
for [Ta, T b])

[Ts, T t] [⊥,⊥] • Ignore the application time

[⊥,⊥] * • Do a table scan instead because the Time-
line Index would be inefficient

TABLE I: Index Usage for Different Access Patterns

use a simplified and more efficient variant of the technique
described in Figure 7: the deltas from the system time Event
Map are scanned until the requested point in system time, but
not merged. Instead we directly filter the results, which saves
the cost of building and merging the delta index.

On purpose, we do not target queries that have no con-
straints on system time. While building an application timeline
over the whole system time would clearly be feasible, we have
not encountered any use cases requiring such support – in
particular since a table scan provides a convenient fallback.

Most operations can directly be executed in this way, as
indicated by the other cases shown in Table I. Some operations,
however, such as temporal aggregation or temporal join over
application time only, require the presence of an application
time Event Map at a specific system time. As we do not
store a complete application time Event Map for each point in
system time, we need to reconstruct the information from the
Checkpoints and the system time delta at runtime. By changing
the Checkpoint interval we can trade faster execution time for
increased memory consumption. We consider three alternatives
to retrieve the application time state for a given system time:

• Recompute (R). Rebuild the application time Event Map
completely from scratch (not using checkpoints).

• Index Delta Merge (M). Retrieve the application time
Event Map from the latest checkpoint, compute the

application delta, merge both into a new Event Map.
• Dual Index (D). Retrieve the application time Event Map

from the latest checkpoint, compute the application delta
index and give both as an input to the temporal operators.

Recompute (R) is the slowest approach with a constant
overhead, whereas the other two alternatives Delta Merge
(M) and Dual Index (D) have similar performance. Given k
checkpoints and the temporal table size N , the cost for (R)

is O(N). The cost for creating the Delta is O(N/k) because
the maximum size of the system time Event Map range is
N/k. The Delta computation is required for (M) and (D). The
additional cost for the merge in (M) is O(N) as the maximum
size of an application time Event Map in the checkpoint is
O(N). Yet, the merging two indexes is much more efficient
than rebuilding the index from the table.

(M) allows us to use the same implementation of our tem-
poral operators for all time dimensions, whereas (D) requires
an adapted operator implementation. We therefore use (M)

for the experiments. For future work, we want to investigate
if there are benefits from caching deltas as well as considering
the next “future” checkpoint.

B. Bi-temporal Operators

Temporal Aggregation. Based on a temporal table aggregated
values can be computed for groups of the timestamps of a tuple
or, more generally, windows. Different variants of temporal
aggregation have been described in literature [27]. In this
paper, we will present the implementation of this operator
by the example of instantaneous temporal aggregation. We
also implemented other aggregation forms such as sliding
window [28].

For a temporal aggregation over system time
([Ts, T t]/[⊥,⊥]), indicated by GROUP BY SYSTEM_TIME()

in our extended SQL syntax, we can immediately use
the implementation of [13], relying on the system time
Timeline Index: A linear scan over the Timeline Index
(or the relevant range between checkpoints) yields the
activations and deactivations of tuples, which can be used
to incrementally compute the aggregate function. For a
temporal aggregation over application time at a fixed
point Ts in system time ([Ts, Ts]/[Ta, Tb]), using GROUP

BY APPLICATION_TIME() in our syntax, we rely on an
application time Event Map. If the chosen system time
does not correspond to a checkpoint, we need to build
the application time Event Map for Ts, which incurs the
overhead described in Section IV-A. For both dimensions, the
cost of index-based temporal aggregation is O(S), where S
corresponds to number of events in for the aggregation range.

Timeslice. The timeslice operator retrieves those tuples that
are visible for a given time T , i.e., the validity intervals of the
tuples overlap T . In this paper we consider temporal condi-
tions on both system and application time. Pure system time
([Ts, Ts]/[⊥,⊥]) can be computed efficiently by using only
the system time Event Map and Visibility Bitmaps (see Table I,
third row). A pure application time timeslice ([⊥,⊥]/[Ta, Ta])



becomes a table scan, since there is no selection on the system
time, and all application time Event Maps of the index are
only valid for a specific point in system time. Constraining
both dimensions ([Ts, Ts]/[Ta, Ta]) is implemented by first
retrieving the tuples visible at Ts and post-filtering the tuples
valid at Ta. Thus, we avoid the creation of an application time
Event Map, as explained in Section IV-A.

The cost for a bi-temporal timeslice operator for k Check-
points, the size of the system time Event Map MS and appli-
cation time Event Map MA is O(2 · log(k)+MA/k+MS/k),
stemming from the effort to locate the checkpoints and then
range scan in the individual Event Maps.

Temporal Join. A temporal join returns all tuples from two
temporal tables which satisfy a value predicate and whose
time intervals overlap (i.e., they are valid at the same points
in time). Our temporal join operator exploits the temporal
order of both tables to perform a merge-join style temporal
intersection, augmented by a hash-join style helper structure
for the value comparisons. For the bi-temporal join we have
to distinguish several cases for the join predicates: 1) If the
temporal join predicate is only on system time (regardless on
any non-join constraint on the application time), we rely on
the system time Event Map and Visibility Bitmaps in available
checkpoints to evaluate the join as described in [13]. 2) If the
temporal join predicates use both system time and application
time, we use the same algorithm as in 1) and apply the join
predicate for application time after evaluating the predicate on
system time. 3) Finally, if the temporal join predicate concerns
only application time, we have two variants: (a) assuming
temporal restrictions on system time for the inputs, we can
construct the application time Event Map for the requested
system times using the approach described in Section IV-A.
(b) If the system time is unconstrained, we have to build a
“global” application time event map. After this step, we can
use the same algorithm as for 1).

Range Queries. A range query generalizes the definition of
the timeslice operator to visibility intervals for one or many
time dimensions. All tuples are included in the result for which
the visibility interval overlaps.

As outlined in Table I, there is a wide range of options
depending on ranges on each dimension. Whenever system
time is involved, we get all visible tuples which are valid at
the lower bound of the system time interval as described for the
timeslice operator above. We then resume scanning the system
time Event Map and apply the delta. Any other predicates
including conditions on application time can be applied by
accessing the temporal table for matching tuples.

Thus, the Bi-temporal Timeline Index supports application
and system time effectively whenever the system time dimen-
sion is restricted. In case the index selectivity is too high, we
have the option to fall back to a full table scan. In case of
selecting the full system time range for a temporal join or
aggregation on application time, it is also possible to rebuild
an application Timeline Index at query execution time.

Data Set SF 0 SF H |customer| |partsupp| |orders| #versions

Tiny 0.01 0.1 0.2 Mio 0.08 Mio 0.4 Mio 0.1 Mio
Medium 1 10 7 Mio 8 Mio 9 Mio 10 Mio
Large 1 25 17 Mio 19 Mio 20 Mio 25 Mio

TABLE II: Data Set Properties

C. Dealing with Multiple Application Times

As described in Section III-A, one system time and multiple
application time dimensions per table are supported by the
Bi-temporal Timeline Index using Event Maps and Visibil-
ity Bitmaps for each dimension. As long as only a single
application time is used in a query, the operators do not
differ from their previous description besides chosing the
right index. Likewise, if a query accesses multiple application
time dimensions but does not correlate them, their actual
computations work as before. We only need to adapt our
operators if a single operator needs to deal with multiple
application times. For timeslice or range, the story does not
change much: the tradeoffs outlined in Table I are considered,
and depending on availability and selectivity an additional
index is used (with tuple ID intersection) or the predicate
is evaluated as a filter. For join, compatible orders can be
processed directly, leading to an n-way scan. If the orders do
not fit, a more expensive tuple ID intersection or value filtering
needs to performed. Finally, temporal aggregation relies on
total order, so some kind of correlation (like a join) has to
happen beforehand.

V. EXPERIMENTS AND RESULTS

In this section we evaluate the performance of the Bi-
temporal Timeline Index against several state-of-the-art index
types as well as a commercial DBMS.

A. Software and Hardware Used

All experiments were carried out on a server with 192GB
of DDR3-1066MHz RAM and 2 Intel Xeon X5675 processors
with 6 cores at 3.06 GHz running a Linux operating system.
Our implementation of the Bi-temporal Timeline Index was
integrated into an SAP-internal database prototype (used for
feature staging) whose design closely matches the actual SAP
HANA system. For all measurements we set a timeout of 60
minutes and repeated them 10 times after a warmup.

B. Benchmark

Benchmark Definition. In order to provide a good coverage
of temporal workloads, we chose the data sets and selected
queries from our TPC-BiH benchmark proposal [5]. The
benchmark provides a bi-temporal schema, a data evolution
workload produced by a generator and a set of queries
stressing a comprehensive set of operators and access patterns.

Data Sets. The data generator from the TPC-BiH benchmark
takes the output of the standard TPC-H generator as version 1
and adds a history to it by executing update scenarios (e.g.,
new order, deliver order, cancel order). These scenarios were
designed to match real use-cases from SAP and its customers,
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Fig. 8: Temporal Aggregation [Large Data Set]

providing a workload which corresponds to the properties of
a real-life temporal database. Each update scenario results in
one transaction that generates a new version in our temporal
database. As shown in Table II, the size of the data set is
determined by two scaling factors:

• SF0: The scaling factor of the TPC-H generator.
• SFH : The scaling factor determining the size of the

history as number of update transactions (in Millions).
The schema of the TPC-BiH data set is based on the

standard TPC-H schema, but it includes additional attributes
reflecting the system time and application time dimensions.

We used three data sets as described in Table II:
• Tiny Data Set, for expensive/unoptimized operators.
• Medium Data Set, default workload with a short history.
• Large Data Set, extended history of Medium Data Set.

Systems. In the experiments we compared 4 competitors:
• Our Bi-temporal Timeline prototype (referred to as

“Timeline”) uses the data structures and algorithms in-
troduced in this paper. Unless stated otherwise, we use 10
system Checkpoints and thus 10 application time Event
Maps with 10 Visibility Bitmaps each.

• The M-IVTT [10] uses a two-level bi-temporal indexing
tree to index bi-temporal data. As no source code was
available from the authors, we developed our own im-
plementation of M-IVTT. This is the best B-tree-based
implementation for bi-temporal operators we are aware
of. Similar to Timeline, we use 10 full VTTs.

• The RR*-tree is an optimized R*-tree reducing the im-
balance caused by updates. For our experiments we used
an RR*-tree implementation from the authors of [29]. It
is the fastest R-tree-based version we know about.

• System Y is a commercial disk-based relational database
with native support for bi-temporal features. Due to
license regulations we are not allowed to reveal the actual
name. We created indexes which have been recommended
by the index advisor for each workload. We ensured that
the entire workload was served from RAM after warmup.

C. Experiment 1: Temporal Aggregation

In the first set of queries we evaluate the performance of
instantaneous temporal aggregation. This operator stresses the
temporal order aspect significantly, as it traces the evolution of

the data in the temporal dimension. As such, it is also a good
representative for many temporal analyses such as window
queries or time series. We utilized the TPC-BiH Query R.3b
and varied the time dimension. We do not show any results
for System Y, as the measurements already timed out for
the Tiny workload. Likewise, no implementation of temporal
aggregation is available for RR* at the moment, as it does
not deliver the results in any temporal order. The following
queries are evaluated for the Large data set.

A1: Temporal Aggregation over System Time. We start our
analysis with a temporal aggregation over system time for a
fixed application time, using a selective aggregate function.

SELECT MAX(o_totalprice)
FROM orders o FOR
APPLICATION_TIME AS OF TIMESTAMP ’[APP_TIME]’

WHERE o_orderstatus = ’O’
GROUP BY o.SYSTEM_TIME()

This query is evaluated for a variable history size, increasing
the history in steps of 10% from 0 to the full data set for a
fixed point in the middle of the application time range. As it
is shown by Figure 8(a), the temporal aggregation algorithm
based on the Timeline Index scales linearly with the size of
the data set. The query execution time is about 1 second for a
data set of 10 million versions, matching the results in [13].
This is expected, as the system time Timeline Index is scanned
linearly for activations and invalidations of tuples, which can
be exploited well for the computation of the aggregation.

On the other hand, M-IVTT also seems to scale linearly with
the data set, but with a about an order of magnitude times
slower execution time. The reason for the worse performance
of M-IVTT are: 1) A large amount of time is spent on
constructing a full snapshot of the valid time tree (VTT). 2)
Scanning the VTT is less efficient than a scan of the Timeline
Index because it results random access patterns by following
pointers in the tree structure. 3) M-IVTT encodes the time
interval as a single value, and thus, the encoding and decoding
of an interval takes extra effort.

A2: Temporal Aggregation over Application Time. Here,
the aggregation is performed over one application time:
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Fig. 9: Timeslice [Large Data Set]

SELECT MAX(o_totalprice)
FROM orders FOR
SYSTEM_TIME AS OF TIMESTAMP ’[SYS_TIME]’

WHERE o_orderstatus = ’O’
GROUP BY ACTIVE_TIME()

We keep the size of the data set constant and vary the
point in system time instead. For better visibility we show
the version range from 0 to 5 million (out of a 10 million).

As Figure 8(b) shows, Timeline exhibits a sawtooth pattern
with a generally flat trend. These variations in runtime cor-
respond to the checkpoints on which application time Event
Maps are kept. If such a Checkpoint/index is available, the
aggregation is performed on the Timeline Index, leading to a
dip in the graph. In turn, when no index is available we need to
reconstruct the fitting Event Map from the existing index using
the the Delta Merge (M) approach from the closest previous
Checkpoint as outlined in Section IV-B.

M-IVTT is also able to perform a backwards scan from the
next following Checkpoint, which is feasible but currently not
implemented with Timeline. Therefore, M-IVTT produces a
more symmetric pattern. Again, the performance of M-IVTT
is an order of magnitude worse. This is due to the fact that in
the case of application time the whole valid time tree has to be
traversed as no patches are available for this time dimension.

A3: Temporal Aggregation over Multiple Application

Times. In contrast to the previous query, we now consider
multiple application time dimensions:

GROUP BY ACTIVE_TIME(), RECEIVABLE_TIME()
HAVING ACTIVE_TIME() = RECEIVABLE_TIME() + 10

For this temporal aggregation query, a group is created for
point in time the set of tuples changes that are visible with
respect to two application time dimension as of a fixed point
in system time. We compare against Timeline for a single
dimension and observe slightly less than twice the cost, since
we perform a stepwise linear scan of two Timeline indexes.
No other index structures are able to perform this query.

D. Experiment 2: Timeslice

The next (and most popular) class of queries covers the
timeslice operator, which restores a certain state in time
stressing the selection capabilities of the index. In bi-temporal

settings, a timeslice operator can be applied to either dimen-
sion individually or on both. For the queries in this section
we adopt TPC-BiH Query T.1 and vary the point in each time
dimension, using TEMPORAL_CONDITION as a placeholder:

SELECT AVG(ps_supplycost)
FROM partsupp
TEMPORAL_CONDITION

The queries are measured on the Large data set, varying
the selected version. Figure 9 summarizes our results. Since
an application timeslice without a system time constraint is
not supported by our index structure, we omit the results.

T1: Timeslice for System Time Only. The first query
(Figure 9(a)) performs a timeslice to a given point
in the system time dimension while considering the
entire application time. Hence, we replace the place-
holder TEMPORAL_CONDITION with FOR SYSTEM_TIME AS

OF TIMESTAMP ’[SYS_TIME]’.
For Timeline we see once more a sawtooth pattern as the

evaluation starts on the closest previous Checkpoint on the
system timeline, retrieves the bitmap containing the tuples
valid at this point and traverses this index sequentially until
it reaches the desired version. The performance is always
clearly better than an in-memory table scan, typically by more
than an order of magnitude faster. M-IVTT also shows the
symmetric sawtooth pattern driven by the reconstruction of
the VTTs, but the performance is significantly worse, at least
an order magnitude worse than a table scan in the best case.
RR* performs better, since it can answer selection queries
directly. Yet, the overhead of the tree index, including probes
to overlapping regions, prevents it from outperforming the
table scan. The query execution time of the commercial row-
store System Y is almost three orders of magnitude slower. It
always performs a full table scan, since the temporal filter is
not selective enough to benefit from a conventional index.

T2: Timeslice for Both Time Dimensions: Vary App

Time The next query performs a timeslice to a given point
in application time for the current system time version,
where we use FOR APPLICATION_TIME AS OF TIMESTAMP

’[APP_TIME]’. Timeline shows a constant performance, but
is slower compared to T1. A timeslice to the current system
time needs to be performed, and the result is filtered according
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Fig. 10: Temporal Join [Medium Data Set]

to the application time condition. Timeline therefore performs
similar to a full table scan. M-IVTT needs to perform the
same kind of VTT reconstruction for all points in application
time and therefore shows a constant performance, but it again
does not outperform a table scan. RR* and System Y perform
similarly as for T1. Given the result sizes, these systems
perform slightly faster and see an increased runtime for higher
application times as the size of the results grows.

T3: Timeslice for Both Time Dimensions: Vary Sys Time

The final timeslice query keeps the application time fixed
to a point in the middle of the time range, and the system
time is varied on the x-axis. Timeline shows the familiar
sawtooth pattern caused by the Checkpoints. Within a Check-
point the application time Visibility Bitmaps and Event Maps
are exploited to compute the application timeslice for the
system time of the checkpoint. Next, the system time Event
Map is applied for tuples matching in application time only,
adding some additional cost compared to T1. M-IVTT, RR*
and System Y show very similar behavior as in T1 since the
workload is influenced by the system time constraints.

The results for timeslice show that Timeline is very compet-
itive, whereas the competitors do not outperform table scans.

E. Experiment 3: Temporal Join

The third class of experiments examines temporal joins.
This operation retrieves all tuples from different tables whose
validity intervals overlap, i.e., which are visible at the same
time. As such it stresses the index structures for correlations,
complementing the two previous experiments. We examine
temporal joins with join conditions on (1) system time, (2) ap-
plication time and (3) both time dimensions.

We utilize the following query, which is a non-
temporal equijoin with a temporal join condition
TEMPORAL_CORRELATION and a timeslice specification
TEMPORAL_CONDITION: “Which expensive orders were open
while the related customers had a low balance”.

SELECT COUNT(*)
FROM customer c TEMPORAL JOIN orders o
ON TEMPORAL_CORRELATION

TEMPORAL_CONDITION
WHERE c_custkey = o_custkey
AND o_orderstatus = ’O’
AND o_totalprice > 5000 AND c_acctbal < 100

The results for this experiment are shown in Figure 10. The
selectivities of the join predicates are depicted in Table III.
The following queries are measured on the Medium data set.

J1: Temporal Join on System Time. The first exper-
iment (depicted in Figure 10(a)) shows the results for
performing a temporal join over the system time do-
main ON c.SYSTEM_TIME OVERLAPS o.SYSTEM_TIME and
a fixed application time FOR APPLICATION_TIME AS OF

TIMESTAMP ’[APP_TIME]’. When changing the size of the
history, Timeline scales linearly with the number of versions
since it performs a concurrent scan over both indexes, effi-
ciently merges the time-ordered lifetime intervals and directly
evaluates the value join predicate, as outlined in Section IV-B.
This way, the set of join candidates can be bounded effectively.
M-IVTT can use the same algorithm, but needs to pay much
higher index access cost. System Y cannot exploit any of the
temporal semantics and is slowed down by the combinatorial
explosion of versions. RR* is even worse, since the spatial join
algorithms provided with it only consider temporal overlap
but not value correlations, leading to timeout even in the Tiny
workload. We measured a standard Hash Join to investigate a
join algorithm on the value domain. Similar to System Y, it is
not effective, as it only exploits the value domain.

J2: Temporal Join on Application Time. In turn, the second
experiment (depicted in Figure 10(b)) shows the results
when we perform a temporal join over the application
time domain ON c.APPLICATION_TIME OVERLAPS

o.APPLICATION_TIME and fix the system time by FOR

SYSTEM_TIME AS OF TIMESTAMP ’[SYSTEM_TIME]’,
mirroring the workload of J1. Timeline fares slightly worse
since it needs to pay the cost of reconstruction an application
time Event Map for the particular system time. Given the
different index organization, M-IVTT has now lower delta
reconstruction cost but is still more expensive than Timeline.
RR* and Hash Join fare roughly the same way as in J1, while
System Y benefits from a lower temporal selectivity.

Join Query Foreign Key Time Domains Combined

J1 0.013% 78.8% 0.012%
J2 0.013% 99.6% 0.013%
J3 0.013% 78.5% 0.012%

TABLE III: Join Selectivities on the Filtered Tables
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Fig. 11: Range Queries [Large Data Set]

J3: Temporal Join on System and Application Time. Our
last experiment for temporal joins (Figure 10(c)) correlates
on both time dimensions and thus drops the timeslice present
in the previous experiments, making it the most demanding
workload due to further combinatorial effort. As a result, all
approaches see further cost increases. Yet, Timeline still copes
best, as it is able to exploit both time and value constraints.

We also performed experiments where we varied the ratio
between temporal and spatial selectivity, which we omit for
space reasons. The experiments showed that the hybrid time/
value approach for temporal joins supported by a time-ordered
index works best. Although being (rarely) outperformed by
other methods at extreme selectivities, it always comes close
to the best approach and usually beats its competitors.

F. Experiment 4: Range Queries

Our last query performance experiment explores how well
Timeline deals with arbitrary range selections. Given that it
decouples the time dimensions, we may expect it to perform
worse for arbitrary selections than a dedicated spatial index
such as RR*. For this experiment we investigate the following
query pattern, which includes two time dimensions.

SELECT COUNT(*), AVG(ps_supplycost)
FROM partsupp
FOR APPLICATION_TIME BETWEEN
’[APP_TIME_LOWER]’ AND ’[APP_TIME_UPPER]’

FOR SYSTEM_TIME BETWEEN
’[SYS_TIME_LOWER]’ AND ’[SYS_TIME_UPPER]’

The queries are evaluated for the Large data set. We examine
5 parameter settings: full range in one dimension, varying
the other (leading to two experiments), fixing one dimension
and varying the other (again leading to two experiments) and
finally varying both dimension in concert. Selected results
are shown in Figure 11, and we will discuss all of them
here: Figure 11(a)/R1 yields the full application time and
varies the size of the system time interval by decreasing the
lower interval bound [SYS_TIME_LOWER]. Given the high
selectivity of this workload, table scans are only outperformed
for small system time intervals. Timeline holds up rather well
against RR*, even beating it at low selectivities. R2 (not
shown) inverts this workload by taking the full system time
range and varying application time. Given its design Timeline
cannot directly support this query, and we rely on scans. R3
(not shown) fixes the application time to a point and varies

the system time, leading to results like to R1. Figure 11(b)/R4
fixes the system time and varies the application time range,
allowing Timeline to outperform all competitors. Finally, in
Figure 11(c)/R5, we change both time ranges simultaneously.
Timeline scales well, as it benefits from its system time index.

In summary, Timeline supports temporal range queries
efficiently: Timeline provides performance similar to dedicated
indexes and outperforms full table scans in most cases.

G. Experiment 5: Index Creation Time

One of the key goals of Timeline is the ability to quickly
create indexes when needed, in particular for two scenarios:
1) Building an index from scratch when loading data and
2) Creating the appropriate application time index. Table IV
shows the time of the index creation for the PARTSUPP table
and different sizes of the data set. As it can clearly be seen,
Timeline is the only index structure that scaled almost linearly
and is fast enough to allow ad-hoc index creation for almost
all workloads. In contrast to M-IVTT and RR*, it only requires
two scans instead of sorting or tree operations. The cost for a
creating a bi-temporal Timeline Index are about 3 times higher
than Timeline SysTime, which indexes system time only.

The tradeoffs on generating intermediary application time
Event Maps (as outlined in Section IV-A) are more diverse:
Figure 12(a) compares alternative reconstruction approaches
for temporal aggregation. Building a Timeline Index from
scratch is always slower than incorporating existing snapshots.
Merging the Event Map with the changes (Delta Merge) is
often slightly outperformed by running adapted operators on
the snapshot and the changes separately (Dual Index), but
allows us to keep the complexity of operators low. Given
that the benefits of Dual Index are limited, we focused on
Delta Merge in this evaluation. The difference between dips
and peaks of around 1.5 seconds indicates the maximum cost
of delta construction and merge. Comparing this value with
the results of direct evaluations for timeslice in Figure 9(c)
confirms our decision of only reconstructing an Event Map
when needed, as the cost of scanning is around 0.2 seconds.

Data Set Timeline Timeline Sys M-IVTT RR* System Y

Tiny 0.9 0.3 1.6 0.25 1.8
Medium 3.8 1.1 268.9 33.9 32.2
Large 7.8 2.7 504.7 85.0 128.8

TABLE IV: Index Construction Time (sec)
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H. Experiment 6: Memory Consumption

In order to visualize the time-space tradeoff, Figure 12(b)
shows the effect of variable checkpoint intervals by the
example of the temporal aggregation operator. In addition,
Figure 13 shows the memory consumption for each index data
structure when loading the PARTSUPP table of the Large
data set. As a good compromise, we chose 10 Checkpoints
and 10 Visibility Bitmaps for application time per Checkpoint
as well as 10 VTTs for M-IVTT for our experiments. The
cost for Timeline is dominated by the number of Checkpoints:
without Checkpoints it only requires around 3% of the space
of the temporal table. Checkpoints drive up this cost – in our
case with 10 Checkpoints we end up at 23% of the temporal
table. Despite never outperforming Timeline, M-IVTT requires
significantly more storage. Likewise, RR* is more expensive
than a Timeline Index with Checkpoints. The story for System
Y is quite complex due to the results of the index advisor: The
indexes for the Large PARTSUPP require only around 8%, but
they support the timeslice operator only. Furthermore, slight
workload variations can lead to drastic changes in indexing,
e.g., PARTSUPP for Medium triggers additional indexes due
to different selectivities, requiring 51%.

VI. CONCLUSION

In this paper we proposed an index for bi-temporal data that
exploits for properties of modern hardware such as large main
memory and fast scans. The key idea is that the individual
order in each dimension is more relevant than the (asymmetric)
spatial properties of the two time dimensions. As a result,
we use dedicated one-dimensional index structures for each
domain, where the application index is only materialized at
specific checkpoints. Computing an intermediate index is fast,

and as a result the operations such as selection, joins and
temporal aggregation on this index outperform state-of-the-
art implementations of temporal and spatial index structures
by orders of magnitude.

As temporal tables can become quite large, it may not al-
ways be feasible to keep all temporal data in the main memory
of a single machine. Consequently, we are investigating how
temporal tables and the corresponding index structures can
be partitioned onto a cluster. We also plan to evaluate the
Timeline Index for alternative storage such as disk and flash.
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