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Roadmap

• Overview

• (Query Decomposition)

• Data Localization

• Query Optimization
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Query Processing Recap
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Query
Processor

Declarative
query specification

Q

Procedural
query execution plan

Q’

Two important requirements:
1. Correctness: Q’ must be semantically equivalent to Q.
2. Efficiency: Q’ must have the smallest execution cost.

SQL
SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

AND RESP = “Manager”

 ENAME ( EMP ENO ( σ RESP=“Manager” ( ASG )))

Relational Algebra



Cost Metrics

• Total cost

– processing time at all sites (CPU + I/O)

– communication time between sites

• In WANs, communication cost usually dominates.

• Query response time

– time elapsed for executing the query
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What is the difference between total cost and query response time?
Does it change in distributed/parallel settings?



Complexity of Relational Algebra Operators
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n: relation cardinality

To reduce costs:

 The most selective
operations should be
performed first.

 Operations should be
ordered by increasing
complexity.



Query Processing in a Centralized System
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Given:
EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)

Query:
Find the names of employees who are managing a project.

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

AND RESP = “Manager”

 ENAME (σ RESP=“Manager” AND EMP.ENO=ASG.ENO ( EMP x ASG ))

 ENAME ( EMP ENO ( σ RESP=“Manager” ( ASG )))

Two equivalent
execution plans.

Which one to use?

1

2



Query Processing in a Distributed System

• Query:

• Data fragments and their allocation to sites:
– Site1 : ASG1 = σ ENO ≤ “E3” ( ASG ))

– Site2 : ASG2 = σ ENO > “E3” ( ASG ))

– Site3 : EMP1 = σ ENO ≤ “E3” ( EMP ))

– Site4 : EMP2 = σ ENO > “E3” ( EMP ))

– Site5 : Result

• Assumptions:
– size(EMP) = 400, size(ASG) = 1000, size(σ RESP=“Manager” ( ASG )) = 20

– tuple access cost = 1, tuple transfer cost = 10

– EMP locally indexed on ENO, ASG locally indexed on RESP

– uniform data distribution across sites
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EMP ENO ( σ RESP=“Manager” ( ASG ))



Query Processing in a Distributed System
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1

transfer = 1000 * 10 = 10000 transfer = 400 * 10 = 4000

selection = 1000 * 1 = 1000

join = 400 * 20 * 1 = 8000

total cost = 10000 + 4000 + 1000 + 8000 = 23000



Query Processing in a Distributed System
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2

selection = 10 * 1 = 10 selection = 10 * 1 = 10

transfer = 10 * 10 = 100

transfer = 10 * 10 = 100

join = 10 * 1 * 2 = 20 join = 10 * 1 * 2 = 20

transfer = 10 * 10 = 100 transfer = 10 * 10 = 100

total cost = 10 + 10 + 100 + 100 + 20 + 20 + 100 + 100 = 460



General Query Optimization Issues

• Algorithmic approach:

– Cost-based vs. Heuristics-based

• Granularity:

– Single query at a time vs. Multi-query optimization

• Timing:

– Static vs. Dynamic vs. Hybrid

• Statistics:

– what to collect, accuracy, independence, uniformity

• Decision mechanism:

– Centralized vs. Distributed vs. Hybrid

• Network topology:

– WANs vs. LANs
Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 11

Specific to
distributed
query processing



Distributed Query Processing
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*

*



Query Decomposition

• Goal: To convert global declarative query into a correct 
and efficient global procedural query

• Query decomposition consists of 4 steps:
1. Normalization

 Transformation of query predicates into normal form

2. Semantic Analysis

 Detection and rejection of semantically incorrect queries

3. Simplification

 Elimination of redundant predicates

4. Restructuring

 Transformation of the query into algebraic form

• No distribution-related processing.
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Sample Query
• Transformation of the query into algebraic form
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Given: EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)
PROJ(PNO, PNAME, BUDGET, LOC)

Query: Find the names of employees
other than J. Doe who worked
on the CAD/CAM project
for either 1 or 2 years.

SELECT ENAME
FROM EMP, ASG, PROJ
WHERE ASG.ENO = EMP.ENO

AND ASG.PNO = PROJ.PNO
AND ENAME ≠ “J. Doe”
AND PROJ.PNAME = “CAD/CAM”
AND (DUR = 12 OR DUR = 24)



Data Localization
• Goal: To convert an algebraic query on global relations 

into an algebraic query on physical fragments

• General approach:
1. Generate a localized query by substituting each 

global relation in the leaves of the operator tree 
by the appropriate subtree on fragments.
• Union for horizontal fragments

• Join for vertical fragments

2. Apply reduction techniques on the localized query 
to generate a simpler and an optimized operator 
tree. 
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Data Localization
Example
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• EMP is fragmented as follows:

EMP1 =  ENO ≤ “E3” (EMP)

EMP2 =  “E3” < ENO ≤ “E6” (EMP)

EMP3 =  ENO ≥ “E6” (EMP)

• ASG is fragmented as follows:
ASG1 =  ENO ≤ “E3” (ASG)

ASG2 =  ENO > “E3” (ASG)

Query plan on global relations



Data Localization
Example
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Query plan on global relations Localized query plan



EMP1 EMP2 EMP3



ASG1 ASG2



• Reduction with Selection

– Given relation R and FR = {R1,  R2, …, Rw} where Rj = pj
(R) :

pi 
(Rj) = , if x in R: ¬(pi (x) pj (x))

– Example: EMP is fragmented as before.

Reduced queryLocalized query

Data Localization
Reduction for Primary Horizontal Fragmentation
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SELECT *
FROM EMP
WHERE ENO = “E5”



• Reduction with Selection

– Given relation R and FR = {R1,  R2, …, Rw} where Rj = pj
(R) :

pi 
(Rj) = , if x in R: ¬(pi (x) pj (x))

– Example: EMP is fragmented as before.

Reduced queryLocalized query

Data Localization
Reduction for Primary Horizontal Fragmentation
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SELECT *
FROM EMP
WHERE ENO = “E5”

• EMP is fragmented as follows:
EMP1 =  ENO ≤ “E3” (EMP)

EMP2 =  “E3” < ENO ≤ “E6” (EMP)

EMP3 =  ENO ≥ “E6” (EMP)

• ASG is fragmented as follows:
ASG1 =  ENO ≤ “E3” (ASG)

ASG2 =  ENO > “E3” (ASG)



Data Localization
Reduction for Primary Horizontal Fragmentation
• Reduction with Join

– Apply when fragmentation is done on the join attribute

– Distribute Joins over Unions

(R1 R2)      S  (R1       S) (R2       S)

– Eliminate useless Joins

Ri Rj = , if x in Ri, y in Rj: ¬(pi(x) pj(y))

• Example:

– EMP and ASG are fragmented as before.
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SELECT *
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO



Data Localization
Reduction for Primary Horizontal Fragmentation
• Reduction with Join Example (cont’d):

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 21

Localized query

Reduced query



Data Localization
Reduction for Primary Horizontal Fragmentation
• Reduction with Join Example (cont’d):
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Localized query

Reduced query

• EMP is fragmented as follows:
EMP1 =  ENO ≤ “E3” (EMP)

EMP2 =  “E3” < ENO ≤ “E6” (EMP)

EMP3 =  ENO ≥ “E6” (EMP)

• ASG is fragmented as follows:
ASG1 =  ENO ≤ “E3” (ASG)

ASG2 =  ENO > “E3” (ASG)



• Reduction with Projection

– Given a relation R defined over attributes A = {A1, ..., An} and 
vertically fragmented as Ri = A' (R) where A'  A :

D,K (Ri) is useless, if the set of projection attributes D is not in A‘.

• Example:

– EMP is vertically fragmented as follows:

EMP1 =  ENO,ENAME (EMP)

EMP2 =  ENO,TITLE (EMP)

Data Localization
Reduction for Vertical Fragmentation

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 23

SELECT ENAME
FROM EMP

Localized query Reduced query



Data Localization
Reduction for Derived Horizontal Fragmentation

• Example:
ASG1: ASG     ENO EMP1

ASG2: ASG     ENO EMP2

EMP1:  TITLE = “Programmer” (EMP)

EMP2:  TITLE ≠ “Programmer” (EMP)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 24

SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO

AND EMP.TITLE = “Mech. Eng.”

Localized query



Data Localization
Reduction for Derived Horizontal Fragmentation

• Example cont’d:
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Data Localization
Reduction for Derived Horizontal Fragmentation

• Example cont’d:

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 26



Data Localization
Reduction for Derived Horizontal Fragmentation

• Example cont’d:
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Data Localization
Reduction for Hybrid Fragmentation

• Combine all the reduction rules:

– Remove empty relations generated by contradicting 
Selections on horizontal fragments.

– Remove useless relations generated by Projections on 
vertical fragments.

– Distribute Joins over Unions in order to isolate and remove 
useless Joins.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 28



Data Localization
Reduction for Hybrid Fragmentation

• Example:
EMP1 =  ENO ≤ "E4" ( ENO, ENAME (EMP))

EMP2 =  ENO > "E4" ( ENO, ENAME (EMP))
EMP3 =  ENO, TITLE (EMP)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 29

SELECT ENAME
FROM EMP
WHERE ENO = “E5”

Localized query Reduced query



Query Optimization Recap

• Goal: To convert an algebraic query on physical 
fragments into an optimized query execution plan

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 30



Query Optimization
Search Space

• Search space characterized by  
alternative execution plans

• Focus on Join trees

• For N relations, there are O(N!) 
equivalent Join trees that can 
be obtained by  applying 
commutativity and associativity
rules

• Restrict the space w/ heuristics

• Example:

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 31

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO

AND ASG.PNO = PROJ.PNO

3

2

1



Query Optimization
Search Strategy

• How to explore the plans in the search space

• Deterministic strategies
– Start from base relations and build plans by adding one relation at 

each step

– Dynamic programming (breadth-first approach) -> Best plan is 
guaranteed

– Greedy (depth-first approach)

• Randomized strategies
– Search for optimalities around a particular starting point

– Trade optimization time for execution time

– Best plan is not guaranteed

– Simulated annealing

– Iterative improvement
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Query Optimization
Cost Model

• Cost metrics (i.e., what to optimize?)

– Total time

– Response time

• Database statistics (i.e., what needs to be known?)

– Several statistics about relations, fragments, attributes

need to be maintained.

– Intermediate relation sizes/cardinalities need to be 
computed.

• size(R) = cardinality(R) length(R)
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Cost Model
Metrics

• Total cost = CPU cost + I/O cost + Communication cost

= Unit instruction cost  # of instructions

+ Unit disk I/O cost  # of disk I/Os

+ Message initiation + Transmission

• WANs: Communication cost dominates.

• LANs: All cost are equally important.

• To reduce total cost, cost of each component should be reduced.

• Response time is similar except that parallel components 
should be counted only once.

• To reduce response time, process as many things in parallel as 
possible (which may actually result in higher total cost).
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Centralized Query Optimization
Overview

• Static query optimization

– Query optimization takes place at compile time, based on a 
cost model.

– Example: System R [Selinger et al, IBM Almaden, 1970s]

• Dynamic query optimization

– Query optimization and execution steps are interleaved.

– Example: INGRES [Stonebraker et al, UC Berkeley, 1970s]

• Static-Dynamic hybrid

– Optimized plans generated at compile time are later 
reoptimized at run time.
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Centralized Query Optimization
System R Algorithm (Recap)

• Two main steps:

1. For each relation R, determine the best access path.

2. For each relation R, determine the best join ordering.

• For Joins, there are two alternative algorithms:

1. Nested-Loop

For each tuple of external relation R (cardinality n1)

For each tuple of internal relation S (cardinality n2)

Join two tuples if the join predicate is true

2. Sort-Merge

Sort R and S

Merge R and S
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System R Algorithm
Example (cont’d)

• Step 1: Determine the best access path for EMP, ASG, PROJ.

– EMP: sequential scan (no selection)

– ASG: sequential scan (no selection)

– PROJ: use the index on PNAME (selection on PNAME)

• Step 2: Determine the best join ordering.
– EMP     ASG     PROJ
– ASG      PROJ     EMP
– PROJ      ASG      EMP
– ASG      EMP     PROJ
– EMP  PROJ     ASG
– PROJ  EMP     ASG

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 37



Distributed Query Optimization
Overview

• New considerations

– Join ordering in a distributed setting

– Using Semijoin

• Distributed algorithms

– Distributed INGRES

– Distributed System R (i.e., System R*)

– SDD-1 based on Hill Climbing

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 38



Join Ordering in a Distributed Setting

• Simplest scenario:

– R      S, when R and S are at different sites 

• When there are more than two relations, we need to 
worry about intermediate result sizes since these will 
have to be shipped between sites.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 39

R
if size (R) < size (S)

if size (R) > size (S)
SSite 1 Site 2



• Query:

– PROJ     PNO  ASG     ENO EMP

• Join graph:

Join Ordering in a Distributed Setting
Example

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 40

PNOENO

PROJ

ASG

EMPSite 1

Site 2

Site 3



Join Ordering in a Distributed Setting
Example (cont’d)

1. EMP  Site 2

At Site 2: EMP’ = EMP      ASG

EMP’  Site 3

At Site 3: EMP’       PROJ

2. ASG  Site 1

At Site 1: EMP’ = EMP      ASG

EMP’  Site 3

At Site 3: EMP’       PROJ

3. ASG  Site 3

At Site 3: ASG’ = ASG      PROJ

ASG’  Site 1

At Site 1: ASG’      EMP

4. PROJ  Site 2

At Site 2: PROJ’ = PROJ      ASG

PROJ’  Site 1

At Site 1: PROJ’      EMP

5. EMP  Site 2

PROJ  Site 2

At Site 2: EMP     PROJ      ASG

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 41

Alternative execution plans:

PNOENO

PROJ

ASG

EMPSite 1

Site 2

Site 3



• Equivalence rules:

R     A S  (R     A S)     A S

 R     A (S     A R)

 (R     A S)     A (S     A R)

• Example: R @ Site1, S @ Site2. Assume size(R) < size(S).

Using Semijoins

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 42

(R     A S)     A S
At Site2: S’ = ∏A(S)
S’  Site 1
At Site 1: R’ = R    A S’
R’  Site 2
At Site 2: R’     A S

21 R     A S 
R  Site2
At Site2: R A S 

size(A(S)) + size(R    A S’)) < size(R)

1 is better than 2 if:



Distributed Query Optimization Algorithms
A Comparative Overview
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Algorithms 
Opt. 

Timing 
Objective 
Function 

Opt. 
Factors 

Network 
Topology 

Semijoin Stats Fragments 

Dist. 
INGRES 

Dynamic 

Resp. 
time or 

Total 
time 

Msg. Size, 
Proc. Cost 

General or 
Broadcast 

No 1 Horizontal 

R* Static 
Total 
time 

No. Msg., 
Msg. Size, 

IO, CPU 

General or 
Local 

No 1, 2 
No 

 

SDD-1 Static 
Total 
time 

Msg. Size General Yes 
1,3,4,

5 
No 

 

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor; 
4: size of   projection on each join attribute; 5: attribute size and tuple size 



R* Algorithm
Architecture

• Master site

– Overall coordination

– Inter-site decisions (execution sites, fragments, 
data transfer methods, etc.)

• Apprentice sites

– Local decisions (local join ordering, local access 
plans, etc.)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 44



R* Algorithm
Data Transfer Alternatives

• Ship-whole

– larger data transfer

– smaller number of messages

– better if relations are small

• Fetch-as-needed

– number of messages = O(cardinality of external 
relation)

– data transfer per message is minimal

– better if relations are large and the selectivity is good
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R* Algorithm
Join Strategies for R     A S 

1. Move outer relation tuples to the site of the inner relation

– Retrieve outer tuples

– Send them to the inner relation site

– Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples) 

+ # of outer tuples fetched * cost(retrieving qualified inner tuples)

+ msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size
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R* Algorithm
Join Strategies for R     A S 

2. Move inner relation to the site of outer relation

– cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)

+ # of outer tuples fetched *

cost(retrieving matching inner tuples

from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples

in temporary storage) 

+ msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size
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R* Algorithm
Join Strategies for R     A S 

3. Move both inner and outer relations to another site

Total Cost = cost(retrieving qualified outer tuples)

+ cost(retrieving qualified inner tuples)

+ cost(storing inner tuples in storage)

+ msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size

+ msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size

+ # of outer tuples fetched*cost(retrieving inner tuples from 
temporary storage)
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R* Algorithm
Join Strategies for R     A S 

4. Fetch inner tuples as needed
– Retrieve qualified tuples at outer relation site
– Send request containing join column value(s) for outer tuples to inner 

relation site
– Retrieve matching inner tuples at inner relation site
– Send the matching inner tuples to outer relation site
– Join as they arrive 

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost * (# of outer tuples fetched)
+ # of outer tuples fetched * (# of inner tuples fetched *

avg. inner tuple size * msg. cost/msg. size)
+ # of outer tuples fetched * cost(retrieving matching inner tuples

for one outer value)
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Hill Climbing Algorithm

Assume join is between three relations.

Step 1: Do initial processing

Step 2: Select initial feasible solution (ES0)
• Determine the candidate result sites - sites where a relation referenced in 

the query exist

• Compute the cost of transferring all the other referenced relations to each 
candidate site

• ES0 = candidate site with minimum cost

Step 3: Determine candidate splits of ES0 into {ES1, ES2}
• ES1 consists of sending one of the relations to the other relation's site

• ES2 consists of sending the join of the relations to the final result site
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Hill Climbing Algorithm (cont’d)

Step 4: Replace ES0 with the split schedule which gives

cost(ES1) + cost(local join) + cost(ES2) < cost(ES0)

Step 5: Recursively apply steps 3–4 on ES1 and ES2

until no such plans can be found

Step 6: Check for redundant transmissions

in the final plan and eliminate them.

(see the example in [1])
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Hill Climbing Algorithm
Problems

• Greedy algorithm => determines an initial feasible 
solution and iteratively tries to improve it

• If there are local minima, it may not find global 
minima

• If the optimal schedule has a high initial cost, it won't 
find it, since it won't choose it as the initial feasible 
solution

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 52



SDD-1 Algorithm
Hill Climbing using Semijoin

Initialization

Step 1: In the execution strategy (call it ES), include all the 
local processing

Step 2: Reflect the effects of local processing on the 
database profile

Step 3: Construct a set of beneficial semijoin operations 
(BS) as follows :

BS = Ø

For each semijoin SJi

BS  BS  SJi if cost(SJi ) < benefit(SJi)
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SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)

Iterative Process

Step 4: Remove the most beneficial SJi from BS and append 
it to ES

Step 5: Modify the database profile accordingly

Step 6: Modify BS appropriately

– compute new benefit/cost values

– check if any new semijoin needs to be included in BS

Step 7: If BS ≠ Ø, go back to Step 4.
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SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)

Assembly Site Selection

Step 8: Find the site where the largest amount of  data resides 
and select it as the assembly site

Postprocessing
Step 9: For each Ri at the assembly site, find the semijoins of 

the type Ri Rj

where the total cost of ES without this semijoin is 
smaller than the cost with it and remove the semijoin
from ES. 

Step 10: Permute the order of semijoins, if doing so would 
improve the total cost of ES. 

(see the example in [1])
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Distributed Query Processing and Optimization
Summary

• Query decomposition

– Declarative form => Procedural form

– Normalization, Analysis, Simplification, Restructuring

• Data localization

– Localization and reduction for different types of fragmentations

• Query optimization

– Basic components: Search space, Search strategy, Cost model

– Centralized algorithms (INGRES, System R)

– Distributed algorithms (Dist. INGRES, System R*, SDD-1)
• Join ordering and Semijoins
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