Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2014/15

Lecture VIII:
Distributed query processing
and optimization

Roadmap

Overview

(Query Decomposition)
Data Localization
Query Optimization

Query Processing Recap

Declarative Procedural

query specification |:> Query |:> query execution plan
Q Processor Q

SQL Relational Algebra

SELECT ENAME

FROM EMP, ASG I1 ENAME(EMP>] ENO (Y RESP="Manager” (ASG)))

WHERE EMP.ENO = ASG.ENO
AND RESP = “Manager”

Two important requirements:
1. Correctness: Q" must be semantically equivalent to Q.
2. Efficiency: Q" must have the smallest execution cost.

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 4

Cost Metrics

* Total cost
— processing time at all sites (CPU + 1/0)

— communication time between sites

* In WANSs, communication cost usually dominates.

* Query response time
— time elapsed for executing the query

What is the difference between total cost and query response time?

Does it change in distributed/parallel settings?

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 5

Complexity of Relational Algebra Operators

Cperation Complexity
Select
. . . L Qi n)
FProject (without duplicate elimination)
Froject (with duplicate elimination) _ _
Oin*log n)
GGroup by
Jain
Semijoin
O{n™lag n)
Divisian

Set Operators

Cartesian Product

G(rl‘?)

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

n: relation cardinality

To reduce costs:

[The most selective
operations should be
performed first.

[Operations should be
ordered by increasing
complexity.

Query Processing in a Centralized System

Given:
EMP(ENO, ENAME, TITLE)
ASG(ENO, PNO, RESP, DUR)
Query:
Find the names of employees who are managing a project.

SELECT ENAME

FROM EMP, ASG

WHERE EMP.ENO = ASG.ENO
AND RESP = “Manager”

Two equivalent G IT ename (O RESP="Manager” AND EMP.ENO=ASG.ENO (EMP x ASG))
execution plans.

Which one to use? 9 IT ename (EMPD< gy (O pespmtanager (ASG))) [/

Query Processing in a Distributed System

i Query: EMP><Tgng (o RESP=”Manager"(ASG))

e Data fragments and their allocation to sites:
— Sitel : ASG1 = O gy < 3 (ASG))
— Site2 : ASG2 = 0 (g 5«3 (ASG))
— Site3 : EMP1 = 0 ¢y < «e5» (EMP))
— Site4 : EMP2 =0 ¢g 5 g2 (EMP))
— Site5 : Result

* Assumptions:
— size(EMP) = 400, size(ASG) = 1000, size(0 gesp-upanager (ASG) = 20
— tuple access cost = 1, tuple transfer cost = 10

— EMP locally indexed on ENO, ASG locally indexed on RESP
— uniform data distribution across sites

Query Processing in a Distributed System

@ join-400*20*1=8000

‘ selection = 1000 * 1 = 1000
I

Site 5

\’

result = (EMP, ' EMP,,) b4 (ASG, ' ASG,)

END HEEF‘-""I'.-'Imaq-Ef"

AEG/ AEG/ \MF‘ \EMF’

Site 1 Site 2 Site 3 Site 4

\) \)
I |

transfer = 1000 * 10 = 10000 fransfer = 400 * 10 = 4000

total cost = 10000 + 4000 + 1000 + 8000 = 23000

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 9

Query Processing in a Distributed System

9 Site 5

| result = EMP', U EMP', |

transfer = 10 * 10 = 100

EMF"/

Site 3 ~— join=10*1*2=20
EMP' =EMP, M _,__ HEG'1‘

transfer = 10 * 10 = 100
EMP,

Sied join=10*1*2=20

EMP', = EMP, M _, - ASG/,

transfer = 10 * 10 = 100

ASG, .
Site - transfer = 10 * 10 = 100

ASCY = Ogeap-mtanager O

selection=10*1=10

TASG'E
Site 2

ASC'; = O geapmanager o0,

selection=10*1=10

total cost = 10 + 10 + 100 + 100 + 20 + 20 + 100 + 100 = 460 [}l

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 10

General Query Optimization Issues

Algorithmic approach:

— Cost-based vs. Heuristics-based
Granularity:

— Single query at a time vs. Multi-query optimization
Timing:

— Static vs. Dynamic vs. Hybrid
Statistics:

— what to collect, accuracy, independence, uniformity

Decision mechanism:

— Centralized vs. Distributed vs. Hybrid Specific to

— distributed

Network topology: query processing

— WANSs vs. LANs

Distributed Query Processing

CALCULUS QUERY ON GLOBAL

RELATIONS
QUERY GLOBAL
DECOMPOSITION SCHEMA

ALGEBRAIC QUERY ON GLOBAL

RELATIONS
DATA FRAGMENT
LOCALIZATION SCHEMA

ALGEBRAIC QUERY ON FRAGMENTS

!

GLOBAL ALLOCATION
|\ OPTIMIZATION SCHEMA *

DISTRIBUTED QUERY EXECUTION PLAN

LOCAL DISTRIBUTED
SITES EXECUTION

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 12

CONTROL
SITE <

Query Decomposition

* Goal: To convert global declarative query into a correct
and efficient global procedural query

 Query decomposition consists of 4 steps:
1. Normalization
» Transformation of query predicates into normal form
2. Semantic Analysis
» Detection and rejection of semantically incorrect queries
3. Simplification
» Elimination of redundant predicates
4. Restructuring
» Transformation of the query into algebraic form

* No distribution-related processing.

Sample Query

* Transformation of the query into algebraic form
Given: EMP(ENO, ENAME, TITLE) I]

Query:

SELECT

FROM

WHERE
AND
AND
AND
AND

ASG(ENO, PNO, RESP, DUR) ENAME L project

PROJ(PNO, PNAME, BUDGET, LOC) S
Find the names of employees A
other than J. Doe who worked
on the CAD/CAM project

for either 1 or 2 years. T
ENAME

- Oenames) Do
EMP, ASG, PROJ T

ASG.ENO = EMP.ENO Meno

ASG.PNO = PROJ.PNO AN
ENAME # “J. Doe” Mers
PROJ.PNAME = “CAD/CAM” S x
(DUR = 12 OR DUR = 24) PROJ AsG EMP

k.

I:_]F'r'.lﬂ-.h-'l E="CADiCAM®

}. selact

> join

Data Localization

* Goal: To convert an algebraic query on global relations
into an algebraic query on physical fragments

* General approach:

1. Generate a localized query by substituting each
global relation in the leaves of the operator tree
by the appropriate subtree on fragments.

* Union for horizontal fragments
* Join for vertical fragments

2. Apply reduction techniques on the localized query
to generate a simpler and an optimized operator
tree.

Data Localization

Example
Query plan on global relations
II'EHAHE
T * EMP is fragmented as follows:

I:—:'L‘.ILI R=12 ., DUR=24

EMP;,= G 3 ceno < “e6” (EMP)
FHAME="CADICAM®
EMP; =G gno s 67 (EMP)

I

]

Tenamers Doer * ASG is fragmented as follows:
T ASG; = G gyo <3 (ASG)
Meno ASG; = G gyo > <37 (ASG)
I:j":IEI'-J-r}

Uni Freiburg, WS2014/15 ot1Ts Infrastructure for Data Science

Data Localization

Xxample
Query plan on global relaTIIEons pLocalized query plan

I lEHAII.-'IE

I lEHAII.-'IE T
T O bur=12 . DUR=24

O bur=12 . DUR=24 T
T O ppame="canicam®

O ppame="canicam® ‘ T

T O enameL Do
O enameL Do T

T M PHO

H ENO ‘\
AN Mene

tijl’dﬂ-

a PROJ
Uni Freiburg, WS2014/15 ystems Infrastructure for Data Ssi

PR EN

P, EMP, EMP, ASG, AS

Data Localization
Reduction for Primary Horizontal Fragmentation
* Reduction with Selection

— Given relation Rand Fz={Ry, Ry, ..., R} where R;= Gpj(R) :

G, (Ry) = 0, if ¥xin R:=(p; (x) A p; (x))

Example: EMP is f d asbefore. oo
— eEXample: IS Tragmented as before. FROM EMP
WHERE ENO = “E5”
Localized query Reduced query
I:T'EI'-.I-IJ-="EE~“ I:_IEr-.I-Il}-f'EE“
»f A4
EMP, EMP, EMP EMP

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 18

Data Localization

* EMP is fragmented as follows: Horizontal Fragmentation
EMP; = G gy < ez (EMP)

EMP,= G 3 <eno < 67 (EMP)

EMP; =G gyo s 67 (EMP) {Ry, Ry, ..., R} where R;= Gpj(R) :

* ASG is fragmented as follows: p, (x) A P, (x))

ASG.=0O <2 (ASG SELECT *
1% O eno< e (ASG) ted as before. oo Emp
ASG, = O gno >3 (ASG)

WHERE ENO = “E5”

Localized query Reduced query
I:T'E WNO="ES" I:_IE WO="E5"
} A4

EMP, EMP, EMPs EMP

Data Localization
Reduction for Primary Horizontal Fragmentation

* Reduction with Join
— Apply when fragmentation is done on the join attribute
— Distribute Joins over Unions
(R{UR,)><S < (Rp<S) U (Rp<S)
— Eliminate useless Joins
Ri >R, = ¢, if Vxin R, Vyin R;: =(p;(x) A p;(y))
 Example:
— EMP and ASG are fragmented as before.
SELECT *

FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

Data Localization
Reduction for Primary Horizontal Fragmentation
* Reduction with Join Example (cont’d):
Localized query

/ - \

/ ‘K

EMP EI'-.*IF'E EMP5 ASG ASGE
Reduced query
DI""lEr-.I--'J- MEH{} MEH{}

/N AN 7N
EMP ; ASG ; EMP5 ASGy EMPs ASGy

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 21

Data Localization

* EMP is fragmented as follows: Horizontal Fragmentation
EMP; = G gy < ez (EMP)

EMP, =G 37 < eno < g6 (EMP)
EMP3= G go s g (EMP) ed query

I::":IEI'-.I-IJ-
* ASG is fragmented as follows: \

ASG; =G go <37 (ASG) =

ASG, = O gno >3 (ASG) PSRN

ASG ASGy

mple (cont’d):

Reduced query

M MEH{} MEH{}

ENO
/N AN 7N
EMP ; ASG ; EMP5 ASGy EMPs ASGy

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 22

Data Localization
Reduction for Vertical Fragmentation

* Reduction with Projection

— Given a relation R defined over attributes A ={A,, ..., A} and
vertically fragmented as R, =I1,.(R) where A'c A:

I, ¢ (R)) is useless, if the set of projection attributes D is not in A’

 Example:

— EMP is vertically fragmented as follows:

EMP; = IT eno ename (EMP) L lized Red d
EMP, = IT o s (EMP) ocalized query educed query

]]EN.IU.'E

SELECT ENAME T
FROM EMP M. ‘
/ \

EMP . EMP; EMP
Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 1

]]Er-.l.ﬁ!.'E

>

23

Data Localization
Reduction for Derived Horizontal Fragmentation

e Example:
ASG,: ASG <o EMP, SELECT *
ASG,: ASG >< o EMP, FROM EMP, ASG

EMP.: G 716 - “Programmer” (EMP) WHERE ASG.ENO = EMP.ENO
AND EMPTITLE = “Mech. Eng.”
EMPZ: O 1iTLE 2 “Programmer” (EMP)

Localized query

HEmh
//’) ﬁTITLE="Me~:I‘1. Eng."

ASG, ASGs EMP, EMP,

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 24

Data Localization
Reduction for Derived Horizontal Fragmentation

* Example cont’d:

I:“_:I'|"|'|"LE="F.-1-E1:!'1. Eng.”

ASG, ASG, EMP, EMP,

/\

TITLE"'I'.-'I&m Eng."

/ ™~ t

ASG. ASGo EMP,

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 25

Data Localization
Reduction for Derived Horizontal Fragmentation
* Example cont’d:

/" “\ e ‘r”&m e

AS Gy EMP,,

!
/\

HEHI}
-
':._ ﬁ — E
TIT* "Meach. Eng." TI'I"Ii"E— Meach. Eng.
ASG; EMP, ASGi2 EMP,

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 26

Data Localization
Reduction for Derived Horizontal Fragmentation

* Example cont’d:

EH'!'}&-‘-H‘

w END
-
I:_]TI'I'$="II.-'I-E+:!'1. Eng.” I:_IT I'I"IikE="Il.-'Iem. Eng.”
ASG; EMP, ASGi2 EMP,
b4 END
I

"ITLE="Mach. Eng"

AS GE EM PE

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 27

Data Localization
Reduction for Hybrid Fragmentation

e Combine all the reduction rules:

— Remove empty relations generated by contradicting
Selections on horizontal fragments.

— Remove useless relations generated by Projections on
vertical fragments.

— Distribute Joins over Unions in order to isolate and remove
useless Joins.

Data Localization
Reduction for Hybrid Fragmentation

e Example:

EMP, =6 gno <vear (T eno, ename (EMP)) SELECT ENAME
EMP, =6 eno s ear (I eno, ename (EMP)) - FROM EMP

EMP; =11 gyo, ririe (EMP) WHERE ENO="E5
Localized query Reduced query
I IEH."LME I IIZ:“w-"-."-IIZ

Meno EMP
EMP, EMP EMPs

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 29

Query Optimization Recap

* Goal: To convert an algebraic query on physical
fragments into an optimized query execution plan

Uni Freiburg, WS2014/15

INPUT QUERY

l

SEARCH SPACE
TRANSFORMATION
GENERATION RULES

EQUIVALENT QEP

l

SEARCH
STRATEGY

l

BEST QEP

Systems Infrastructure for Data Science 30

Query Optimization
Search Space

Search space characterized by 0 B> pro
alternative execution plans /X ‘\

Focus on Join trees P<leno FROJ
For N relations, there are O(N!) Er:;;’r s
equivalent Join trees that can
be obtained by applying e /Mi‘i
commutativity and associativity B<onc g
rules A x\\
Restrict the space w/ heuristics ASG PROU
Example: 9 P<leno pno
SELECT ENAME, RESP PN
FROM EMP, ASG, PROJ X ASG
WHERE EMP.ENO = ASG.ENO

AND ASG.PNO = PROJ.PNO "'/Y K\“

ns Infrastructure for Date FrH DJ EMP

Query Optimization
Search Strategy

 How to explore the plans in the search space

* Deterministic strategies

— Start from base relations and build plans by adding one relation at
each step

— Dynamic programming (breadth-first approach) -> Best plan is
guaranteed

— Greedy (depth-first approach)

 Randomized strategies
— Search for optimalities around a particular starting point
— Trade optimization time for execution time
— Best planis not guaranteed
— Simulated annealing
— Iterative improvement

Query Optimization
Cost Model

* Cost metrics (i.e., what to optimize?)
— Total time
— Response time

* Database statistics (i.e., what needs to be known?)
— Several statistics about relations, fragments, attributes
need to be maintained.

— Intermediate relation sizes/cardinalities need to be
computed.

* size(R) = cardinality(R) * length(R)

Cost Model

Metrics
e Total cost = CPU cost + I/O cost + Communication cost

= Unit instruction cost * # of instructions
+ Unit disk 1/O cost * # of disk 1/Os
+ Message initiation + Transmission

e WANSs: Communication cost dominates.

* LANSs: All cost are equally important.
* To reduce total cost, cost of each component should be reduced.

* Response time is similar except that parallel components
should be counted only once.

* To reduce response time, process as many things in parallel as
possible (which may actually result in higher total cost).

Centralized Query Optimization
Overview

e Static query optimization

— Query optimization takes place at compile time, based on a
cost model.

— Example: System R [Selinger et al, IBM Almaden, 1970s]
* Dynamic query optimization

— Query optimization and execution steps are interleaved.

— Example: INGRES [Stonebraker et al, UC Berkeley, 1970s]
e Static-Dynamic hybrid

— Optimized plans generated at compile time are later
reoptimized at run time.

Centralized Query Optimization
System R Algorithm (Recap)

* Two main steps:
1. For each relation R, determine the best access path.
2. For each relation R, determine the best join ordering.

* For Joins, there are two alternative algorithms:
1. Nested-Loop

For each tuple of external relation R (cardinality n,)
For each tuple of internal relation S (cardinality n,)
Join two tuples if the join predicate is true

2. Sort-Merge

SortRand S
Merge R and S

System R Algorithm

Example (cont’d)
e Step 1: Determine the best access path for EMP, ASG, PROJ.
— EMP: sequential scan (no selection)

— ASG: sequential scan (no selection)
— PROIJ: use the index on PNAME (selection on PNAME)

e Step 2: Determine the best join ordering.
— EMP>MASG> PROJ
— ASG ™M PROJ><EMP
— PROJ > ASG > EMP
— ASG < EMP™PROJ
— EMP x PROJ><ASG
— PROJ x EMPPASG

Distributed Query Optimization
Overview

* New considerations
— Join ordering in a distributed setting
— Using Semijoin

* Distributed algorithms
— Distributed INGRES
— Distributed System R (i.e., System R*)
— SDD-1 based on Hill Climbing

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science

38

Join Ordering in a Distributed Setting

* Simplest scenario:
— RS, when R and S are at different sites

if size (R) < size (S)

Site 1 ®: @ Site 2

if size (R) > size (S)

* When there are more than two relations, we need to
worry about intermediate result sizes since these will
have to be shipped between sites.

Join Ordering in a Distributed Setting
Example

* Query:
— PROJ >, ASG><, , EMP

e Join graph:
Site 2

ENO PNO

Site 1 @ @ Site 3

Join Ordering in a Distributed Setting
Example (cont’d)

Alternative execution plans:

1. EMP — Site 2 4. PROJ — Site 2
At Site 2: EMP’ = EMP <1 ASG At Site 2: PROJ = PROJP<I ASG
EMP’ — Site 3 PROJ' — Site 1
At Site 3: EMP” P< PROJ At Site 1: PROJ'><I EMP

2. ASG —5Site 5. EMP — Site 2
At Site 1: EMP’ = EMPD><I ASG PROJ —> Site 2
EMP” — Site 3 At Site 2: EMP ><I PROJ><I ASG
At Site 3: EMP’ ><I PROJ ,

. Site 2

3. ASG — Site 3

At Site 3: ASG’ = ASG D<IPROJ @

PNO

ENO
ASG’ — Site 1
At Site 1: ASG' bIEMP Site 1 @ Site 3

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 41

Using Semijoins

* Equivalence rules:
Re<i, S (Rp<, S) >, S
< RP, (S>>, R)

< (Re<, S) <ty (S><, R)

« Example: R @ Sitel, S @ Site2. Assume size(R) < size(S).

€ Rr>=,50,s (2 NI

At Site2: S’ =]'[A(S) R — Site2

S" — Site 1 At Site2: R, S

At Site 1: R’ = Re<, S . "
I 1is better than 2 if:

At Site 2: R' <1, S size(IT,(S)) + size(Re<, 7)) < size(R)

Distributed Query Optimization Algorithms

A Com

narative Overview

: Opt. Objective Opt. Network .
Algorithms e . Semijoin | Stats | Fragments
Timing | Function | Factors Topology
Resp.
Dist. . time or | Msg. Size, | General or :
D ’ N 1 H I
INGRES ynamic Total Proc. Cost | Broadcast © orizonta
time
No. Msg.
Total ’ I N
R* Static ti(::ae Msg. Size, Ge[fgzl or No 1,2 ©
10, CPU
1
SDD-1 Static Tptal Msg. Size | General Yes 34 No
time 5

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor;
4:size of projection on each join attribute; 5: attribute size and tuple size

R* Algorithm
Architecture

e Master site
— Overall coordination

— Inter-site decisions (execution sites, fragments,
data transfer methods, etc.)

* Apprentice sites

— Local decisions (local join ordering, local access
plans, etc.)

R* Algorithm
Data Transfer Alternatives

* Ship-whole
— larger data transfer
— smaller number of messages
— better if relations are small

 Fetch-as-needed

— number of messages = O(cardinality of external
relation)

— data transfer per message is minimal
— better if relations are large and the selectivity is good

R* Algorithm
Join Strategies for R <, S

1. Move outer relation tuples to the site of the inner relation
— Retrieve outer tuples
— Send them to the inner relation site
— Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ # of outer tuples fetched * cost(retrieving qualified inner tuples)
+ msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size

R* Algorithm
Join Strategies for R <, S

Move inner relation to the site of outer relation
— cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)
+ # of outer tuples fetched *
cost(retrieving matching inner tuples

from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples
in temporary storage)

+ msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size

R* Algorithm
Join Strategies for R <, S

3. Move both inner and outer relations to another site

Total Cost = cost(retrieving qualified outer tuples)
+ cost(retrieving qualified inner tuples)
+ cost(storing inner tuples in storage)
+ msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size
+ msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size

+ # of outer tuples fetched*cost(retrieving inner tuples from
temporary storage)

R* Algorithm
Join Strategies for R <, S

4. Fetch inner tuples as needed
— Retrieve qualified tuples at outer relation site

— Send request containing join column value(s) for outer tuples to inner
relation site

— Retrieve matching inner tuples at inner relation site
— Send the matching inner tuples to outer relation site
— Join as they arrive

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost * (# of outer tuples fetched)
+ # of outer tuples fetched * (# of inner tuples fetched *
avg. inner tuple size * msg. cost/msg. size)

+ # of outer tuples fetched * cost(retrieving matching inner tuples
for one outer value)

Hill Climbing Algorithm

Assume join is between three relations.
Step 1: Do initial processing
Step 2: Select initial feasible solution (ESO)

e Determine the candidate result sites - sites where a relation referenced in
the query exist

 Compute the cost of transferring all the other referenced relations to each
candidate site

e ESO = candidate site with minimum cost

Step 3: Determine candidate splits of ESO into {ES1, ES2}

* ES1 consists of sending one of the relations to the other relation’s site
* ES2 consists of sending the join of the relations to the final result site

Hill Climbing Algorithm (cont’d)

Step 4: Replace ESO with the split schedule which gives
cost(ES1) + cost(local join) + cost(ES2) < cost(ESO)
Step 5: Recursively apply steps 3—4 on ES1 and ES2
until no such plans can be found
Step 6: Check for redundant transmissions
in the final plan and eliminate them.
(see the example in [1])

Hill Climbing Algorithm
Problems

* Greedy algorithm => determines an initial feasible
solution and iteratively tries to improve it

* If there are local minima, it may not find global
minima

* If the optimal schedule has a high initial cost, it won't
find it, since it won't choose it as the initial feasible
solution

SDD-1 Algorithm
Hill Climbing using Semijoin
Initialization

Step 1: In the execution strategy (call it ES), include all the
local processing

Step 2: Reflect the effects of local processing on the
database profile

Step 3: Construct a set of beneficial semijoin operations
(BS) as follows :

BS=0Q
For each semijoin SJ.
BS <~ BS U SJ. if cost(SJ;) < benefit(SJ.)

SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)
Iterative Process

Step 4: Remove the most beneficial SJ. from BS and append
it to ES

Step 5: Modify the database profile accordingly
Step 6: Modify BS appropriately
— compute new benefit/cost values

— check if any new semijoin needs to be included in BS

Step 7: If BS # @, go back to Step 4.

SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)
Assembly Site Selection

Step 8: Find the site where the largest amount of data resides
and select it as the assembly site

Postprocessing

Step 9: For each R, at the assembly site, find the semijoins of
the type R;>R;
where the total cost of ES without this semijoin is

smaller than the cost with it and remove the semijoin
from ES.

Step 10: Permute the order of semijoins, if doing so would
improve the total cost of ES.

(see the example in [1])

Distributed Query Processing and Optimization
Summary

* Query decomposition

— Declarative form => Procedural form

— Normalization, Analysis, Simplification, Restructuring
* Data localization

— Localization and reduction for different types of fragmentations
* Query optimization

— Basic components: Search space, Search strategy, Cost model

— Centralized algorithms (INGRES, System R)
— Distributed algorithms (Dist. INGRES, System R*, SDD-1)

* Join ordering and Semijoins

Uni Freiburg, WS2014/15 Systems Infrastructure for Data Science 56

